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Wagner did indeed discuss this problem in the 1960s with his then
students, Halin and Mader, and it is not unthinkable that one of them
conjectured a positive solution. Wagner himself always insisted that
he did not—even after the graph minor theorem had been proved.

— Reinhard Diestel, Graph Theory, 3rd edition (2005)

Unfortunately, for any instance G = (V, E) that one could fit into the
known universe, one would easily prefer |V |70 to even constant time,
if that constant had to be one of Robertson and Seymour’s.

— David Johnson, “The NP-completeness Column” (1987)

12 Graph Minors

A minor of a graph G is a graph obtained from G by contracting edges, deleting edges, and deleting
isolated vertices; a proper minor of G is any minor other than G itself. For example, the complete
graph K5 and the complete bipartite graph K3,3 are both minors of the infamous Peterson graph:

Both K5 and K3,3 are minors of the Peterson graph.
Doubled edges are contracted; dashed edges are deleted.

A classical theorem of Kuratowski [21] states that a graph is planar if and only if it does not contain
a subdivision of K5 or K3,3 as a subgraph. Kuratowski’s theorem was refined by Wagner in his 1935 PhD
thesis:

Theorem 12.1 (Wagner [43]). A graph G is planar if and only if K5 and K3,3 are not minors of G.

Wagner’s thesis continued with a characterization of all graphs that do not have K5 (but may
have K3,3) as a minor [42]. Wagner’s work led to a more general study of families of graphs with
forbidden minors. A graph H is a forbidden minor for a set F of graphs if H is not a minor of any graph
in F. A forbidden minor H of F is minimal if no proper minor of H is also a forbidden minor.

It’s quite easy to see that any family F of graphs with at least one forbidden minor is minor-closed:
Every minor of a graph in F is also in F. Conversely, if a minor-closed family of graphs excludes a
graph H, it must also exclude any graph for which H is a minor. Thus, every minor-closed family of
graphs, except the family of all graphs, has at least one forbidden minor.

In the mid-1980s, Neil Robertson and Paul Seymour announced a proof of one of the deepest
theorems in combinatorics [25]; the details of their proof were published over the next two decades in a
series of 21 papers totalling several hundred pages. According to Robertson and Seymour, this theorem
was conjectured by Wagner as early as the 1930s, although his conjecture did not appear in print until
many decades later [44].
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The Graph Minor Theorem (Robertson and Seymour [29]). In any infinite set of graphs, at least
one graph is a proper minor of another.

Even a brief sketch of the proof of the Graph Minor Theorem is far beyond the scope of this class.
Instead, I will confine myself to a list, with few proofs, of partial results of Robertson, Seymour, and
others that are interesting in their own right.

12.1 Minor-Closed Families

We have already seen two examples of minor-closed families of graphs. First, for any 2-manifold Σ, the
family of graphs that can be embedded (not necessarily cellularly) on Σ is minor closed. If a graph has
an embedding on Σ, then deleting and contracting edges cannot introduce crossings into the embedding.
In particular, the set of all planar graphs is minor-closed. Second, for any integer k, the graphs with
treewidth at most k define a minor-closed family. Any tree decomposition for a graph G is also a valid
tree decomposition for any subgraph of G; if we contract any edge uv to a new vertex w, we can repair
the tree decomposition by replacing any occurrences of u or v (or both) in any X (i) with w. In particular,
the set of forests is minor-closed.

Two more interesting minor-closed families involve embeddings of graphs in R3. An embedding of a
graph G is knotless if no cycle in G is knotted, and linkless if not to cycles in G are linked. (I’ll define
knots and links more formally later in the semester, but they mean what you think they do.) Deleting
an edge cannot introduce knots or links into an embedding, moreover, we can contract edges without
introducing knots or links. Thus, the sets of linklessly embeddable and knotlessly embeddable graphs
are minor-closed.

The following theorem is an immediate corollary of the Graph Minor Theorem:

Theorem 12.2. A family of graphs is minor-closed if and only if it has a finite number of minimal
forbidden minors.

Thus, all minor-closed families of graphs have Kuratowski-Wagner-type theorems associated with
them; the set of minimal forbidden minors is sometimes called an obstruction set for the graph family.
Special cases of this theorem were proved independently by Vollmerhaus [40, 41] and Bodendiek and
Wagner [7] for graphs embeddable on fixed orientable surfaces, and by Archdeacon and Huneke [4] for
graphs embeddable on fixed non-orientable surfaces.

