Paper presentations — last week April 20 min each
Register on Gradescope by April 15

Applications of Line Arrangements
(via duality)

(Half plane) Discrepancy

\(P = n \) points in \(\mathbb{R}^d \)

For any halfplane \(h \) define
\[
\mu(h) = \text{area} (h \cap \mathbb{R}^d)
\]
\[
\mu_p(h) = |P \cap h| / n
\]

Discrepancy
\[
\Delta(h) = |\mu(h) - \mu_p(h)|
\]

Given \(P \) compute
\[
\Delta(P) = \max_h \Delta(h)
\]

0(\(n \)) lines of this form
(0(1) per point)
0(\(n^2 \)) time by brute force

Worst halfspace is either bounded by

- line thru two points in \(P \)
- line thru one point in \(P \) at midpoint of \(\ell \cap \mathbb{R}^d \)

We can compute \(\mu(h) \) for any \(h \) in \(O(1) \) time

Bottleneck: compute \(\mu_p(h) \) for all candidates \(h \).

For every pair of points, find # points below that line
For every pair of lines \(p^*, q^* \), find the number of lines above point \(p^* \) or \(q^* \).

Build surgh \((P^*)\)

1. Trace that each level in \(O(1) \) time per vertex.

- or -

2. Compute level of any vertex, WFS

\(\Theta(n^2) \) time

Ham Sandwich Cuts

Given two point sets \(P \) and \(B \), find a line that bisects both sets.

If we rotate points, maintain vertical bisectors, \(IVT \) at some point lines coincide.
Build arrangements of R^t and $B^t \leq O(n^2)$

Trace median levels in both angles \(\leq O(n^2)\)

IVT \Rightarrow median levels intersect

\[
\text{We don't know worst case complexity of median level!}
\]

\[
\begin{align*}
n \cdot 2^{2^{\Omega(\log n)}} & \quad O(n^{4/3})
\end{align*}
\]

Minimum area triangle

Given set P find $pq, r \in P$ minimizing area(Δpqr)

Brute force: $O(n^3)$

Fix two points p and q

Min area $\Delta pqr \Leftrightarrow$

\[
\text{dist}(r, pq) \text{ is minimized}
\]

\[
\text{dualize}
\]

\[
\text{Area} = \frac{1}{2} b h
\]
For each vertex in argh(P^*)
we want closest line above or below

we can build argh + trap decom
in $O(n^3)$ time

Do any three points lie on a line?
Do any three lines pass thru a common point?

3SUM: Given a set X of n numbers
do any three elements of X sum to 0?

$O(n^2)$ time

Define $X = \{(x, x^3) \mid x \in X\}$

$$\begin{vmatrix} 1 & a & a^3 \\ 1 & b & b^3 \\ 1 & c & c^3 \end{vmatrix} = (a-b)(a-c)(b-c)(a+b+c)$$

Matching $\Omega(n^2)$ lower bound in limited model

Grønlund Pettie 2014: $O(n^2 \log^4 n / \log n)$

Chan 2018: $O(n^2 \log^6 \log n / \log^2 n)$

Fastest known

3SUM conjecture: $O(n^{2-\epsilon})$ time is impossible for all $\epsilon > 0$
even for integers between n^3 and n^3.\n