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One who does not realize his own value is condemned to utter failure.
(Every kind of complex, superiority or inferiority, is harmful to man).

— ‘Al ibn Abi Talib, Nahj al-Balagha [Peak of Eloquence]

There once lived a man named Oedipus Rex.
You may have heard about his odd complex.
His name appears in Freud’s index

‘Cause he loved his mother.

— Tom Lehrer, “Oedipus Rex”, More of Tom Lehrer (1959)

15 Cell Complexes: Definitions

With a few exceptions, we have focused exclusively on problems involving 2-manifolds, represented by
polygonal schemata. Before we (finally!) consider problems involving more general spaces, we need to
step back and consider how these more general spaces might be represented, as part of the input to an
algorithm. This is a surprisingly subtle question, even if we restrict our attention to higher-dimensional
manifolds.

A large class of topological spaces of practical interest can be represented by a decomposition into
subsets, each with simple topology, glued together ‘nicely’ along their boundaries. A decomposition of
this form is commonly called a cell complex. Abstract graphs (as branched 1-manifolds) are examples of
cell complexes, as are polygonal schemata, quadrilateral and hexahedral meshes, and 3d triangulations
supporting normal surfaces. There are several different ways to formalize the intuitive notion of a ‘cell
complex’, striking different balances between simplicity and generality. I'll describe several different
definitions in this lecture. The figure below shows the ‘cell complex’ of minimum complexity (number of
cells) homeomorphic to the torus, for four standard definitions.

The simplest CW complex, A-complex, regular A-complex, and simplicial complex homeomorphic to the torus.

15.1 Abstract Simplicial Complexes

An abstract simplicial complex is a collection X of finite sets that is closed under taking subsets; that is,
for any set S € X and any subset T € S, we have T € X. In particular, the intersection of any two sets
in X is also a set in X, and the empty set @& is an element of every simplicial complex.

The sets in X are called simplices. The vertices of X are the singleton sets in X (or their elements);
the set of vertices of X is denoted X,. The dimension of a simplex is one less than its cardinality; in
particular, every vertex is a 0-dimensional simplex, and the empty set has dimension —1. The dimension
of a simplicial complex is the largest dimension of any simplex. The subsets of a simplex are called
its faces. A simplex in X is maximal if it is not a proper face of any other simplex in X; the maximal
simplices in X are also called the facets of X. An abstract simplicial complex X is pure if every facet has
the same dimension.

For example, the power set of any finite set is a pure abstract simplicial complex. An undirected
(simple) graph with no isolated vertices is a pure 2-dimensional abstract simplicial complex. Matroids
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are finite pure abstract simplicial complexes with an additional exchange property.! The vertex-set of an
abstract simplicial complex need not be finite, or even countable; for example, consider the set of all
finite subsets of points in the plane, in which every pair of points has distance at most 1. (This is an
example of a Vietoris-Rips complex, which we will see in more detail in the next lecture.)

Abstract simplicial complexes are also known to combinatorists as independence systems, hereditary
set systems, and downward-closed set systems; they were first proposed as models of topological spaces by
Pavel Alexandrov [1].°

15.2 Geometric Simplicial Complexes

Abstract simplicial complexes are not interesting topological spaces by themselves; they’re just sets of
finite sets! However, they can be used to describe the combinatorial structure of many topological spaces.
Any abstract simplicial complex X has a geometric realization, defined by mapping the vertices of X
to generic points in a sufficiently high-dimensional space. Geometric simplicial complexes were first
formalized in the seminal work of Poincaré [5].

A hyperplane in R” is the set of points {x | {(a,x) = b} for some vector a € RP and some scalar
b € R, where (-,-) denotes inner product. A set of points in R? is affinely independent if it is not
contained in a hyperplane; an affinely independent set in R? contains at most D + 1 points. The convex
hull of a finite set X C RP is the set of all weighted averages of points in X:

conv(X) := lex kazl and 0<A,<I1forallxeX

xeX x€eX

The convex hull of a finite set of points is called a polytope. A hyperplane supports a polytope if it does
not intersect its interior. The intersection of a polytope and any supporting hyperplane is a proper face
of the polytope. It is easy to check that conv(X) N h = conv(X N h) for any point set X and supporting
hyperplane h; thus, proper faces of polytopes are also polytopes. In particular, the empty set is a
polytope!

