
Computational Topology (Jeff Erickson) Homology

Every adult knows that the relation in question can and does exist between entire strangers,
different in language, color, tastes, class, civilization, morals, religion, character:
in everything, in short, except their bodily homology
and the reproductive appetite common to all living organisms.

— George Bernard Shaw, Getting Married (1908)

17 Homology

Homology is an equivalence relation between ‘cycles’ in topological spaces. Homology is related to
homotopy-equivalence, but it is a much coarser relation: Two homotopic cycles are always homologous,
but homologous cycles may not be homotopic. The homology relation also includes objects that are
more general than cycles in the usual sense (images of circles), such as weighted sums of cycles,
higher-dimensional manifolds, and even vector and tensor fields.

Homology classes of cycles of any particular dimension define a group, just as homotopy classes of
loops define the fundamental group. Like the fundamental group, homology groups are topological
invariants; if two spaces are homeomorphic, they have the same homology. However, two spaces with
the same homology might not be homeomorphic, or even homotopy equivalent. Homology groups
have much nicer algebraic structure than the fundamental group; they are (essentially) vector spaces.
Consequently, homology is an effective topological invariant. Most basic algorithmic questions about
homology can be answered efficiently, using variants of standard algorithms for effective linear algebra.

This presentation closely follows Zomorodian [34], who I’m sure does a better job.

17.1 Oriented Simplices, Chains, and Boundary Maps

Let X be a finite simplicial complex (that is, a proper ∆-complex). The restriction to simplicial complexes
is purely to simplify notation. All of the definitions presented here can be generalized to cubical
complexes, polytopal complexes, ∆-complexes, and CW-complexes with a little more effort.

For technical reasons, we need to assign an arbitrary orientation to each simplex in X . An orientation
of a simplex is an equivalence class of permutations of its vertices, where two permutations are considered
equivalent if they have the same parity. We specify any oriented simplex by a sequence of its vertices in
brackets: σ = [x0, x1, x2, . . . , xk]. For any oriented simplex σ, let −σ denote the same simplex in the
opposite orientation. Thus, we can specify an oriented triangle with vertices x , y , and z in six different
ways:

[x , y, z] = −[x , z, y] = [z, x , y] = −[z, y, x] = [y, z, x] = −[y, x , z].

Fix a non-negative integer k. Let Xk denote the set of oriented k-dimensional simplices in X , and
let nk := |Xk|. A k-chain over X is a function α: Xk → Z, such that α(−σ) = −α(σ).1 Equivalently,
a k-chain is simply a vector of nk integers, one for each k-simplex in X . For notational convenience,
k-chains are usually represented by formal sums

∑

i αi∆k,i , where each αi is an integer and each ∆k,i is
the ith oriented k-simplex in X . The set of all k-chains form an abelian group under addition, isomorphic
to Znk , called the kth chain group Ck(X).

In fact, chains can be generalized to use any coefficient ring R instead of the integers. For example,
if we set R= Z2, then a k-chain is a 0-1 vector, or equivalently, a subset of the k-faces. If R=Q, chains
are ration vector; if R= R, then chains are real vectors; if R= C, then chains are complex vectors; and
so on. In all of these cases, and in fact whenever the coefficient ring R is a field, the group Ck(X ) is
actually a vector space. In general, however, and in particular for integer coefficients, Ck(X ) is not a

1Alternately, we can define a k-chain to be an unrestricted function α: Xk → Z that assigns both an orientation sgn(α(σ))
and a non-negative value |α(σ)| to any unoriented k-simplex σ.
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vector space but merely a R-module (no scalar division). It may be useful to think of the chain group as
a vector space most of the time, even then R is not a field, although there are some subtleties that violate
this intuition. I’ll stick to integer coefficients for most of the lecture.

The boundary ∂σ of an oriented k-simplex σ is a (k− 1)-chain, defined as the following weighted
sum of the facets of σ:

∂[x0, x1, . . . , xk] :=
d
∑

i=0

(−1)i[x0, x1, . . . , bx i , . . . , xk],

where [x0, x1, . . . , bx i , . . . , xd] indicates the facet opposite vertex x i . For example, we have

∂[w, x , y, z] := [x , y, z]− [w, y, z] + [w, x , z]− [w, x , y]

∂[x , y, z] := [y, z]− [x , z] + [x , y]

∂[x , y] := [y]− [x]
∂[x] := []

(The empty simplex has no boundary.) It is easy to check that this function is well-defined; equivalent
vertex permutations yield equivalent boundary chains. Indeed, this is the reason for the alternating
signs in the summation. Moreover, the boundary function is antisymmetric: we have ∂(−σ) =−∂σ for
any oriented simplex σ. For any positive integer k, the boundary function extends linearly to k-chains,
giving us the kth boundary homomorphism ∂k : Ck(X )→ Ck−1(X ). Because the map ∂k is linear, it
can be represented by a nk−1× nk integer matrix with all entries in the set {−1, 0,1}.

