
Computational Topology (Jeff Erickson) Examples of Cell Complexes

Arithmétique ! algèbre ! géométrie ! trinité grandiose ! triangle lumineux ! Celui
qui ne vous a pas connues est un insensé ! Il mériterait l’épreuve des plus grands
supplices ; car, il ya du mépris aveugle dans son insouciance ignorante. . . .

[Arithmetic! Algebra! Geometry! Grandiose trinity! Luminous triangle! Whoever
has not known you is a fool! He deserves the most intense torture, for there is
blind contempt in his ignorant indifference. . . .]

— Le Comte de Lautréamont [Isidore Lucien Ducasse],
Chant Deuxième, Les Chants de Maldoror (1869)

À bas Euclide ! Mort aux triangles ! [Down with Euclid! Death to triangles!]

— Jean Dieudonné, keynote address at the Royaumont Seminar (1959)

15 Examples of Cell Complexes

15.1 Proximity Complexes of Point Clouds

Point clouds are an increasingly common representation for complex geometric objects or domains. For
many applications, instead of storing an explicit description of the domain, either because the object is
too complex or because it is simply unknown, it may be sufficient to store a representative sample of
points from the object. Typical sources of point-could data are scanners (such as digital cameras, laser
range-finders, LIDAR, medical imaging systems, and telescopes), edge- and feature-detection algorithms
from computer vision, locations of sensors and ad-hoc network devices, Monte Carlo sampling and
integration algorithms, and training data for machine learning systems.

By themselves, point clouds have no interesting topology. However, there are several natural ways to
impose topological structure onto a point cloud, intuitively by ‘connecting’ points that are sufficiently
‘close’. If the underlying domain is sufficiently ‘nice’ and the point sample is sufficiently ‘dense’, we can
recover important topological features of the underlying domain.

15.1.1 Aleksandrov-Čech Complexes: Nerves and Unions

Let P be a set of points in some metric space S, and let ε be a positive real number. Typically, but
not universally, the point set P is finite and the underlying space S is the Euclidean space Rd . The
Aleksandrov-Čech complex AČε(P) is the intersection complex or nerve of the set of balls of radius ε
centered at points in P. That is, k+ 1 points in P define a k-simplex in AČε(P) if and only if the ε-balls
centered at those points have a non-empty common intersection, or equivalently, if those points lie
inside a ball of radius ε. Formally, the Aleksandrov-Čech complex is an abstract simplicial complex; its
simplices can overlap arbitrarily and can have arbitrarily high dimension. Aleksandrov-Čech complexes
were developed independently by Pavel Aleksandrov [6] and Eduard Čech [16]1; despite Aleksandrov’s
earlier work, they are more commonly known as Čech complexes.

The Aleksandrov-Čech complex captures almost all the topology of the union of ε-balls, thanks to
the following seminal result:

The Nerve Lemma (Leray [40]) . Let U = {U1, U2, . . . , Un} be a finite set of open sets, such that the
intersection of any subset of U is either empty or contractible. (In particular, each set Ui is contractible.)
Then the nerve of U is homotopy equivalent to the union of sets in U.

1Both Aleksandrov and Čech actually considered a more general construction. Let U= {U1, U2, . . .} be a set of open sets
that cover some topological space X . The nerve of U is the abstract simplicial complex whose vertices are sets in U, and whose
simplices are finite subsets of U whose intersection contains a common point in X .
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Corollary 15.1. For any points set P and radius ε, the Aleksandrov-Čech complex AČε(P) is homotopy-
equivalent to the union of balls of radius ε centered at points in P.

Aleksandrov-Čech complexes and unions of balls for two different radii. 2-simplices are yellow; 3-simplices are green.

15.1.2 Vietoris-Rips Complexes: Flags and Shadows

The proximity graph Nε(P) is the geometric graph whose vertices are the points P and whose edges join
all pairs of points at distance at most 2ε; in other words, Nε(P) is the 1-skeleton of the Aleksandrov-Čech
complex. The Vietoris-Rips complex VRε(P) is the flag complex or clique complex of the proximity
graph Nε(P). A set of k+ 1 points in P defines a k-simplex in VRε(P) if and only if every pair defines an
edge in Nε(P), or equivalently, if the set has diameter at most 2ε. Again, the Vietoris-Rips complex is an
abstract simplicial complex.