A k-simplex is the convex hull of a set of k + 1 affinely independent points, called its vertices; a
simplex is a k-simplex for some integer k. For example, a tetrahedron is a 3-simplex, a triangle is
a 2-simplex, a line segment is a 1-simplex, a point is a O-simplex, and the empty set is the unique
(—1)-simplex. A face of a simplex is the convex hull of a subset of its vertices; in particular, a facet of a
k-simplex is the convex hull of all but one of its vertices. Thus, every k-simplex has exactly k 4 1 facets
and exactly 2% faces. Every face of a simplex is a simplex.

A geometric simplicial complex is a set A of simplices in some Euclidean space R”, satisfying two
conditions: (1) every face of a simplex in A is also in A, and (2) the intersection of any two simplices
in A is a face of both.® The simplices in A are called its cells. For example, the set of faces of any simplex
define a simplicial complex.

LA pure abstract simplicial complex M is a matroid if, for any two simplices A, B € M such that |A| > |B|, there is an element
x € A\ B such that BU {x} e M.
2In Alexandrov’s own words [1, p. 490]:

Es soll von Anfang an folgende Bemerkung gemacht werden. In der Topologie, ebenso wie in der elementarten
Geometrie, ist ein n-dimensionaler Simplex immer durch seine n + 1 Eckpunkte vollstindig bestimmt, so daf3
zwei diselben Eckpunkte besitzende Simplexe untereinander indentisch sind.

Daraus folgt, da® der topologische Simplex nichts anderes als das System seiner n + 1 Eckpunkte ist, also
eigentlich einer endliche Menge von Elementen (eines bestimmten Elementenvorrates) die , Eckpunkte“ Hei3en.
Die Dimension des Simplexes ist einfach die um eine Einheit verminderte Kardinalzahl dieser Menge; die Seiten
des Simplexes sind Teilmengen derselben endlichen Menge.

3Equivalently: (2') the simplices in A have disjoint interiors.
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A 3-simplex, a 2-simplex, a 1-simplex, a 0-simplex, and the (-1)-simplex

The underlying space (or carrier or polyhedron) of a simplicial complex A, denoted |A|, is the union
of its simplices. The simplicial complex A is considered a triangulation of any space homeomorphic
to |A|. It is fairly common practice to blur (or completely ignore) the distinction between a simplicial
complex and its underlying space.

Finally, a geometric realization A(X, f) of an abstract simplicial complex X is defined by a function
f: X, — RP that maps each simplex in X to an affinely independent set in R”, such that . It is easy to
see that any finite abstract simplicial complex has a geometric realization into a space of dimension |X|.
More complicated arguments, ultimately to to Menger, imply that any d-dimensional abstract simplicial
complex can be geometrically realized in R2¢*!; for example every graph can be embedded in R® with
disjoint line segments as edges. In fact, every finite abstract simplicial complex has infinitely many
geometric realizations, but they are all homeomorphic to each other. Thus, the underlying space |X| of
an abstract simplicial complex X can be defined as the underlying space of any geometric realization
of X. Conversely, every geometric simplicial complex A is a geometric realization of a unique abstract
simplicial complex X(A). Indeed, this correspondence is the basis of most file formats for triangulated
surfaces and tetrahedral finite-element meshes.

15.3 Polytopal Complexes

Polytopal complexes (also called polyhedral complexes) are a natural generalization of geometric
simplicial complexes, first proposed by Poincaré [4] even before his use of simplicial complexes. A poly-
hedral complex is a set IT of polytopes in some Euclidean space RP, satisfying two conditions: (1) every
face of a polytope in II is also in II, and (2) the intersection of any two polytopes in IT is a face of both.
The polytopes in IT are called its cells. For example, the set of all faces of any convex polytope define a
polytopal complex. A geometric simplicial complex is simply a polytopal complex in which every cell is a
simplex.

