
Computational Topology (Jeff Erickson) The Jordan Polygon Theorem

The fence around a cemetery is foolish,
for those inside can’t get out
and those outside don’t want to get in.

— Arthur Brisbane, The Book of Today (1923)

Outside of a dog, a book is man’s best friend.
Inside of a dog, it’s too dark to read.

— attributed to Groucho Marx

1 The Jordan Polygon Theorem

The Jordan Curve Theorem and its generalizations are the formal foundations of many results, if not
every result, in surface topology. The theorem states that any simple closed curve partitions the plane
into two connected subsets, exactly one of which is bounded. Although this statement is intuitively clear,
perhaps even obvious, the generality of the phrase ‘simple closed curve’ makes the theorem incredibly
challenging to prove formally. According to most classical sources, even Jordan’s original proof of the
Jordan Curve Theorem [3] was flawed; most sources attribute the first correct proof to Veblen almost 20
years after Jordan [6]. (But see also the recent defense and updated presentation of Jordan’s proof by
Hales [2].)

However, we can at least sketch the proof of an important special case: simple polygons. Polygons
are by far the most common type of closed curve in practice, so this special case has immediate practical
consequences. Moreover, most proofs of the Jordan Curve Theorem rely on this special case as a key
lemma. (In fact, Jordan dismissed this special case as obvious.)

1.1 First, A Few Definitions

A homeomorphism is a continuous function h: X → Y with a continuous inverse h−1 : X → Y . Two
topological spaces are homeomorphic (or topologically equivalent) if there is a homeomorphism from
one to the other.

A simple path is a subset of the plane that is homeomorphic to the unit interval [0,1] ⊂ R, or
equivalently, the image of a continuous injective function from [0, 1] into the plane.1 A subset X of the
plane is (path-)connected if for any two points in X , there is a simple path in X from one point to the
other. A connected component of X is a maximal path-connected subset of X .

Similarly, a simple closed curve is a subset of the plane that is homeomorphic to the unit circle
S1 := {(x , y) ∈ R2 | x2+ y2 = 1}, or equivalently, the image of a continuous injective function from S1

into the plane. The full-fledged Jordan curve theorem states that for any simple closed curve C in the
plane, the complement R2 \ C has exactly two connected components.

Finally, a simple path or closed curve is polygonal if it is the union of a finite number of line segments
(called edges). An endpoint of an edge is called a vertex. A polygonal path

A simple polygonal closed curve is also called a simple polygon.

1.2 The Theorem

The Jordan Polygon Theorem. The complement R2 \ P of any simple polygon P in the plane has
exactly two components.

1In later lectures, to allow for self-intersections, we will formally define a path as a continuous function from [0, 1] into the
ambient space, rather than the image of such a function.
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Our proof essentially follows a recent proof of Thomassen (see also Hales), but with some additional
details in the interest of formality. Throughout the proof, we fix an arbitrary simple polygon P. Let
d(p, q) denote the Euclidean distance between points p and q, and let d(P, q) := minp∈P d(p, q). The
compactness of P implies that d(P, q) = d(p, q) for at least one point p ∈ P.

Lemma ≤ 2. R2 \ P has at most two connected components.

Proof: For any ε > 0, let Pε be the set of points at distance ε from P, that is, Pε := {q ∈ R2 |
minp∈P d(p, q) = ε}. We call this set an offset curve of P. Let δ be the minimum distance from any
vertex v of P to any edge of P that is not incident to v. In particular, δ is at most the length of the
shortest edge of P. (This distance is sometimes called the minimum local feature size of P.)

Fix a distance ε < δ/2. The offset curve Pε consists of straight line segments, which occur in pairs at
distance ε on either side of each edge of P, and circular arcs of radius ε, which are centered at each
vertex of P. These segments and arcs meet at common endpoints, clustered in triples around each vertex
of P, as shown in the right half of the figure below. Because ε < δ/2, the triangle inequality implies that
these offset segments and arcs intersect only at their shared endpoints. Moreover, if we give the polygon
an orientation, the offset segment just to the left of any edge of P is connected (either directly or through
a single offset arc) to the offset segment just to the left of the next edge of P. Thus, by induction, all
the segments and arcs to the left of the polygon are connected into a single cycle; symmetrically, all the
right curves are connected into a single cycle.

An offset curve Pε and its structure near of a vertex of P.

Now let D be a closed circular disk centered at some point of P, such that D ∩ P is a single line
segment, and let ρ be the radius of D. The set D \ P clearly has exactly two connected components
(open half-disks). Without loss of generality, we can assume that ρ < δ/2.