The Vietoris-Rips complex was used by Leopold Vietoris [57] in the early days of homology theory as
a means of creating finite simplicial models of metric spaces.2 The complex was rediscovered by Eliayu
Rips in the 1980s and popularized by Mikhail Gromov [35] as a means of building simplicial models for
group actions. ‘Rips complexes’ are now a standard tool in geometric and combinatorial group theory.

The triangle inequality immediately implies the nesting relationship AČε(P) ⊆ VRε(P) ⊆ AČ2ε(P)
for any ε, where ⊆ indicates containment as abstract simplicial complexes. The upper radius 2ε can be
reduced to

p
3ε/2 if the underlying metric space is Euclidean [21], but for arbitrary metric spaces, these

bounds cannot be improved.
One big advantage of Vietoris-Rips complexes is that they determined entirely by their underlying

proximity graphs; thus, they can be applied in contexts like sensor-network modeling where the
underlying metric is unknown. In contrast, the Aleksandrov-Čech complex also depends on the metric of
the ambient space that contains P; even if we assume that the underlying space is Euclidean, we need
the lengths of the edges of the proximity complex to reconstruct the Aleksandrov-Čech complex.

On the other hand, there is no result like the Nerve Lemma for flag complexes. Indeed, it is easy to
construct Vietoris-Rips complexes for points in the Euclidean plane that contain topological features of
arbitrarily high dimension.

2Vietoris actually defined a slightly different complex. Let U = {U1, U2, . . .} be a set of open sets that cover some topological
space X . The Vietoris complex of U is the abstract simplicial complex whose vertices are points in X , and whose simplices
are finite subsets of X that lie in some common set Ui . Thus, the Vietoris complex of an open cover is the dual of its
Aleskandrov-Čech nerve. Dowker [25] proved that these two simplicial complexes have isomorphic homology groups.
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The Aleksandrov-Čech and Vietoris-Rips complexes for the same points and radius.

However, a few weaker results are known. A δ-sample of a metric space M is a point set P such that
for any point x ∈ M , there is a point p ∈ P whose distance from x (in the metric of M) is at most δ.

Theorem 15.2 (Latschev [39]). Let M be a closed Riemannian manifold (for example, a smooth
surface in Rd). For any sufficiently small radius ε > 0, there is a sampling distance δ > 0 such that for
any δ-sample P of M , the Vietoris-Rips complex VRε(P) is homotopy-equivalent to M .

Suppose the points P are taken from some Euclidean space Rd . For any simplicial complex ∆ over
the points P, there is a natural projection map from |X | to Rd , which maps each simplex in (a geometric
realization of) X to the convex hull of its vertices (points in P). The image of this map is called the
shadow of ∆. For points in the plane, the Vietoris-Rips shadow is a degenerate polygon with holes,
possibly with hanging edges and isolated points.

Theorem 15.3 (Chambers et al. [18]). For any point set P in the plane and any real number ε > 0,
a cycle in VRε(P) is contractible if and only if its projection is contractible in the shadow of VRε(P).

A Vietoris-Rips complex and its shadow.

15.1.3 Delaunay and Alpha Complexes: Empty Balls

A Delaunay ball for P is a closed ball that has no points of P in its interior. For any Delaunay ball B, The
convex hull of B ∩ P = ∂B ∩ P is called a Delaunay cell for P. Every Delaunay cell is a convex polytope,
and it is not hard to show that the intersection of any two Delaunay cells intersect is a face of both.
Thus, the set of Delaunay cells defines a polytopal complex, called the Delaunay complex. The union of
the cells in the Delaunay complex of P is the convex hull of P. If the points are in general position (at
most d + 2 points on any sphere), every Delaunay cell is a simplex; thus, for almost all point sets, the
Delaunay complex is called the Delaunay triangulation. Delaunay triangulations were first described
by Boris Delone [24]; they are now arguably the most well-studied and widely applied structure in
computational geometry.

