Paper Presentations
registration form Apr 15

Smallest annulus
\[\rightarrow \text{LP with 4 variables } \]
\[a, b, r^2-a^2-b^2, r^2-a^2-b^2 \]

Smallest enclosing disk
Sylvester [1852]

center \((a, b)\) and radius \(r\)

\[\min r^2 \]
\[\text{s.t. } (x_i-a)^2+(y_i-b)^2 \leq r^2 \text{ for all } i \]

Smallest annulus always has 4 points on boundary

But smallest disk has either 2 or 3 pts on bdry

even assuming general position
\[\Rightarrow \text{ NOT LP } \]

But it's "LP enough"

Seidel's algorithm exploits combinatorial properties of LP:

1. Uniqueness (assuming g.p.)
2. Uniquely determined by tight constraints.
3. Exchange property: If \(\text{OPT}(H-h, B) \neq h \) Then \(\text{OPT}(H, B) = \text{OPT}(H-h, B+h) \)
Smallest disk has these properties

Uniqueness & convexity:

\[P \subseteq D(c, r) \Rightarrow c \in \bigcap_{P \in P} D(p, r) \]

Some min radius where \(\bigcap D \) is non-empty:

\[\bigcap D = \text{point} \]

Lemma: Let \(P \) and \(T \) be disjoint point sets in \(\mathbb{R}^2 \)

\[\text{Min} D(P, T) = \text{smallest disk } D \text{ with } P \subseteq D \]

If there is a disk \(D \) with \(P \subseteq D \) and \(T \cap \partial D \)

the smallest such disk is unique.

Proof:

Let \(D_1 \) and \(D_2 \) be equal-radius disks with \(P \) inside and \(T \) on boundary

\[P \subseteq D_1 \cap D_2 \Rightarrow D_1 \cap D_2 \neq \emptyset \]

\[T \subseteq \partial D_1 \cap \partial D_2 \]

Let \(c' = c_1 c_2 \cap r_1 r_2 \) be midpoint of \(r_1, r_2 \)

\[D' = \text{disk centered at } c' \text{ with } r_1, r_2 \text{ on boundary} \]

\[(1) \text{ radius } (D') < \text{ radius } (D_1) = \text{ radius } (D_2) \]

\[(2) P \subseteq D_1 \cap D_2 \subseteq D' \Rightarrow D_1 \text{ and } D_2 \text{ not smallest enclosing disks} \]
Pivoting Lemma: Let \(P, R \) be disjoint sets.
For any \(p \in P \),
1. \(p \in \text{MinD}(P-p, R) \Rightarrow \text{MinD}(P, R) = \text{MinD}(P-p, R) \)
2. \(p \notin \text{MinD}(P-p, R) \Rightarrow \text{MinD}(P, R) = \text{MinD}(P-p, R+p) \)

Proof:

1. Suppose \(p \in D \) \hspace{1cm} \(\text{MinD}(P-p, R) \)

 If smaller disk \(D' \) contained \(P \) and \(R \) on bdry

 then \(D' \) would contain \(P-p \) and \(R \) on bdry

 contradicting def.: \(D \).

2. Suppose \(p \notin D \) \hspace{1cm} \(D' = \text{MinD}(P, R) \)

 Move center \(c_t \) along ray \(\overrightarrow{ct} \)

 \(D_t = \) disk centered at \(c_t \)

 that has \(r_0, r_1 \) on bdry

 Radius of \(D_t \) must increase monotonically with \(t \)

 \(r_t^2 = r_0^2 + t^2 \)

 \(D' \) is the first disk \(D_t \) with \(p \in D_t \equiv p \notin \text{MinD} \)

Welzl’s MiniDisk algorithm:

\[\text{MinD}(P, R) : \]

\[
\begin{cases}
\text{if} \left| \mathbb{R} \right| > d + 1 \\
\text{return INFEASIBLE}
\end{cases}
\]

\[
\begin{align*}
\text{else if } & P = \emptyset \\
\text{compute } & \text{MinD by brute force}
\end{align*}
\]

\[
\begin{align*}
\text{else} \\
& p \leftarrow \text{random point in } P \\
D & \leftarrow \text{MinD}(P-p, R) \\
\text{if } & p \in D \\
& \text{return } D \\
\text{else} \\
& \text{return } \text{MinD}(P-p, R+p)
\end{align*}
\]
Try running this when \(|P|=3, \ R=\emptyset, \)

Run in \(O(n) \) expected time by Seidel's analysis

\(O((d+1)!n) \)

\[\Downarrow \]

\(O(d\cdot d!\cdot n) \)

Similar algs for other "LP-type" problems

Monotonicity: \(OPT(A) \leq OPT(A+x) \)

Locality: \(A \subseteq B \quad OPT(A) = OPT(B) = OPT(A+x) \quad \Rightarrow \quad = OPT(B+x) \)

Quasi-convex programming

\(f_1, f_2, \ldots, f_n \) convex sublevel sets

\[
\text{Find } \min \left(\max f_i \right)
\]

\(F^{-1}(-\infty, t) \)

On the other hand if \(d \) is large

Find \(\min D \) using a variant of simplex