
Computational Topology (Jeff Erickson) Normal Curves and Compression

The only normal people are the ones you don’t know very well.

— Alfred Adler

I have captured the signal, and am presently triangulating the vectors,
and compressing the data down, in order to express it as a function of my hand.
[Points.] They’re over therrrrrrrrre!

— Prof. John Frink, “Wild Barts Can’t be Broken”, The Simpsons (1999)

13 Normal Curves and Compression

In the late 1920s, Helmuth Kneser [3] introduced the theory of normal surfaces to prove a certain
decomposition theorem about three-dimensional manifolds. Normal surfaces were further developed
by Wolfgang Haken [2] a few decades later to answer certain algorithmic questions about 3-manifolds.
Since Haken’s work, dozens of refinements, extensions, and applications of normal surface theory have
been developed; a comprehensive survey is beyond the scope of this course (and the expertise of the
instructor!). In this lecture, I will describe some algorithmic results related to normal curves, which
are just like normal surfaces, only one dimension lower; I will return to (one of) Haken’s algorithmic
applications in the next lecture.

13.1 Normal Curves and Normal Coordinates

Fix a 2-manifold M , possibly with boundary. Let T be a triangulation of M : a cellularly embedded
graph in which every face has three sides. Tn particular, each boundary cycle of M is covered by a cycle
in T . A simple cycle in M is the image of a continuous injective map from S1 to M . A simple arc in M
is the image of a continuous injective map α: [0,1]→ M whose endpoints α(0) and α(1) lie on the
boundary of M . A curve is the union of a finite number of pairwise-disjoint simple cycles and arcs.

Two curves γ and δ are isotopic (relative to ∂M) if γ can be continuously deformed into δ without
moving any point on the boundary of M or introducing any intersections.1 A curve is normal with
respect to T if every intersection with an edge of T is transverse, and the intersection of the curve with
any triangle is a finite set of elementary segments: simple paths whose endpoints lie on distinct sides of
the triangle. The endpoints of the elementary segments partition the edges of T into ports.

Nine elementary segments in a triangle.

Every triangle in T can contain three different types of elementary segments, each ‘cutting off’ one of
corners of the triangle. For any corner x of any triangle A, let γ(A, x) denote the number of elementary
segments in γ∩A that separate x from the other two corners of A. Suppose T has t triangles. The vector
of 3t non-negative integers γ(A, x) are the normal coordinates of γ. We denote the normal coordinate
vector of any normal curve γ by 〈γ〉. Not every vector in N3t is a normal coordinate vector of a curve; for

1More formally, an isotopy from γ to δ is a continuous function of the form h: [0,1]× γ→ M , such that (1) h(0,γ) = γ,
(2) h(1,γ) = δ, (3) h(t,γ) is a curve for all t ∈ [0, 1], and (4) h(t, x) = x for all t ∈ [0,1] and x ∈ γ∩ ∂M .

1

Computational Topology (Jeff Erickson) Normal Curves and Compression

any edge uv separating two triangles A and B in T , the normal coordinates of any curve γ must satisfy
the equation γ(A, u) + γ(A, v) = γ(B, u) + γ(B, v).

Suppose T has m edges. For any edge e in T , let γ(e) denote the number of times γ intersects e; in
terms of normal coordinates, we have γ(x y) = γ(A, x) + γ(A, y) for any triangle A adjacent to edge x y .
The vector of m non-negative integers γ(e) are the edge coordinates of γ. Every edge coordinate vector
satisfies two constraints: the sum of the edge coordinates for every triangle must be even, and the edge
coordinates for each triangle must satisfy the triangle inequality γ(x y) + γ(yz)≤ γ(xz). Given the edge
coordinates of a normal curve, we can easily reconstruct its normal coordinates; for any triangle x yz
in T , we have γ(x yz, x) = (γ(x y) + γ(xz)− γ(yz))/2. The parity constraints and triangle inequalities
guarantee that the resulting normal coordinates are non-negative integers.