Fix a real radius ε > 0. For each point p ∈ P, let B̌ε(p) denote the set of points in the underlying
space whose nearest neighbor in P is p and whose distance to p is at most ε/2. Thus, B̌ε(p) is the
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A Delaunay triangulation, with four Delaunay balls emphasized.

intersection of the ε-ball centered at p and the Voronoi region of p. The regions B̌ε(p) exactly cover
the union of ε-balls centered at points in P. The alpha complex αε(P) is the intersection complex of
the set {B̌ε(p) | p ∈ P}. The underlying space |αε(P)| is called an alpha shape of P.3 The Nerve Lemma
immediately implies that the alpha shape is homotopy equivalent to the union of the ε-balls; see also
Edelsbrunner [26] for a self-contained proof.

If the point set P is in general position, the alpha complex αε(P) can also be defined as the
intersection of the Delaunay triangulation of P and the Aleksandrov-Čech complex AČε(P). Thus, k+ 1
points in P define a simplex in the alpha complex if and only if they lie in a closed ball B with diameter
at most ε that contains no other point in P.

An alpha complex and a decomposed union of balls. The corresponding Aleksandrov-Čech complex.

Alpha shapes were introduced by Edelsbrunner, Kirkpatrick, and Seidel, but only for points in the
plane [27]; they were later generalized to points in R3 by Edelsbrunner and Mücke [28] and to weighted
points in any Euclidean space by Edelsbrunner [26]. Of course, the definition is sensible for points in
any metric space.

15.1.4 Witness Complexes

Witness complexes were introduced by Carlsson and de Silva [15, 19, 20] as ‘weak’ versions of the
Delaunay complex. 〈〈Maybe next time; sorry, Vin!〉〉ú©=⇒

15.2 Configuration/State Complexes

The following more abstract example was proposed by Abrams [3], modifying a similar construction by
Ghrist and Kodischek [32, 31, 34]; see also Abrams and Ghrist [1, 2]. Imagine a set of k distinguished
points, called agents, located on the vertices and edges of a graph G, subject to the following rules
designed to prevent collisions:

• If an agent is located at a vertex v, no other agent is located at v or inside any edge incident to v.

• If an agent is located inside an edge e, no other agent is located in e or at its endpoints.

3Originally, these were called the α-complex and α-shape, where α denoted the proximity radius. Unfortunately, this usage
leads to considerable confusion if α is set to any particular value—What’s a

p
2-complex?
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The set of all legal configurations of k agents on the graph G has a natural description as a cube complex
Dk(G), called a (discrete) configuration complex. Specifically, let Gk be the cube complex whose cells
are all possible k-fold Cartesian products of vertices and edges in G. Then Dk(G) is the subcomplex of Gk

in which the k factors of each cell are distinct. That is, each cell in Dk(G) is the product x1× x2×· · ·× xk,
where each component x i is either a vertex or an edge of G, and there is a legal configuration with the
ith agent located on x i . The dimension of the cube is the number of factors that are edges.

A few examples will hopefully make this definition clear. First consider the complex D2(Y ), where Y
is a tree with one degree-3 vertex and three leaves. There are 24 legal configurations of two agents on Y :
12 with both agents on vertices, and 12 with one agent on a vertex and the other on an edge. These
respectively determine the vertices and edges of D2(Y ). Each vertex-vertex configuration is adjacent to
exactly two vertex-edge configurations, and it is possible to move continuously the agents from any legal
configuration to any other through only legal configurations. Thus, D2(Y ) consists of a single cycle of
length 12.