Top: an oriented 3-simplex and its boundary chain. Bottom: An oriented 2-simplex and its boundary chain.

Lemma 17.1. ∂k−1 ◦ ∂k = 0 for every integer k ≥ 2.

Proof: Because the boundary functions are linear, it suffices to prove that the boundary of the boundary
of a k-simplex is the empty (k− 2)-chain.

∂k−1(∂k[x0, . . . , xd])

=
d
∑

i=0

(−1)i∂k−1[x0, . . . , bx i , . . . , xd]

=
d
∑

i=0

(−1)i







i−1
∑

j=0

(−1) j[x0, . . . , bx j , . . . , bx i , . . . , xd] +
d
∑

j=i+1

(−1) j−1[x0, . . . , bx i , . . . , bx j , . . . , xd]







=
∑

0≤ j<i≤d

(−1)i+ j[x0, . . . , bx j , . . . , bx i , . . . , xd]−
∑

0≤i< j≤d

(−1)i+ j[x0, . . . , bx i , . . . , bx j , . . . , xd]

= 0 �
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Thus, for an n-dimensional simplicial complex X , we have a sequence of homomorphisms linking
the chain groups

0−→ Cn(X )
∂n−→ Cn−1(X )

∂n−1−→ · · ·
∂2−→ C1(X )

∂1−→ C0(X )−→ 0,

where ∂k−1 ◦ ∂k = 0 for all k > 1, and 0 denotes the trivial additive group {0}. Such a sequence of
groups and homomorphisms is called an exact sequence or a chain complex.

C3 C1C2

Z3 Z2 Z1

C0=Z0

B3=0

B2 B1 B0

C-1=0C4=0

∂4 ∂3 ∂2 ∂1 ∂0

A chain complex for a three-dimensional complex; after Zomorodian [34].

17.2 Cycles, Boundaries, and Homology

We now describe two important subgroups of the chain groups Ck(X ). A k-cycle is a k-chain α such
that ∂kα= 0. A k-boundary is a k-chain α such that α= ∂k+1β for some (k+ 1)-chain β . Lemma 17.1
implies immediately that every k-boundary is a k-cycle, but in general, not every cycle is a boundary. We
sometimes refer to k-boundaries as bounding cycles.

The k-cycles and k-boundaries define subgroups of Ck(X ) called the kth cycle group Zk(X) and the
kth boundary group Bk(X). These subgroups can also be defined in terms of the boundary maps as
follows:

Zk(X ) := ker∂k and Bk(X ) := im∂k+1.

In linear-algebraic terms, Bk(X ) is the row space of the matrix ∂k+1; and Zk(X ) is the right null
space (the orthogonal complement of the column space2) of ∂k. All cycle and boundary groups are
free abelian groups, meaning they have the form Zc for some integer c. Lemma 17.1 implies that
Bk(X ) Å Zk(X ) Å Ck(X ), where Å denotes ‘normal subgroup’. (If we use real coefficients instead of
integers to define chains, then Bk(X ) and Zk(X ) are nested linear subspaces of the real vector space
Ck(X ).)

∂k linear map Ck→ Ck−1 nk−1× nk integer matrix

Bk(X ) im∂k+1 row space of ∂k+1
Zk(X ) ker∂k right null space of ∂k

Equivalent definitions of the cycle and boundary groups.

We now define an equivalence relation over Zk(X ). Two k-cycles α and β are homologous if the
k-cycle α− β is a k-boundary. The equivalence class of a k-cycle α is the homology class [α]. Addition
of homology classes is well-defined; for any k-cycles α and β , we have [α+ β] = [α] + [β]. Thus, the
set of homology classes of k-cycles forms a well-defined group under addition, called the kth homology
group Hk(X). This group can also be defined as the quotient group of k-cycles mod k-boundaries:

Hk(X ) := Zk(X )/Bk(X ).