Finally, let q be any point in R2\P, and let ε =min{ρ, d(p,Q)/2}. The minimum-length line segment
from q to P intersects the offset curve Pε. Because ε < δ/2, the offset curve Pε has two components,
each intersecting a component of D. Thus, there is a path in R2 \ P from q to Pε, and then along Pε to a
point in D. �

Lemma ≥ 2. R2 \ P has at least two connected components.

Proof: Let p be an arbitrary point in R2 \ P, and let ρ be an arbitrary ray (infinite half-line) based at p.
The intersection ρ ∩ P consists of a finite number of line segments, each of which is either a single
point or an entire edge of P. We call one of these segments s a crossing if the edges of P preceding and
following s lie on opposite sides of (the line through) ρ.

If we rotate ρ continuously around p, the number of crossings changes only when ρ encounters
a vertex of P. Whenever the moving ray hits a single vertex, the number of crossings either stays the
same, increases by 2, or decreases by 2. If the moving ray collides with several vertices simultaneously,
the number of crossing may change by a larger number, but that number is always even. Thus, all rays
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based at p have the same number of crossings modulo 2; we call this bit the parity of the point p. A
similar argument implies that moving p continuously along any path in R2 \ P does not change its parity.
Thus, the parity of any component of R2 \ P is well-defined.

Finally, let σ be any line segment that crosses P exactly once. The endpoints of σ have different
parities, and therefore lie in different components of R2 \ P. �

Notice that these two lemmas require complementary assumptions. The proof of Lemma ≥ 2 applies
without modification if we replace P with any locally finite2 collection of closed (not necessarily simple
or disjoint) polygonal curves in the plane. On the other hand, the proof of Lemma ≤ 2 applies almost
without modification to if we replace R2 with any 2-manifold (after imposing a suitable metric).

1.3 Point in Polygon Test

In light of Lemma ≤ 2, the proof of Lemma ≥ 2 can be easily converted into the standard algorithm to
test whether a point is inside a simple polygon in the plane in linear time. Shoot an arbitrary ray from
the query point, count the number of times this ray crosses the polygon, and return TRUE if and only if
this number is odd. The calculations are simplified if we always shoot the ray directly to the right. This
algorithm has been rediscovered several times, but the earliest publication seems to be a 1962 paper of
Shimrat [5] (later corrected by Hacker [1]).

To make this algorithm concrete, we need one numerical primitive from computational geometry. A
triple (q, r, s) of points in the plane are oriented counterclockwise if walking from q to r and then to s
requires a left turn, or oriented clockwise if the walk requires a right turn. We can check this condition
by computing the determinant

∆(q, r, s) := det







1 q.x q.y
1 r.x r.y
1 s.x s.y






= (r.x − q.x)(s.y − q.y)− (r.y − q.y)(s.x − q.x).

The triple (q, r, s) is oriented counterclockwise if ∆(q, r, s) > 0 and clockwise if ∆(q, r, s) < 0. If
∆(q, r, s) = 0, then the three points are collinear.

Finally, here is the algorithm. The input polygon P is represented by an array of consecutive vertices,
which are assumed to be distinct. The algorithm returns +1, −1, or 0 to indicate that the query point q
lies inside, outside, or directly on P, respectively. The RIGHTCROSS subroutine treats any polygon vertex
that lies on the ray as though it were slightly above; this trick automatically takes care of degenerate
cases. The algorithm clearly runs in O(n) time.

POINTINPOLYGON(P[1 .. n], q):
sign←−1
P[0]← P[n]
for i← 0 to n− 1

sign← sign ·RIGHTCROSS(q, P[i], P[i+ 1])
return sign

RIGHTCROSS(q, r, s):
if r.y > s.y

swap r↔ s
if (q.y ≤ r.y) or (q.y > s.y)

return +1
return sgn(∆(q, r, s))

1.4 The Jordan-Schönflies Theorem

The following stronger version of the Jordan Curve Theorem, originally due to Arthur Schönflies [4], is
also incredibly useful:

2Every point in the plane has an open neighborhood U that intersects only a finite number of the curves, and those curves
have at most one point of common intersection in U . This condition is necessary to avoid pathological counterexamples.
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The Jordan-Schönflies Theorem. For any simple closed curve C in the plane, there is a homeomor-
phism from the plane to itself that maps C to the unit circle S1.

The Jordan-Schönflies Theorem implies not only that R2 \ C has two components, but also that C is
the boundary of both components, and that the closure of the bounded component is homeomorphic to
the disk B2 := {(x , y) ∈ R2 | x2+ y2 ≤ 1}. A polygonal version of this stronger theorem can be proved
by triangulating the interior of the polygon, and then mapping the polygon first to a combinatorially
equivalent triangulation of a regular convex n-gon, and then to the disk. We leave the remaining details
as an exercise for the reader.
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