11

3
4

0

0

0

0
12

3
44

1

0

2

2

2

2

0

0

3

1

4 4 4

44

4 4

Left: A normal curve in a triangulation of the disk. Right: Its normal and edge coordinates

An isotopy is normal with respect to T if it moves the points on any edge of T only along that edge.
Both the normal coordinates and the edge coordinates of any normal curve precisely characterize the
normal isotopy class of that curve.

We can also represent any normal curve γ by the crossing sequences of is component arcs and cycles.
However, this explicit representation can be exponentially larger than the coordinate representation of
the same curve. The crossing sequence of γ has length

X :=
∑

x y
γ(x , y);

whereas, the number of bits required to store the normal coordinate vector 〈γ〉 is only

‖γ‖ :=
∑

x y

�

lg(γ(x , y) + 1)
�

= O(m log(X/m)).

Given this extreme disparity, it is natural to ask whether interesting properties of curves can be
computed from their coordinate representations in time that is polynomial in the input complexity ‖γ‖.
For example, how quickly can we determine whether a given coordinate vector describes a connected
curve? Can we compute the number of components of M \ γ quickly? Given two coordinate vectors, can
we quickly decide whether they can represent disjoint curves, or isotopic curves?

13.2 Word Equations and Straight Line Programs

The first polynomial-time algorithms for many of these problems were published by Schaefer, Sedgwick,
and Štefankovič [8, 9]. Their algorithms manipulate strings representing the sequence of crossings along
each edge of the triangulation. However, these strings are never computed explicitly, because they might

2

Computational Topology (Jeff Erickson) Normal Curves and Compression

have exponential length; instead, each string is represented in a certain compressed form whose length
is guaranteed to be polynomial.

Let Σ be a finite alphabet. A straight-line program is a context-free grammar in Chomsky normal
form that generates a single word in Σ∗. More explicitly, a straight-line program A is a sequence of n
assignments, where the ith assignment in Γ is either Ai ← x for some symbol x ∈ Σ, or Ai ← A j · Ak for
some indices 1≤ j, k < i, where · denotes concatenation.

Every straight-line program A generates a unique word w (A) in Σ∗. More generally, for any index i,
let w (Ai) denote the word in Σ∗ generated by the first i assignments. Specifically, if the ith assignment
is Ai ← x , then w(Ai) = x , and if the ith assignment is Ai ← A j · Ak, then w(Ai) = w(A j) · w(Ak). For
example, if A is the straight line program

A1← 0; A2← 1; A3← A1 · A2; A4← A2 · A3; A5← A3 · A4; A6← A4 · A5; A7← A5 · A6,

then w(A) = w(A7) = 0110110101101. Straight-line programs are closely related to the Lempel-
Ziv(-Welsh) family of compression algorithms.

We need the following algorithmic result:

Lemma 13.1 (Miyazaki, Shinohara, and Takeda [6]). Given a straight line program A of length n
and a word p ∈ Σm, we can compute the number of occurrences and the index of the first occurrence (if
any) of p in the string w(A), in time polynomial in n and m.

In all the applications of this lemma in this lecture, the pattern word p is only a single character; in
this case, Lemma 13.1 is solved by a straightforward dynamic programming algorithm in O(n) time.

Now let Θ be an alphabet of variables disjoint from Σ. An assignment to Θ is a function α: Θ→ Σ∗.
Any assignment α induces a unique morphism α∗ : (Σ∪Θ)∗→ Σ∗, by defining α∗(w) = w for any string
w ∈ Σ∗, and α∗(u · v) = α∗(u) ·α∗(v) for any strings u, v ∈ (Σ∪Θ)∗. A word equation is an equation of
the form u = v, where u and v are strings in (Σ∪Θ)∗; a solution to the word equation is an assignment
α: Θ→ Σ∗ such that α∗(u) = α∗(v). Any number of word equations can easily be combined into a single
equation, and the solution to a word equation can be exponentially longer than the equation itself;
consider the following equation over the alphabets Σ = {0,1,�} and Θ= {A, B, C , D, E, F, G}:

A�B�C�D�E�F�G = 0�1�AB�BC�C D�DE�EF

A word equation with lengths is a word equation u = v together with a length function f : Θ→ N.
Any solution α to such an equation must satisfy the constraint α(θ) ∈ Σ f (θ) for all θ ∈Θ.