2This really should be called the lumn space, just to be nsistent.
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Homology groups are abelian groups, but not free abelian groups in general. Like all finitely-generated
abelian groups, each homology group is isomorphic to a product of cyclic groups

Hk(X ) ∼= Zβk(X )⊕
⊕

i

(Z/diZ)

for some integers βk and 1≤ d1 ≤ d2 ≤ · · · ≤ dm, where each integer di is a divisor of its successor di+1.
The rank βk of the free component of Hk(X ) is called the kth Betti number of X [2, 25, 24]. The
components (Z, diZ) are called torsion subgroups.

As mentioned before, we can define chains—and therefore cycles, boundaries, and homology groups—
using any coefficient ring in place of the integers. Let Hk(X; R) denote the kth homology group of X
with coefficients in ring R; different choices of R lead to different homology groups. However, integer
homology is universal in a certain sense; the homology groups with respect to any ring R can be described
in terms of the integer homology groups. In particular, if R is a field of characteristic zero (like Q or R
or C), we have Hk(X ; R)∼= Rβk ; the structure for finite fields and other rings is more complex.

17.3 The Euler-Poincaré Formula

The Euler-l’Huilier formula for combinatorial 2-manifolds can be generalized to arbitrary simplicial
complexes as follows:

Theorem 17.2 (The Euler-Poincaré Formula [20, 22]).
∑

k≥0(−1)knk =
∑

k≥0(−1)kβk.

Proof: Every finitely-generated abelian group G can be written as Zr ⊕
⊕

i(Z/ciZ) for some integers r
and ci . The integer r is called the rank of the group. For any subgroup H of any abelian group G, we have
rank(G/H) = rank(G)− rank(H). In particular, βk(X ) = rank(Hk(X )) = rank(Zk(X ))− rank(Bk(X )).
Bk(X ) is the column space of ∂k+1, and therefore has rank equal to the (matrix) rank of ∂k+1. Zk(X ) is
the orthogonal complement of the row space of ∂k, and therefore has rank equal to nk − rank(∂k). We
conclude immediately that

∑

k

(−1)kβk =
∑

k

(−1)k
�

nk − rank(∂k)− rank(∂k+1)
�

=
∑

k

(−1)knk. �

The quantity χ(X) :=
∑

k(−1)knk =
∑

k(−1)kβk(X ) is called the Euler characteristic or Euler-
Poincaré characteristic of X . Poincaré’s first publication of this formula [20] introduces it offhandedly, as
though it were obvious, or at least well-known.3

3“On peut s’en rendre compute de diverses manières; par example si nous désignons par

P1, P2, . . . , Pn−1

les ordres de connexion du polyèdre définis par Riemann et Betti, on voit qu’on a

α0 −α1 +α2 − · · ·+αn = 3− P1 + P2 − · · · − Pn−1,

si n est pair et
α0 −α1 +α2 − · · · −αn =−P1 + P2 − · · ·+ Pn−1,

si n est impair.” Poincaré is using αi for what we are calling ni , and Pi for what we would call βi −1. The definition of the Betti
numbers was reduced by 1 after homology became well-known.
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17.4 Invariance

A simplicial complex X is a refinement of another simplicial complex Y if there is a homeomorphism
from |Y | to |X | that maps any simplex of Y to (the underlying space of) a subcomplex of X . Standard
topological arguments imply that if X is a refinement of Y , then H∗(X ) = H∗(Y ). This is almost enough
to prove the following theorem:

Theorem 17.3. If X and Y are homeomorphic simplicial complexes, then H∗(X ) = H∗(Y ).

The missing ingredient is a proof of the following statement, dubbed die Hauptvermutung der
kombinatorischen Topologie (“the main conjecture of combinatorial topology”) by Kneser [13]:

Hauptvermutung. Two triangulations of the same topological space have a common refinement.

Poincaré [21] stated this conjecture as fact. It was first formulated as a conjecture by Steinitz [27]
and Tietze [30]. Kneser [13], Alexandrov and Hopf [1]

The Hauptvermutung has been proved for 2-manifolds by Kerékjártó [11] and Radó [23], for
arbitrary 2-dimensional complexes by Papakyriakopoulos [19], for 3-manifolds by Moise [16], and for
arbitrary 3-dimensional complexes by Brown [3]. Unfortunately, the Hauptvermutung is false; the first
counterexample was constructed by Milnor [15], and the first counterexample for manifolds was given
by Kirby and Siebenmann [12].

Proving Theorem 17.3 required the development of a more general formulation of homology, called
singular homology, which gives identical results for simplicial complexes, but can also be applied to
spaces that have no triangulations.