Another natural special case of polytopal complexes uses cubes everywhere instead of simplices. A
k-cube is a polytope that is combinatorially isomorphic to the standard cube 00, = [0, 1]¥. Every k-cube
has exactly 2k facets, 2% vertices, and 3 + 1 faces overall; every face of a k-cube is a j-cube for some
integer j < k. A geometric cube complex is a polytopal complex in which every k-dimensional cell is a
k-cube. Quadrilateral and hexahedral meshes are examples of geometric cube complexes.

A 3-cube, a 2-cube, a 1-cube, a 0-cube, and the (-1)-cube
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15.4 A-Complexes

The definition of geometric simplicial complexes has two unfortunate features. First, the definition
requires an ambient space R”; thus, formally, a triangulation of an abstract 2-manifold is not a geometric
simplicial complex. Second, the definition requires each k simplex to have k+1 distinct vertices, and each
set of k + 1 vertices to define at most one k-simplex. This condition seems unnecessarily restrictive, since
it forbids structures like (triangulated) systems of loops that have already proved useful. A-complexes
bypass both of these restrictions; intuitively, a A-complex is a topological spaces constructed by gluing
simplices together along their boundaries.

A-complexes originate with the work of Eilenberg and Zilber [2], who proposed an equivalent
structure called a (complete) semi-simplicial complex, later abbreviated to css complex by other authors;
css complexes are now more commonly known as (semi-)simplicial sets. The name ‘A-complex’ was
proposed by Hatcher [3].

For any non-negative integer n, the standard n-simplex A,, is the convex hull of the positive unit
coordinate vectors in R"*!:

n
A, = {(AO,AI,...,AH) > A=1 and os/xisnoraui}
i=0

An n-simplex is the image of A,, under a homeomorphism; in particular, every k-dimensional face of A,
is a k-simplex. For any integer —1 < k < n, let A%) denote the union of all (kil) k-dimensional faces
of A,. In particular, Agl_l) =, Aglo) is a discrete set of n + 1 points, and Agl”) = A,. We also call Agl”_l)
the boundary of A,, denoted JA,,.

A A-complex X is the last space” in an inductively defined sequence of topological spaces X C
xM c...cxM =Xx; each space X is called the k-skeleton of X. The 0-skeleton X(© is just a discrete
set of points, called the vertices of X. For each integer k > 0, we inductively construct the k-skeleton
X®) by attaching a set of k-simplices to the (k — 1)-skeleton X*~1. Each k-simplex A, is attached
by a gluing map o : A, — X*~1 that maps the interior of each face of A, homeomorphically to the
interior of a simplex in X~ of the same dimension. Thus, o maps each vertex of A to a point in X(©,
each edge of A to an edge in X1, and so on; more briefly, we say that each gluing map o is simplicial
or cellular. More formally, X is defined as the quotient space

xW o= (xED 0 | Ak [~

iGIk

for some index set I}, where LI denotes disjoint union, each Ay ; is a disjoint copy of A, and x ~ o;(x)
for each gluing map o;: 94 ; = X (k=1 The interiors of the simplices Ay ; are the k-cells of X.

We call a A-complex X regular if every k-cell in X has k + 1 distinct vertices, for all k. A regular
A-complex is proper (or simplicial) if each subset of k 4 1 vertices is incident to at most one k-cell, for
all k, or equivalently, if the intersection of any two cells in X is (the image of) a face of both cells. A
tedious inductive argument implies that every proper A-complex is homeomorphic to (the underlying
space of) a geometric simplicial complex, by a homeomorphism that maps simplices to simplices, and
vice versa. Thus, we usually use the term simplicial complex to refer either to a geometric simplicial
complex or to a proper A-complex.