Theorem 13.2 (Plandowski and Rytter [7]). For any ordering of Σ and any system of word equations
over Σ ∪Θ with lengths f : Θ→ N, a straight-line program encoding the lexicographically smallest
solution (or a proof that there is no solution) can be computed in polynomial time.

13.3 Solving Normal Curve Problems

Given the normal coordinates or edge coordinates of a curve γ, we construct a system of word equations
with lengths whose solution encodes the components of γ, as follows. Our variable alphabet Θ contains
two variables Ax t and At x for each corner x of each triangle t, and variables Ax y and Ay x for each
edge x y. Our system contains two equations Ax y = Ax tAt y and Ay x = Ay tAt x for each edge x y. The
length function assigns f (Ax y) = f (Ay x) = γ(x , y) for every edge x y and f (At x) = f (Ax t) = γ(t, x) for
every corner x of every triangle t.

Any solution to this system of word equations associates a symbol with each component of γ;
different components may be associated with the same symbol. Suppose we associate a symbol with

3

Computational Topology (Jeff Erickson) Normal Curves and Compression

each component of γ. Each corner variable Ax t represent the sequence of elementary segments cutting
off corner x in triangle t, in order from the corner outward; each segment is represented by the symbol
of the component of γ that contains it. Each corner variable At x is just the reverse of At x . Each edge
variable Ax y represents the sequence of components of γ crossed by edge x y, in order from x to y;
again, Ay x is the reversal of Ax y .

13.3.1 Testing Connectivity

We have no way to assign each component of γ a different label, first because we don’t know what the
components are, and second because there may be an exponential number of them. However, we can
label some components by adding additional equations to our system.

Suppose we want to determine whether a curve γ is connected. Let Σ = {0,1}, with the obvious
ordering. We add a variable B and a constraint Ax y = 1B and then compute the lexicographically
smallest solution α to the resulting system. This solution assigns 1 to the component γ1 of γ that crosses
x y closest to x , and 0 to every other component of γ. In particular, if γ is connected, every variable is
assigned a string in 1∗. Moreover, by counting the 1’s in each string α(Ax y) and α(At x), we can compute
the edge and normal coordinates of one component of γ.

Theorem 13.3. Given the normal coordinate vector 〈γ〉, we can determine whether γ is connected, and
compute the normal coordinates of one component of γ, in polynomial time.

A different(?) algorithm for testing connectivity of normal curves was independently described by
Agol, Hass, and Thurston [1]. Intuitively, their algorithm labels the N intersection points between
a normal curve γ and the edges of T with the integers 1 through N , so that intersection points
along any edges are labeled consecutively. The elementary arcs at each corner of each triangle establish
correspondences between equal-length intervals [ai .. bi] and [ci .. di] of the range [1 .. N]. The transitive
closure of these correspondences defines an equivalence relation, whose equivalence classes (which Agol
et al. call orbits) correspond to the components of γ. Agol et al. describe an algorithm to compute the
number of orbits induces by any set of interval-pairings over the range [1 .. N], whose running time is
polynomial in the number of pairings and log N .

13.3.2 Counting Components

With a little more work, we can extend this algorithm to count the number of components of any normal
curve γ, by considering one normal-isotopy class of components at a time.

Let γ1 be the component of γ that crosses some edge x y closest to endpoint x . Let γi be the
component of γ containing the ith intersection point along x y . A simple modification of Theorem 13.3
computes the normal coordinates 〈γk〉 in polynomial time. Any two normal-isotopic components of γ
bound a disk or an annulus with no other vertices inside; moreover, any other component of γ inside
that disc or annulus is also in that normal isotopy class. Thus, the components normal-isotopic to γ1
intersect x y consecutively; they are γ1,γ2, . . . ,γk for some integer k. We can find k using binary search;
this requires O(logγ(x , y)) calls to Theorem 13.3.