17.5 Examples: Polygonal Schemata

Recall that Σ(g, 0) denotes the orientable 2-manifold with genus g. Any system of loops defines a
CW-complex with one vertex x , one face f , and 2g edges `1, . . . ,`2g , whose underlying space is Σg .
We can compute the homology groups of Σ by examining the incidence relations between cells in this
complex.

In fact, the homology computation is trivial, because every cell in this CW-complex has empty
boundary! The boundary of any vertex is empty by definition. The boundary of any edge is the difference
between its endpoints, but every edge `i is a loop. Finally, the boundary of the single face f is a sum
of its sides, but every edge appears on the boundary of f once in each orientation. Thus the boundary
groups B0, B1, and B2 are all trivial, and the cycle groups Z0, Z1, and Z2 are equal to their corresponding
chain groups. We conclude:

Theorem 17.4. H0(Σ(g, 0))∼= Z; H1(Σ(g, 0))∼= Z2g ; and H2(Σ(g, 0))∼= Z.

Together with the Euler-Poincaré formula, this theorem implies that χ(Σ(g, 0)) = 2− 2g, as we
already know.

Now consider Σ(0, g), the non-orientable surface of genus g > 0. Again, any system of loops defines
a CW-complex structure for Σ−g with one vertex, g edges `1, . . . ,`g , and one face f . The proof of the
Surface Classification Theorem implies that we can assume without loss of generality that exactly one
edge, say `1, appears twice on the boundary of f in the same orientation. Once again, the boundaries of
the vertex and the edges are empty, but now we have ∂ f = 2`1. Thus, we have one nontrivial class of
1-boundaries, and no nontrivial 2-cycles.
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Just as in the orientable case, we have H0
∼= Z, because the manifold is connected. The second

homology group H2 is empty, because there are no nontrivial 2-cycles. The first homology group is more
interesting; we have Z1 = 〈`1, . . . ,`g〉 and B1 = 〈2`1〉, and therefore

H1 = 〈`1, . . . ,`g〉/〈2`1〉 = 〈`1, . . . ,`g | 2`1 = 0〉 ∼= Zg−1⊕ (Z/2Z)

(Here 〈I | R〉 denotes the abelian group generated by the elements of I , with relators R.) The 1-sided
loop `1 has introduced torsion into the first homology group.

Theorem 17.5. H0(Σ(0, g)) = Z, H1(Σ(0, g)) = Zg−1⊕Z/2Z, and H2(Σ(0, g)) = 0.

Together with the Euler-Poincaré formula, this theorem implies that χ(Σ(0, g)) = 2− g, as we
already know.

17.6 The Smith-Poincaré Reduction Algorithm

Unlike fundamental groups, there is a well-defined algorithm to compute the homology groups of an
arbitrary simplicial complex X , originally due to Poincaré [22], called the reduction algorithm.4 In
addition to the groups themselves, the reduction algorithm computes basis for each homology group:
a set of k-cycles whose homology classes generate Hk(X ). Poincaré’s reduction algorithm is actually
equivalent to an algorithm published four decades earlier by Smith [26] for computing a certain normal
form of an integer matrix, although Poincaré was apparently unaware of this fact. Smith’s algorithm
is in turn a variant of the standard Gaussian elimination algorithm, which was actually discovered by
Chinese mathematicians some time before 100AD.

Let diag(d1, d2, . . . , dm) denote the m×m square matrix with the integers d1, d2, . . . , dm along the
diagonal, and zeros everywhere else. The Smith normal form of an r × c integer matrix M is a matrix
product SM̃ T = M , where S is an invertible r × r integer matrix, T is an invertible c × c integer matrix,
and M̃ is an r × c integer matrix of the form

M̃ =

�

Diag(d1, d2, . . . , dm) 0
0 0

�

where each integer di divides its successor di+1. In particular, the matrices M and M̃ both have rank m.
The reduction algorithm for computing Smith normal form modifies the matrix using the following
elementary row and column operations: (1) exchange two rows or columns; (2) multiply any row or
column by −1; (3) add an integer multiple of one row or column to another. If we want to compute
the matrices S and T , we start with S and T identity matrices, update S at each row operation, and
update T at each column operation. However, for our application, we only need the matrix M̃ .