D2(Y )

As a more interesting example, consider D3(K5), where K5 is as usual the complete graph with 5
vertices. This complex has 60 0-cells (all three agents on vertices), 180 1-cells (two on vertices, one
inside an edge), and 90 2-cells (one on a vertex, two inside edges); thus, χ(D3(K5)) =−30. We easily
observe that each 1-cell is incident to exactly two 2-cells, and each 0-cell is incident to six 1-cells. It
follows immediately that D3(K5) is a 2-manifold!4 It is easy to reach any configuration from any other,
so D3(K5) is connected; with more work, one can prove that D3(K5) is orientable. Thus, D3(K5) is a
quadrangulation of the orientable 2-manifold of genus 16.

A 2-cell in C3(K5), two 2-cells incident to a 1-cell, and six 1-cells incident to a 0-cell.

The complexes Dk(G) are particularly nice examples of a general class of discrete configuration
complexes or state complexes, developed in detail by Ghrist and Peterson [33]. A completely rigorous
definition is quite complicated, but intuitively, a configuration is a (typically finite) set of objects from
some (typically finite) discrete space, where the objects satisfy certain combinatorial constraints. A

4These examples are chosen very carefully; for almost all graphs G and integers k, the complex Dk(G) is not a manifold.
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transition modifies the configuration by adding, deleting, or replacing a constant number of objects
in the configuration. A set of transitions is independent if the transitions can be applied in any order,
always achieving the same result. Finally, a discrete configuration complex is a cube complex whose
vertices are the configurations, whose edges are transitions, and whose k-dimensional cells are defined
by independent sets of k transitions.

15.3 The Monotone Property Complex

An n-vertex graph property is a subset of the set of all n-vertex graphs. Equivalently a graph property is
a function of the form Π: {0, 1}(

n
2)→ {0, 1}, where the input bits represent the entries in the adjacency

matrix of an undirected graph, that remains unchanged by any permutation of the vertices. Thus, we
are concerned with properties of unlabeled graphs (connectivity, planarity, hamiltonicity) as opposed
to properties of labeled graphs (vertex 17 has degree 42). A graph property is nontrivial if at least
one graph has the property and at least one graph does not. A graph property is downward monotone
if every subgraph of a graph with the property also has the property, and upward monotone if every
supergraph of a graph with the property also has the property.

A graph property is evasive if every algorithm to determine whether a graph has the property, given
the graph’s adjacency matrix, must examine every bit in the input in the worst case. More succinctly,
a graph property is evasive if its deterministic decision tree complexity is exactly

�n
2

�

. Several authors
developed proofs of evasiveness for specific graph properties, such as connectedness, acyclicity, planarity,
and containing a fixed complete subgraph [9, 7, 37, 46].

Aanderaa-Karp-Rosenberg Conjecture [54]. Every nontrivial monotone graph property is evasive.

Motivated by results of Holt and Reingold [37] on the evasiveness of strong connectivity and
acyclicity, Aanderaa and Rosenberg originally conjectured that testing any nontrivial monotone graph
property requires examining Ω(n2) bits. This weaker conjecture was almost immediately proved by
Rivest and Vuillemin [53]. The stronger conjecture, which Rosenberg attributes to Karp, is still open.

A significant step toward settling the stronger conjecture was taken by Kahn, Saks, and Sturte-
vant [38], who proved that any nontrivial monotone property of n-vertex graphs is evasive when n is
a prime power. Their key insight is that every nontrivial downward-monotone graph property Π for
n-vertex graphs can be viewed as an abstract simplicial complex ∆(Π) with

�n
2

�

vertices. Their key
lemma is the following:

Lemma 15.4. If Π is a non-evasive property of n-vertex graphs, then ∆(Π) is collapsible (and thus
contractible).

Yao [58] generalized the results of Kahn, Saks, and Sturtevant to prove that all nontrivial monotone
properties of bipartite graphs are evasive. Chakrabati, Khot, and Shi [17] generalized the approach even
further, showing that the property of containing a fixed subgraph is evasive for an arithmetic sequence
of values of n, and that membership in a minor-closed family is evaisve for all sufficiently large n.