The normal coordinate vectors 〈γ1〉, 〈γ2〉, . . . 〈γk〉 are all equal. Thus, 〈γ〉 − k · 〈γ1〉 is the normal
coordinate vector of γ′ = γ \

⋃k
i=1 γi. We can now recursively compute the number of components

of γ′. The following lemma guarantees that this recursive algorithm ends after only a small number of
iterations.

Lemma 13.4. The components of any normal curve fall into at most O(t) normal isotopy classes.

4

Computational Topology (Jeff Erickson) Normal Curves and Compression

Proof: Suppose the underlying Σ is orientable and has genus g and b boundaries; the analysis of the
non-orientable case is similar. Suppose also that the triangulation T has n vertices, m edges, t triangles,
and B boundary vertices (and boundary edges). Let χ = n − m + t + b = 2 − 2g − b denote the
Euler characteristic of Σ. A standard double-counting argument with Euler’s formula implies that
t = 2n+ 2g + 2b− 4− B ≥ n+ 2g + 2b− 4.

We separately consider three overlapping classes of connected normal curves: separating curves,
noncontractible cycles, and noncontractible arcs; an arc is contractible if it is isotopic to a boundary path.
Because these classes overlap, our analysis will not be tight.

Let S be a maximal set of pairwise-disjoint separating cycles and arcs in distinct normal isotopy
classes. Any two curves in S partition the surface into exactly three components, each containing at least
one vertex of T ; otherwise, the two curves would be normal-isotopic. It follows that S has exactly n− 1
elements.

Let C be a maximal set of pairwise-disjoint noncontractible cycles in distinct isotopy (not just normal
isotopy) classes. Cutting the surface along any cycle leaves the Euler characteristic of the surface
unchanged. Each component of Σ \ C is either a pair of pants (a sphere minus three disks) or an
annulus. A pair of pants has Euler characteristic −1, and each annulus contains exactly one boundary
cycle of Σ. Thus, Σ \ C consists of −χ(Σ) = 2g + b − 2 pairs of pants and b annuli. It follows that
|C|= (3(2g + b− 2) + b)/2= 3g + 2b− 3.

Finally, let A be a maximal set of pairwise-disjoint noncontractible arcs in distinct isotopy (not just
normal isotopy) classes. Each component of Σ \A is a disk bounded by exactly three arcs in A and
three boundary arcs. Contracting each boundary cycle of Σ to a point transforms A into a b-vertex
triangulation of a surface of genus g. Thus, Euler’s formula implies that A= 3b+ 3g − 6.

We conclude that the components of any normal curve fall into at most |S|+ |C|+ |A| = n+ 6g +
5b− 7≤ 3t + 3 distinct normal isotopy classes. �

Theorem 13.5. Given the normal coordinate vector 〈γ〉, we can compute the normal coordinates of
each normal-isotopy class of components of γ, as well as the number of components of γ in each class,
in polynomial time.

13.3.3 Testing Contractibility

Finally, suppose we want to determine whether some component of a normal curve is contractible.
Without loss of generality, we can assume that our input is the normal coordinate vector 〈γ〉 of a normal
cycle or arc γ. Recall that γ is contractible if and only if M \ γ has two components, one of which has
Euler characteristic 1. We can test these two conditions as follows:

For each edge x y, we define two variables Px y and Py x , representing the sequence ports along
edge x y. For each corner x of each triangle t, we also define variables Pt x and Px t , which are the
sequence of components of t \ γ that do not touch the side of t opposite x . Finally, we let Pt be
the unique component of t \ γ that touches all three sides of t. These variables satisfy the equations
Px y = Px t pt Pt y and Py x = Py t pt Pt x for every edge x y of every triangle t. We also have length functions
f (Px y) = f (Py x) = γ(x , y) + 1; f (Pt x) = f (Px t) = γ(x , t); and f (Pt) = 1.

