Voronoi Diagrams

\[\text{Vor}(p) = \{ q \in \mathbb{R}^2 \mid p \text{ is the closest site to } q \} \]

Applications:
- Nearest neighbor queries
- Interpolation

Fortune's Algorithm - \(O(n \log n)\) time

Voronoi edge = perp. bisector of \(pq \)

\[\sqrt{(x-b)^2 + (y-d)^2} = \sqrt{(c-x)^2 + (d-y)^2} \]

\[(a-c)x + (b-d)y = \frac{1}{2}(a^2 + b^2 - c^2 - d^2) \]

Voronoi vertex =
- Circumcenter of 3 sites
- Center of circumcircle

General position:
- No 3 pts collinear
- No 4 pts cocircular
More generally:

- Every Voronoi region is a convex polygon.
- Intersection of \(n-1 \) bisector half-planes.
- \(\text{Vor}(p) \) connected.
- \(\text{Compute} \ \text{Vor}(p) \) in \(O(n \log n) \) time.

- \(\text{Vor}(p) \) is unbounded iff \(p \) is a vertex of \(\text{conv}(P) \).

- Infinite Voronoi edges \(\iff \) convex hull edges.

Growing empty circle becomes empty halfplane in the limit.

Planar straight-line graph, every vertex has degree 3.

Euler's formula: \(n \) faces \(\Rightarrow \) 2n-2-h vertices, 3n-3-h edges where \(h = \# \text{hull vertices} \).

Delaunay Triangulation

- Planar dual of Voronoi diagram.
- Triangulation of \(P \) (assuming gen. pos.)

- PSLG \(n \) vertices, 3n-3-h edges, 2n-2-h faces.
Standard DS for Voronoi = Standard DS for Delaunay

pq is a Delaunay edge iff some circle has p,q inside all other sites outside

pqr is a Delaunay triangle iff circumsphere (p,q,r) is empty

Circles:

\[(x-a)^2 + (y-b)^2 = r^2\]

\[x^2+y^2-2ax-2by + a^2+b^2-r^2 = 0\]

\[\text{Of } \text{coeff}(x^2) = \text{coeff}(y^2), \text{ coeff}(xy) = 0\]

\[x^2+y^2-2\alpha x - 2\beta y + \gamma = 0\]

Circle with center \((\alpha, \beta)\) radius \(\sqrt{\gamma - \alpha^2 - \beta^2}\)

Circumcircle of \((a,b), (c,d), (e,f)\):

\[
\det \begin{bmatrix}
1 & a & b & a^2+b^2 \\
1 & c & d & c^2+d^2 \\
1 & e & f & e^2+f^2 \\
1 & x & y & x^2+y^2
\end{bmatrix} = 0
\]

\[\text{degenerates to a line if } \text{pts are collinear}\]

If \(\det > 0\) and 3 pts are CCW
\((x,y)\) inside circle

4 points

\[p_q\text{ outside circ}(pqr)\]

\[
\begin{bmatrix}
4p_x & 4p_y & p_x^2 + p_y^2 \\
4q_x & 4q_y & q_x^2 + q_y^2 \\
4r_x & 4r_y & r_x^2 + r_y^2 \\
4s_x & 4s_y & s_x^2 + s_y^2
\end{bmatrix} > 0
\]

InCircle Test \((p,q,r,s)\)
A triangulation is locally Delaunay if every pair of adjacent \(\Delta \)s passes the incircle test.

"Every interior edge is locally Delaunay."

Theorem: Delaunay \(\Rightarrow \) locally Delaunay

Proof on Thursday

Lawson's Flip algorithm (1977)

1. Triangulate \(P \)
2. Repeatedly flip bad edges until all edges are locally Delaunay

Theorem \(\Rightarrow \)

If algo halts, final triangulation is Delaunay

- It does halt
- After \(O(n^2) \) flips
- Basis of \(O(n \log n) \)-time randomized incremental algorithm