Line Segment Intersection

Given a set S of n segments:

- Do any two intersect?
- Which pairs intersect?
- How many pairs intersect?
- Find all intersection points
- Subdivide S at intersections

Examples:

Given two polygons, compute intersection/union/convex hull

Given a polygon, is it simple?

Map overlay: Given two planar maps

Variants:
- Replace segments with lines, boxes, circles, curves, triangles in \mathbb{R}^3
Given two segments pq and rs, do they intersect?

Intersect lines pq and rs

$\text{orient}(p,q,r) = 0$
$\text{orient}(r,s,z) = 0$

$\begin{vmatrix} 1 & a & b \\ 1 & c & d \\ 1 & x & y \end{vmatrix} = 0$
$\begin{vmatrix} 1 & c & f \\ 1 & g & h \\ 1 & x & y \end{vmatrix} = 0$

$(b-d)x + (c-a)y = ad-bc$

Check if int point lies on segments

Crossing $p$$r$ intersection is single point in interior of both segments

$\text{orient}(p,q,r) \neq \text{orient}(p,q,s)$

$\text{orient}(p,r,s) \neq \text{orient}(q,r,s)$

$O(1)$ time

Detecting intersections

For new
Assume general position
- distinct coordinates
- no 3 collinear endpoints

Intuition:
Continuously sweep vertical line left to right
Maintain intersections between S and l
Implementation:

Maintain sequence of segments crossing \(l \)

sorted by \(y \)-coord of intersection points

Changes at left and right endpoints

(and segment crossings)

Data structure? Balanced binary search tree

insert \(\mathcal{O}(\log n) \) time

delete \(\mathcal{O}(\log n) \) time

Use orient tests instead

of comparisons

\[p_j \text{ above } p_k q_k \iff \text{orient}(p_k, q_k, p_j) > 0 \]

Init BST \(\leftarrow \emptyset \)

Consider endpoints in left-to-right order

sort: \(\mathcal{O}(\log n) \)

At each left endpoint \(p_i \):

\(i \leftarrow \text{pred}(p_i) \)

\(k \leftarrow \text{succ}(p_i) \)

insert \(j \) into BST

if \(p_i q_i \) crosses \(p_j q_j \) report True

if \(p_i q_i \) crosses \(p_k q_k \) report True

At each right endpoint \(q_j \):

delete \(j \) from BST

\(i \leftarrow \text{pred}(q_j) \)

\(k \leftarrow \text{succ}(q_j) \)

if \(p_i q_i \) crosses \(p_k q_k \) report True

return False

\(\mathcal{O}(\log n) \) time