The surface M \γ has at most two components, which we can isolate as follows. We add an equation
Px y = 1Q to the system of word equations, and then compute the lexicographically smallest solution
over the alphabet {0,1}. If the solution is a set of strings in 1∗, then M \ γ is connected, which implies
that γ is nonseparating, and therefore noncontractible. Otherwise, γ is separating, and each component
of M \ γ has a unique label; call these components M0 and M1 according to their labels.

The ports and elementary segments defined by T an γ define a graph Tγ. We can extract the Euler
characteristic of M1 from the strings Px y , Px t , and Pt . Specifically, M1 has 2A vertices, A+2B+3C edges,

5

Computational Topology (Jeff Erickson) References

and B+ C faces, and therefore has Euler characteristic A− B− 2C , where

A :=
∑

x y
#1(Px y), B :=

∑

t,x
#1(Px t), and C :=

∑

t
#1(Pt).

We conclude that γ is contractible if and only if either χ(M1) = 1 or χ(M1) = χ(M)− 1.

Theorem 13.6. Given the normal coordinate vector 〈γ〉 of a normal curve, we can determine whether γ
is contractible in polynomial time.

A similar algorithm can be used to test whether two components of a normal curve are isotopic (even
if they are not normal-isotopic).

Theorem 13.7. Given the normal coordinate vectors 〈γ1〉 and 〈γ2〉 of two disjoint normal curves, we
can determine whether γ1 and γ2 are isotopic in polynomial time.

It is also possible to determine in polynomial time whether two intersecting normal curves are
isotopic, but the algorithm is more complicated. This and several other related group-theoretic results
have been developed by Lohrey and Schleimer [4, 5, 10].

References

[1] I. Agol, J. Hass, and W. P. Thurston. The computational complexity of knot genus and spanning
area. Trans. Amer. Math. Soc. 358(9):3821–3850, 2006.

[2] W. Haken. Theorie der Normalflächen: Ein Isotopiekriterium für den Kreisknoten. Acta Mathematica
105:245–375, 1961.

[3] H. Kneser. Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. Jahresbericht Deutscher
Math.-Verein. 38:248–260, 1929.

[4] M. Lohrey. Word problems and membership problems on compressed words. SIAM J. Comput.
35(5):1210–1240, 2006.

[5] M. Lohrey and S. Schleimer. Efficient computation in groups via compression. Proc. 2nd Int.
Symp. Comput. Sci. in Russia, 249–258, 2007. Lecture Notes Comput. Sci. 4649, Springer-Verlag.
〈http://www.informatik.uni-leipzig.de/~lohrey/08-CWP-long.pdf〉.

[6] M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching algorithm for strings in
terms of straight-line programs. J. Discrete Algorithms 1(1):187–204, 2000.

[7] W. Plandowski and W. Rytter. Application of Lempel-Ziv encodings to the solution of word
equations. Proc. nth Int. Conf. Automata Lang. Prog., 731–742, 1998. Lecture Notes Comput. Sci.
1443, Springer-Verlag.

[8] M. Schaefer, E. Sedgwick, and D. Štefankovič. Algorithms for normal curves and surfaces. Proc.
8th Int. Conf. Comput. Combin., 370–380, 2002. Lecture Notes Comput. Sci. 2387, Springer-Verlag.

[9] M. Schaefer, E. Sedgwick, and D. Štefankovič. Computing Dehn twists and geometric intersection
numbers in polynomial time. Proc. 20th Canadian Conf. Comput. Geom., 111–114, 2008. Full
version: Technical Report 05–009, Comput. Sci. Dept., DePaul Univ., April 2005.

[10] S. Schleimer. Polynomial-time word problems. Comm. Math. Helv. 83(4):741–765, 2008.

c© Copyright 2009 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.illinois.edu/~jeffe/teaching/comptop/ for the most recent revision.

6

http://www.informatik.uni-leipzig.de/~lohrey/08-CWP-long.pdf
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.illinois.edu/~jeffe/teaching/comptop/

	Normal Curves and Compression
	Normal Curves and Normal Coordinates
	Word Equations and Straight Line Programs
	Solving Normal Curve Problems
	Testing Connectivity
	Counting Components
	Testing Contractibility