Unfortunately, the proof of the Graph Minor Theorem is nonconstructive, and therefore does not
yield an explicit list of forbidden minors for any minor-closed family. Explicit obstruction sets are known
only for a few special cases; here is an incomplete list:

Family Obstruction set

treewidth 1 (forests)

treewidth 2

outerplanar

planar [43]

treewidth 3 [6, 34]

linklessly embeddable 7 graphs [32, 33, 31]

projective-planar 35 graphs [16, 3]

2



Computational Topology (Jeff Erickson) Graph Minors

Chambers and Myrvold have found 16,629 distinct forbidden minors for graphs embeddable on the
torus, but their list is is probably not exhaustive [15]. Adler, Grohe, and Kreutzer [1] described (but
did not run) an algorithm to compute the obstruction set for certain graph classes, including graphs of
any fixed genus and/or treewidth. A fully constructive proof for the general case is impossible: Fellows
and Langston [14] proved that there is no algorithm to compute the obstruction set of an arbitrary
minor-closed family F, represented as a Turing machine that enumerates the elements of F.

However, there is an algorithm to determine whether one graph is a minor of another.

Theorem 12.3 (Robertson and Seymour [27]). For any fixed graph H, there is an algorithm to deter-
mine whether a given n-node graph has H a a minor in O(n3) time.1

Together with the Graph Minor Theorem, this immediately implies the existence of an O(n3)-time
algorithm to test membership in any fixed minor-closed family. Again, this theorem is non-constructive;
its proof does not yield an explicit description of the algorithm, only knowledge of its existence. Moreover,
the constant hidden in the big-Oh bound is a truly enormous function of the number of vertices in H.2

Simply exponential dependence on H is unavoidable; determining whether a given graph has a path,
cycle, or clique minor of a given size is NP-complete [5, 13].

Much faster algorithms are known for a few special cases. For any fixed k, there is an algorithm to
check whether a graph has treewidth at most k in O(n) time [8]. Similarly, for any fixed g, there is an
algorithm to determine whether a graph can be embedded in a surface of genus g in O(n) time [22, 18].
Both algorithms either build the required structure (tree decomposition or rotation system) or find
a forbidden minor in the graph. Both running times hide an exponential dependence on the fixed
parameter (k or g); if those parameters are allowed to vary, the problems become NP-hard [39]. For
most minor-closed families, however, no explicit membership algorithm is known; in particular, no
explicit algorithm is known to test whether a graph has a knotless embedding.

12.2 Properties of Minor-Closed Families

Minor-closed families have many of the same combinatorial properties as planar graphs and more general
surface graphs. Thus, many algorithms designed for surface graphs extend (almost) automatically to
graphs in any minor-closed family.

Theorem 12.4 (Kostochka [19, 20]; Thomason [37, 38]). For every fixed graph H, any n-vertex H-
minor-free graph has O(n) edges. In particular, any n-vertex Kk-minor-free graph has O(nk

p
log k)

edges; this bound is tight on average for random Kk-minor-free graphs.

Theorem 12.5 (Alon, Seymour, and Thomas [2]; Plotkin, Rao, and Smith [23]). For every fixed
graph H, any n-vertex H-minor-free graph has treewidth O(

p
n). In particular, any n-vertex Kk-minor-

free graph has treewidth O(k
p

n
p

min{k, log n}).

Unlike all our earlier separator bounds, there is no matching lower bound in this setting; the correct
treewidth bound is conjectured to be O(k

p
n).

Theorem 12.6 (DeVos et al. [11]; Demaine, Hajiaghayi, and Kawarabayashi [10]). For every fixed
graph H and any integer k ≥ 2, any n-vertex H-minor-free graph is the union of k subgraphs, each with
treewidth O(k).

1Reed, Kawarabayashi, and Li have announced a minor-testing algorithm that runs in O(n log n) time [24], but their
algorithm has not yet been published.

2Johnson [17] estimated that the hidden constant is “somewhat larger” than 2 ⇑ (2 ⇑ (2 ⇑ (h/2)) + 3), where 2 ⇑ t denotes
an exponential tower of t 2s (2 ⇑ 0= 1 and 2 ⇑ t = 22⇑(t−1)) and h is the number of vertices in H.
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12.3 Grids and Treewidth

The r × r grid is a graph G(V, E), where V = {1,2, . . . , r} × {1, 2, . . . , r} and two pairs (i, j) and (i′, j′)
are connected by an edge if and only if |i− i′|+ | j− j′|= 1. Grids are the canonical example of Grids
are the canonical example of graphs with large treewidth; it it not hard to prove that the r × r grid has
treewidth exactly r. As part of the proof of the Graph Minor Theorem, Robertson and Seymour proved
that in a sense, grids are the only example of a graph with large treewidth.

Lemma 12.7 (Robertson and Seymour [26]). There is a function f : N→ N such that for every inte-
ger r, every graph of treewidth at least f (r) has an r × r grid minor.