15.4 Presentation Complexes and Undecidability

Let G = 〈Σ | R〉 be a finitely presented group, with generators Σ = {x1, . . . , xn} and relators R =
{r1, . . . , rk}, where each ri is a word in (Σ±)∗. The presentation complex K(G) is a two-dimensional
CW-complex with one vertex •, one edge for each generator x i, and one 2-cell for each relator ri,
where the word ri describes the gluing map for the corresponding disk. For example, every one-vertex
polygonal schema is a presentation complex. It is easy to prove that the fundamental group π1(K(G),•)
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is isomorphic to the given group G. Markov [44, 43, 45] used presentation complexes to prove that a
huge number of topological problems are formally undecidable for arbitrary cell complexes, including
many problems for which we have already seen algorithms when the input is a 2-manifold.

All of Markov’s undecidability results trace back to Turing’s proof that the halting problem for
Turing machines is undecidable [55] (which in turn is an intellectual descendant of Cantor’s diagonal
argument that the real numbers are uncountable [14]). In 1950, Turing proved that the word problem
is undecidable for certain finitely presented semigroups (groups without inverses) [56], by reduction
from the halting problem. Building on Turing’s results, Novikov [47, 48, 49] proved the undecidability
of the word and conjugacy problems for finitely presented groups, originally proposed by Dehn [22, 23];
these result were also independently discovered by Boone [10, 11, 12] and Britton [13]. In particular,
there is a specific finitely-presented group G0 = 〈Σ | R〉 such that a word w ∈ (Σ±)∗ represents the trivial
element of G0 if and only if is an encoding of a Turing machine that accepts the empty string. Thus, it is
undecidable whether a given cycle in the presentation complex K(G) is contractible.

Adyan [4, 5] (in his PhD thesis under Novikov) and Rabin [51, 52] independently proved that all
nontrivial algebraic properties5 of finitely presented groups are undecidable, generalizing earlier results
for finitely presented semigroups by Markov [41, 42].6 In particular, there is no algorithm to decide
whether a given finitely-presented group is trivial. It immediately follows that there is no algorithm to
decide whether a given presentation complex K(G) has a trivial fundamental group.

The second barycentric subdivision Sd2K(G) = Sd(Sd(K(G))) is a simplicial complex; thus, all these
undecidability results extend to simplicial complexes. Menger’s embedding theorem implies that Sd2K(G)
can be linearly embedded in R5; let K̄ε(G)⊂ R5 be the set of points within distance ε of the image of
such an embedding. For all sufficiently small ε > 0, the space K̄ε(G) is a 5-manifold with boundary
that is homotopy equivalent to K(G); in particular, π1(K̄ε(G))∼= G. Markov [44, 43, 45] gave a more
careful construction of a 4-manifold whose fundamental group is any given finitely-presented group.
Thus, most questions about homotopy in/between triangulated manifolds are undecidable in dimensions
4 and higher.

Theorem 15.5. The following problems are undecidable:
• Given a cycle in a manifold simplicial complex, is it contractible?
• Given two cycles in a manifold simplicial complex, are they homotopic?
• Given a simplicial complex, is it contractible?
• Given a manifold simplicial complex, is it homeomorphic (or even homotopy-equivalent) to a

particular 4-manifold M4?
• Given a manifold simplicial complex, is it homeomorphic (or even homotopy-equivalent) to any

fixed 5-manifold (for example, S5)?
• Given a simplicial complex, is it a 6-manifold?

15.5 More cool examples I didn’t have time to talk about

• Pocchiola-Vegter visibility complex [50]

• Billera-Holmes-Vogtmann phylogenetic tree complex [8]

5A property of groups is algebraic if it is invariant under group isomorphisms; thus, we are concerned with properties
of the group, not properties of its presentation. An algebraic property is nontrivial if some finitely presented group has the
property, and there is a finitely presented group that is not a subgroup of a group that has the property. Nontrivial algebraic
properties are sometimes called Markov properties.

6Markov’s semigroup results are nearly equivalent to Rice’s theorem, which states that any nontrivial property of partial
functions (and thus any nontrivial property of Turing machines) is undecidable.
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• Herlihy-Shavit protocol complex [36]

• Erdmann strategy complex [29, 30]
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