Finally, Poincaré’s algorithm computes the groups Bk, Zk, and Hk by reducing each boundary
matrix ∂k to its Smith normal form Sk∂̃kTk. Suppose each matrix ∂̃k has mk nonzero diagonal entries
dk1 | dk2 | · · · | dkmk

. Then we can express the boundary, cycle, and homology groups as follows:

Zk
∼= Znk−mk

Bk
∼= Zmk+1

Hk
∼= Znk−mk−mk+1 ⊕

mk+1
⊕

i=1

(Z/dkiZ)

4Actually, Poincaré was only interested in computing Betti numbers the torsion coefficients. Poincaré described addition of
(homology classes of) cycles, but at the time, only groups of transformations (such as Lie groups) were considered groups.
The homology groups, as important objects of study in their own right, were introduced independently by Noether [18] and
Vietoris [32], although some special cases appeared in earlier work [31, 33]; see McLarty [14].
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If dki = 1, the corresponding group Z/dkiZ is trivial and can therefore be omitted from the direct sum
decomposition of Hk.

The oriented k-simplices in X define a basis for the chain group Ck(X ), and the boundary matrix ∂k
expresses the linear boundary homomorphism with respect to the standard bases of Ck−1 and Ck. Each
elementary row and column operation corresponds to a change of basis in Ck−1 and Ck, respectively.
Exchanging two rows or columns exchanges the indices of two basis elements. Multiplying a row or
column by −1 reverses the orientation of a boundary element. If ei and e j are the ith and jth basis
elements of Ck, then adding column i to column j also replaces e j with a new basis element ei + e j.
Finally, if êi and ê j are the ith and jth basis elements of Ck−1, then adding row i to row j also replaces êi
with a new basis element êi − ê j . (The sign difference reflects the asymmetry of multiplying on the left
by S and multiplying on the right by T .)

Let {e1, e2, . . . , enk
} be the basis of Ck, and let {ε1, . . . ,εnk−1

} be the basis for Ck−1, when the reduction
algorithm terminates. Thus, {e1, e2, . . . , enk

} is a basis for the column space of ∂̃k, and {ε1, . . . ,εnk−1
}

is a basis for the row space of ∂̃k. The column basis elements emk+1, . . . , enk
comprise a basis for the

cycle group Zk, and the scaled row basis elements d1ε1, . . . , dmk
εmk

comprise a basis for the boundary
group Bk−1.

Wk

Ck

Ck-1

Bk-1

Zk

Structure of the Smith normal form matrix ∂̃k

With some additional care, we can ensure that the basis for each boundary group Bk is a subset of
the basis for the corresponding cycle group Zk, except possibly for some nontrivial torsion coefficients
dmk

> 1. Thus, we can easily obtain a basis for each homology group Hk, where each k-cycle is a basis
for one of the factors of its direct-sum decomposition.

The standard algorithm for computing Smith normal form requires O(n2) elementary row and
column operations, each of which requires O(n) exact integer arithmetic operations, where n= r + c.
Thus, the the reduction algorithm is often incorrectly reported to run in O(n3) time. Unfortunately, the
integers in the matrix can grow signficiantly as the algorithm proceeds; as a result, a straightforward
implementation of Smith’s algorithm has doubly exponential running time. The first polynomial-time
algorithms for computing the Smith normal form of an integer matrix was described by Kannan and
Bachem [10]; faster algorithms are described by Chou and Collins [4], Iliopoulos [8], and Storjohann
[28, 29]; see also the survey by Dumas et al. [7].

The numerical difficulties can be avoided entirely by computing homology with Z2 coefficients; in
this setting, the reduction algorithm is straightforward Gaussian elimination, all matrix coefficients
are either 0 or 1, and the running time is O(n3). However, even computing with integer coefficients is
often efficient in practice. Donald and Chang [5, 6] have shown that for random ‘sparse’ matrices, the
standard algorithm to compute Smith normal form runs in O(n2) expected time. For sparse complexes,
the running time can also be reduced by simplifying the complex before computing the Smith normal
form; effective heuristics for reducing cell complexes without changing their homology type are described
by Mrozek and his colleagues [9, 17].
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17.7 Matrix Reduction Example

Let’s actually use the reduction algorithm to compute the homology of a small simplicial complex.
Consider the boundary of the standard 3-simplex ∆3 as an oriented triangulation of the sphere S2, with
vertices w, x , y, z. We can arbitrarily orient the cells of this complex as follows:

Vertices: w, x , y, z

Edges: wx , w y, wz, x y, xz, yz

Facets: wx y, wxz, w yz.x yz

(To simplify notation, I am omitting the brackets and commas.) The boundary maps ∂1 and ∂2 are
represented by the following matrices:

∂1 w x y z
wx −1 1 0 0
w y −1 0 1 0
wz −1 0 0 1
x y 0 −1 1 0
xz 0 −1 0 1
yz 0 0 −1 1

∂2 wx w y wz x y xz yz
wx y 1 −1 0 1 0 0
wxz 1 0 −1 0 1 0
w yz 0 1 −1 0 0 1
x yz 0 0 0 1 −1 1

To reduce ∂1, we first erase the first column by adding the second, third, and fourth columns, and
then swap the empty column to the right. Then we clear the last three rows by adding and/or subtracting
the first three rows.

