Projective Duality

Intuition: Data are points.

Under the hood: pairs of numbers

But pairs of numbers can represent other objects

\[
(\alpha, \beta) \quad (\delta, \gamma)
\]

Ex: \[
\exists x | \alpha x \leq \beta \\
[\alpha, \beta]
\]

\[
\delta x + \gamma y = 1
\]

Halfplane Intersection/Upper Envelope

Given a set of lines in \(\mathbb{R}^2 \)

\[
y = ax - b
\]

Compute representation of upper envelope of \(L \)

Sequence of supporting lines in order from left to right

Convex

We can compute vertices by solving linear system

\[
\begin{align*}
 y &= \delta_6 x - b_6 \\
 y &= \delta_2 x - b_2
\end{align*}
\]

Divide and Conquer → merge sort

- Partition \(L \) into \(R, U, B \) disjoint equal size
- Recursive compute upper envelopes \(\hat{E} \) and \(\hat{B} \)
- Merge
Merge using a sweep algorithm
Sweep vertical line \(\ell \) from left to right
Record intersections with \(\hat{I} \) and \(\hat{B} \)
- index \(r \) of edge of \(\hat{I} \)
- index \(b \) of edge of \(\hat{B} \)
- which point is higher
This info will change at
- next red vertex
- next blue vertex
- next red-blue intersection whichever is next

Init: \(r = 1 \), \(b = 1 \), higher = lower slope
\(\text{curx} = -\infty \)
Repeat:
\(\text{curx} \leftarrow \text{next event} \)
if higher intersection changes
record new higher edge
until \(\text{curx} = \infty \)

\(T(n) = 2T(\frac{n}{2}) + O(n) \Rightarrow O(n \log n) \) time

Output-sensitive
Start with line \(\ell \) with min slope
Repeat
find next vertex \(\leftarrow O(n) \) time
update \(\ell \)
until \(\ell \) has max slope

\# iterations = \# vertices of upper envelope
\(O(nh) \) time

This is Janis march.
Duality

Primal
- point $p = (a, b)$
- line: $y = a'x - b'$

Dual
- line $p^* : y = bx - a'$
- point $l^* = (a', b')$

Math
- $(a, b)^T$
- (a', b')

$aa' = b + b'$

Incidence:
- $p \in l$
- $l = P_1P_2$

Order:
- P_1 left of P_2
- P_1 above P_2

Vertical Distance
- P above l
- P below l

Orientation
- $P_1P_2P_3$ ccw

Convex stuff
- lower convex hull
 - all lines below every pt in P
 - vertices of lower hull left to right
- upper envelope
 - all points above all lines in L
 - edges of upper envelope left to right
 - vertices