The precise function f is not known; in fact, there is an exponential gap between the best known
bounds 2O(r5) and Ω(r2 log r) [30]. A relatively simple proof of Lemma 12.7 is given by Diestel et al. [12].

Theorem 12.8. A minor-closed family of graphs has bounded treewidth if and only if it excludes at
least one planar graph.

Proof: One direction is trivial: Any set of graphs that contains all planar graphs contains all grids, and
therefore contains graphs of arbitrarily large treewidth.

Now suppose F is a minor closed family that excludes some r-vertex planar graph. Any r-vertex
planar graph can be embedded as a minor in an O(r)×O(r) grid [35, 36]. Thus, F also excludes some
O(r)×O(r) grid, which implies by Lemma 12.7 that every graph in F has treewidth less than some
constant f (O(r)). �

This theorem, together with Theorem 12.5, implies that the worst-case treewidth of an n-vertex
graph in any minor closed family F is either Θ(

p
n) (if F includes all planar graph) or Θ(1) (if F excludes

some planar graph); there are no other possibilities.
Demaine and Hajiaghayi recently proved a stronger version of Lemma 12.7 for graphs that forbid a

fixed minor.

Lemma 12.9 (Demaine and Hajiaghayi [9]). For any fixed graph H, every H-minor-free graph of
treewidth w has an Ω(w)×Ω(w) grid as a minor.

12.4 Decomposition Theorem

Finally, Robertson and Seymour describe a canonical structure for all graphs in any minor-closed family.
Roughly speaking, any graph from any minor-closed family can be decomposed hierarchically into graphs
with small genus plus a small amount of extra ‘noise’.

A clique-sum of two graphs G and H is any graph obtained by identifying a clique in G with a
clique of the same size in H, and then possibly removing some edges in the resulting shared clique. A
k-clique-sum is a clique-sum in which the identified cliques have at most k vertices. We write G⊕H to
describe any clique sum of graphs G and H, and let G1 ⊕ G2 ⊕ · · · ⊕ Gr = (G1 ⊕ G2 ⊕ · · · ⊕ Gr−1)⊕ Gr .
Every k-tree is a clique-sum of (k+ 1)-cliques (with no edge deletions). Every graph with treewidth k is
a k-clique-sum of graphs with at most k+ 1 vertices.

A graph H is a k-apex graph of a graph G if G = H \A for some subset A of at most k vertices, called
apices.

Finally, a vortex is a graph with small treewidth that is glued into a face of an embedded graph
in a particular way; in fact, we need a stronger version of treewidth to define vortices properly. A
path decomposition of a graph is a tree decomposition (T, X ) where T is a path. Equivalently, a path
decomposition of a graph G = (V, E) is a sequence X = 〈X1, X2, . . . , X r〉 of subsets of V , where
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•
⋃

i X i = V ;

• For every edge uv ∈ E, we have u, v ∈ X i for some i;

• If v ∈ X i ∩ Xk for some integer i ≤ k, then v ∈ X j for all i ≤ j ≤ k.

The width of a path decomposition is one less than the size of the largest set X i. The pathwidth of a
graph is the minimum width of any path decomposition.

A graph G is cleanly k-almost-embeddable on a surface Σ if G can be written as the union of k+ 1
graphs G0 ∪ G1 ∪ · · · k, satisfying the following conditions:

• G0 has an embedding on Σ (which need not be cellular).

• The graphs G1, G2, . . . , Gk are pairwise disjoint; these subgraphs are the vortices of G.

• For each index i ≥ 1, there is a disk Di inside some face Fi of G0, such that Ui := V (G0)∩ V (Gi) =
V (G0)∩ Di . Moreover, the disks Di are pairwise disjoint.

• For each index i ≥ 1, the subgraph Gi has pathwidth less than k. Moreover, Gi has a path decom-
position 〈X1, X2, . . . , X r〉 of width less than k, such that viri

∈ X i for all i, where vi1, vi2, . . . , viri
are

the vertices of Ui indexed in cyclic order around the face Fi .

A graph G is k-almost-embeddable in a surface Σ if H is a k-apex graph of a graph that is cleanly
k-almost-embeddable in Σ.

Theorem 12.10 (Roberston and Seymour [28]). For any graph H, there is an integer k = k(H) such
that any H-minor-free graph is a k-clique sum of a finite number of k-apex graphs of cleanly k-almost-
embeddable graphs on the orientable surface of genus k.

Demaine, Hajiaghayi, and Kawarabayashi [10] describe an algorithm to compute a decomposition in
this canonical form in polynomial time, for any fixed forbidden minor H.
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