∂1 7−→

x −w y −w z −w w
wx 1 0 0 0
w y 0 1 0 0
wz 0 0 1 0
x y −1 1 0 0
xz −1 0 1 0
yz 0 −1 1 0

7−→

∂̃1 x −w y −w z −w w
wx 1 0 0 0
w y 0 1 0 0
wz 0 0 1 0

x y +wx −w y 0 0 0 0
xz+wx −wz 0 0 0 0
yz+w y −wz 0 0 0 0

We can now read off m1 = 3 and d1 = d2 = d3 = 1 from the reduced matrix ∂̃1. Moreover, we have the
following bases for Z1 and B0:

Z1 = 〈x y +wx −w y, xz+wx −wz, yz+w y −wz〉 ∼= Z3

B0 = 〈x −w, y −w, z−w〉= 〈∂wx , ∂ yw, ∂wz〉 ∼= Z3.

Similarly, to reduce ∂2, we first apply column operations to reduce the matrix to lower-echelon form,
and then apply row operations to obtain the Smith normal form. In this example, the column operations
we apply are inverses of the row operations we used to reduce ∂1, so that we end with the same basis
for the chain group C1 (except for reordering).
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∂2 7−→

x y +wx −w y xz +wx −wz yz +w y −wz wx w y wz
wx y 1 0 0 0 0 0
wxz 0 1 0 0 0 0
w yz 0 0 1 0 0 0
x yz 1 −1 1 0 0 0

7−→

∂̃2 x y +wx −w y xz +wx −wz yz +w y −wz wx w y wz
wx y 1 0 0 0 0 0
wxz 0 1 0 0 0 0
w yz 0 0 1 0 0 0

x yz−wx y +wxz−w yz 0 0 0 0 0 0

Once again, we can read off m2 = 3 and d1 = d2 = d3 = 1 from the reduced matrix ∂̃2. Moreover, we
have the following bases for Z2 and B1:

Z2 = 〈x yz−wx y +wxz−w yz〉 ∼= Z

B1 = 〈wx −w y + x y, wx −wz+ xz, w y −wz+ yz〉= 〈∂wx y, ∂wxz, ∂w yz〉 ∼= Z3.

Notice that B1 and Z1 are generated by the same set of 1-cycles, and thus are identical as groups.
We conclude that the sphere ∂∆3 has exactly the homology we would expect from our earlier

intuitive analysis.

H0 = C0/B0 = 〈w, x , y, z〉/〈x −w, y −w, z−w〉= 〈w〉 ∼= Z
H1 = Z1/B1 = Z1/Z1 = 0

H2 = Z2 = 〈x yz−wx y +wxz−w yz〉 ∼= Z
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[9] E. Kaczyński, M. Mrozek, and M. Ślusarek. Homology computation by reduction of chain complxes.
Comput. Math. Appl. 35(4):59–70, 1998.

[10] R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith and Hermite normal
forms of an integer matrix. SIAM J. Comput. 8(4):499–507, 1979.

[11] B. Kerékjártó. Vorlesung über Topologie. Springer-Verlag, 1923.

[12] R. Kirby and L. Siebenmann. On the triangulation of manifolds and the Hauptvermutung. Bull.
Amer. Math. Soc. 75:742–749, 1969.

[13] H. Kneser. Die Topologie der Mannigfaltigkeiten. Jahresbericht Deutschen Math.-Verein. 34:1–14,
1926.

[14] C. McLarty. Emmy Noether’s ‘set theoretic’ topology: From Dedekind to the rise of functors. The
Architecture of Modern Mathematics: Essays in History and Philosophy, 211–235, 2006. Oxford.

[15] J. Milnor. Two complexes which are homeomorphic but combinatorially distinct. Ann. Math.
74:575–590, 1961.

[16] E. E. Moise. Affine structures in 3-manifolds, V. The triangulation theorem and Hauptvermutung.
Ann. Math. 56:96–114, 1952.
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