However, not every A-complex is (equivalent) to a simplicial complex. Consider the triangulations
of the torus shown on the

“Infinite-dimensional A-complexes can be defined by setting X = UkZOX ®) with the weak topology: A set A C X is open if
and only if ANX™® is open for all k.



Computational Topology (Jeff Erickson) Cell Complexes: Definitions

The barycentric subdivision Sd(A,,) of the standard simplex A, is a simplicial complex defined
inductively by joining the centroid of A,, to the barycentric subdivision of the facets of dA,. (As a base
case, take Sd(Ag) = Ay, or even SA(A_;) = @.) The complex Sd(A,) has 2""! — 1 vertices, located at
the centroids of the non-empty faces of A,, and (n+ 1)! facets, one for each maximal inclusion-chain
of faces of A,,. For any A-complex X, the barycentric subdivision Sd(X) is defined by replacing each
simplex in X with its barycentric subdivision. Although X and Sd(X) are homeomorphic as topological
spaces, the nicer combinatorial structure of Sd(X), as described in the following lemma, allows us to
simplify several proofs.

Lemma 15.1. The barycentric subdivision of any A-complex is a regular A-complex. The barycentric
subdivision of any regular A-complex is a proper A-complex.

15.5 CW-complexes

We can of course generalize A-complexes by allowing more general shapes for each cell. For example,
by replacing simplices with cubes, we obtain cube complexes; by replacing simplices with arbitrary
polytopes, we obtain polytopal complexes. These more general structures still require cellular gluing
maps, which map the interior of each k-dimensional face of any cell homeomorphically to the interior of
a k-dimensional cell.

But the most general notion of ‘cell complex’ arises by simply removing the requirement that
the gluing maps are cellular. The resulting structure was first proposed by Whitehead, originally as
membrane complexes [6, 7], but later under the still-standard name closure finite> complexes with
weak topology®, or more simply CW complexes [8]. (Indeed, some authors refer to A-complexes as
simplicial CW complexes.)

Because the facial structure of the cells is irrelevant for CW complexes, they are typically defined
in terms of the standard unit balls B" := {x € R" | ||X|| < 1}. The boundary of the unit ball B" is the
standard unit sphere S"~1:= {x e R" | ||X|| < 1}.

A (finite-dimensional) CW-complex X is the last of a nested sequence of topological spaces X(©) C
xM c ... c x( = x defined inductively as follows. The 0-skeleton X is just a discrete set of points.
For each integer k > 0, the k-skeleton X is the result of attaching a set of k-dimensional balls to
X%=1 by gluing maps of the form o : S~ — X*~1)_ For each integer k, the subspace X¥ is called the
k-skeleton of X, and the interiors of the balls B¥ attached to X (k=1) are the k-cells of X.

A CW complex is regular if its gluing maps are embeddings (homeomorphisms onto their images);
in particular, each cell in a regular CW complex X meets each vertex of X at most once. A CW complex
is proper if the intersection of any two closed cells is another closed cell.

15.6 Familiar Examples

We have already seen several simple examples of simplicial complexes, A-complexes, and CW-complexes.
Simple graphs are 1-dimensional (abstract) simplicial complexes; graphs with parallel edges are regular
A-complexes; graphs with parallel edges and loops are A-complexes. Polygonal schemata are 2-
dimensional CW complexes. Surface triangulations are sometimes defined as simplicial complexes
(via simple graphs), but most results about triangulations apply equally well to surface A-complexes.
Quadrilateral and hexahedral meshes are proper (or geometric) cube complexes. The three-dimensional

5The closure of each cell intersects only finitely many other cells. This property is trivial for CW complexes with a finite
number of cells; for infinite complexes, it follows by a compactness argument.

6A subset of X is closed if and only if its intersection with the closure of each cell in X is closed. This property is trivial for
finite-dimensional CW complexes; for infinite-dimensional CW complexes, it is an essential part of the definition.
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triangulations used in normal surface theory are usually described as simplicial complexes, but there is
no danger in using A-complexes instead. We will see several more examples in the next lecture.
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