What should I do at end of semester?

Paper presentations last week April
Registration form due April 15ish
end of classes Jeff trading 1st week of May
May 11 exam

Line Arrangements
Given set \(L \) of \(n \) lines in the plane, build their arrangement.

Sweep: \(O(n \log n + k \log n) \) \([GP]\)
\(= O(n^2 \log n) \)
\(k = \binom{n}{2} \)

Randomized Incremental:
\(O(n \log n + k) = O(n^2) \)

Incremental: \(O(n^2) \) time simple

general position:
vertices = \(\binom{n}{2} \)
edges = \(n^2 \)
\(\leq V - E + F = 1 \)
faces = \(\binom{n}{2} + n + 1 \)

Motivation:
via duality

- Given \(n \) points, are any 3 collinear?
 \(-O(n^3)\) brute force
 \(\Rightarrow -O(n^2 \log n) \) time via sorting
 \(-O(n^2)\) duality
 Given \(n \) lines, are any 3 concurrent?
- Find cyclic orders around each point
(Halfplane) Discrepancy:

Let P be the set of points in $[0,1]^2 = \square$.

For any halfplane h_i, define

$$\mu(h) = \text{area of } h \cap \square$$

$$M_P(h) = \frac{|P \cap h|}{|P|}$$

Discrepancy $\Delta_P(h) = |\mu(h) - M_P(h)|$

Discrepancy of $P = \sup \Delta_P(h)$

Incremental algorithm:

For $i = 1$ to n:
- Insert l_i into the arch by walking through zone of l_i.

Zone $(l_i, L) = \text{set of cells in arch}(L) \text{ that intersect } l$
1. Find unbounded cell containing "left end" of l
 binary search by slope

2. repeat
 walk around boundary of current cell
 to find next cell intersecting l_i

Insertion time $= O(\log n) + O(\text{complexity of zone}(l,L))$

$$\sum_{\text{cell}} \#\text{edges of cell}$$

Zone Theorem:

$$\#\text{Zone}(l,L) \leq 6 \cdot L$$

Intuition:
Average \#edges in a random face ≤ 4

Counter-intuition:
But one face can have n edges

Proof:
Given set L and a horizontal line h

WLOG, $L \cup h\mathbb{Z}$ is in gen. pos.

Count right edges in $\text{zone}(h,L)$
Claim: \(\# \text{right zone}(h, L) \leq 3n-3 \) unless \(n \leq 1 \)

Base case: \(n = 2 \)

\[
\#	ext{right edges} = 3 = 3 \cdot 2 - 3 \checkmark
\]

When \(n > 2 \):

\(r = \) line intersects \(h \) furthest right

Let \(r^+ \) and \(r^- \) be lines intersecting \(r \) just above/below \(h \)

Deleting \(r \) removes at most 3 right zone edges

- right edge on \(r \) vanishes
- two right edges meeting at \(r \) \(r^+ \) merge

\[\square\]

IH \(\Rightarrow \) zone\((h, L-r)\) has \(\leq 3n-6 \) right edges

\[\square\]

Symmetrically zone\((h, L)\) has \(\leq 3n-3 \) left edges

\[\Rightarrow \leq 6n-6 \text{ edges} \square\]

Really \(\leq \frac{9}{2} n - O(1) \)