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Turning and turning in the widening gyre
The falcon cannot hear the falconer;
Things fall apart; the centre cannot hold;
Mere anarchy is loosed upon the world

— William Butler Yeats, “The Second Coming” (1921)

A cube of cheese no larger than a die
May bait the trap to catch a nibbling mie.

— attributed to Chauncey Depew
by Ambrose Bierce, The Devil’s Dictionary (1911)

4 Regular Homotopy and Hexahedral Meshing

This lecture is concerned with closed curves in the plane that are smooth, but not necessarily. Intuitively,
a regular closed curve is a closed curve with no sharp corners. Two regular closed curves are regularly
homotopic if one can be continuously deformed into the other without introducing any sharp corners at
any time. The turning number of a regular closed curve is the number of times its tangent vector rotates
counterclockwise during a single traversal of the curve. I will prove the Whitney-Graustein theorem: two
regular closed curves in the plane are regularly homotopic if and only if they have the same turning
number. Then I’ll describe an application of this theorem to hexahedral meshing.

4.1 Winding Numbers

But first, a warmup exercise.
Recall that a loop in the plane is a continuous function α: [0,1]→ R2 such that α(0) = α(1). Let p

be an arbitrary point that is not in the image of α, and consider an infinite ray r based at p. We say that r
is generic if the set {t | α(t) ∈ r} is finite and excludes the values 0 and 1. An intersection point α(t) ∈ r
is called a crossing if the points α(t − ε) and α(t + ε) lie on opposite sides of r, for all sufficiently
small ε > 0. The crossing is positive if the triangle (0,α(t),α(t + ε)) is oriented counterclockwise, and
negative otherwise. The winding number of α around p, denoted wind(α, p), is the number of positive
crossings minus the number of negative crossings, for any (generic) ray.

An argument similar to the proof of Lemma ≥ 2 (the easy half of the Jordan Curve Theorem) implies
that this definition is independent of the choice of ray r. If we continuously move the ray, crossings can
appear and disappear, but they always do so in matched pairs: one positive and one negative. Moreover,
two points in the same connected component of R2 \ imα define the same winding number; in particular,
if p is in the unbounded component of R2 \ imα, then wind(α, p) = 0. If α is simple, the winding number
with respect to every interior point is either 1 or −1.
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Winding numbers.

Essentially the same argument implies that if we continuously deform a loop without touching a fixed
point, say the origin 0, the winding number around that point is constant during the entire deformation,

1



Computational Topology (Jeff Erickson) Regular Homotopy and Hexahedral Meshing

even if we allow the basepoint to move during the deformation. The type of deformation we allow
is called a free homotopy, which is just a homotopy through loops. More formally, a free homotopy
between two loops α and β in R2 \ 0 is a function h: [0,1]2 → R2 \ 0 such that h(0, t) = α(t) and
h(1, t) = β(t) for all t, and h(s, 0) = h(s, 1) for all s.

In fact, winding numbers exactly characterize free homotopy classes of loops in the punctured plane.

Theorem 4.1. Two loops α and β are freely homotopic in R2 \ 0 if and only if wind(α, 0) = wind(β , 0).

Proof: Let ζ: [0,1] → S1 denote the loop ζ(t) = (cos2πt, sin2πt). For any integer k, let ζk(t) =
ζ(kt) = ζ(kt mod 1); the loop ζk clearly has winding number k. We have already argued that any two
freely homotopic loops in R2 \ 0 have the same winding number. To complete the proof of the theorem,
we show that any loop α in R2 \ 0 is freely homotopic to ζwind(α), which immediately implies that loops
with the same winding number are homotopic.

Now let α be an arbitrary loop in R2 \ 0. Without loss of generality, we can assume that α(0) lies on
the positive x-axis; otherwise, rotate α using a free homotopy. We can also safely assume that α(t) lies
on the positive x-axis for only a finite set of real values t.

Let α∗ : [0,1] → S1 denote the function α∗(t) = α(t)/‖α(t)‖. The loops α and α∗ are freely
homotopic; in particular, they have the same winding number. There is a unique function ᾱ: [0, 1]→ R
such that α∗ = ζ ◦ ᾱ. Because α∗(0) = α∗(1), the function value ᾱ(1) must be an integer.

For all 0 < t < 1, the point α(t) lies on the positive x-axis if and only if ᾱ(t) is an integer. If
moreover ᾱ(t − ε) < ᾱ(t) < ᾱ(t + ε) for all sufficiently small ε > 0, then α(t) is a positive crossing.
Similarly, if ᾱ(t − ε)> ᾱ(t)> ᾱ(t + ε) for all sufficiently small ε > 0, then α(t) is a negative crossing. It
follows that ᾱ(1) = wind(α).1

Finally, define the function h̄: [0,1]2 → R by setting h̄(s, t) = (1− s)ᾱ(t) + st · wind(α), and let
h= ζ ◦ h̄. Tedious definition-crunching implies that h: [0,1]2→ S1 is a homotopy from α∗ to ζwind(α).
Thus, α is freely homotopic to ζwind(α), which completes the proof. �

4.2 Regular Closed Curves and Regular Homotopy

More formally, a parameterized regular closed curve is a path γ: [0,1]→ R2 satisfying the following
conditions:

• γ(0) = γ(1);

• γ has a well-defined, continuous derivative γ′ : [0, 1]→ R2;

• γ′(0) = γ′(1); and

• γ′(t) 6= (0,0) for all t.

More succinctly, a differentiable function γ: [0, 1]→ R2 is a parameterized regular closed curve if and
only if both γ and its derivative γ′ are loops and γ′ avoids the origin.

Two regular closed curves γ and δ are equivalent, denoted γ ∼ δ, if they differ only by reparam-
eterization, that is, if there is a continuous function η: R → R such that η(t + 1) = η(t) + 1 and
γ(t) = δ(η(t)mod 1) for all t. If such a function η exists, its derivative must be positive everywhere.
It is easy to check that ∼ is an equivalence relation; the equivalence classes are called regular closed
curves, and its elements are called parameterizations.

A regular homotopy is a homotopy through parameterized regular closed curves, that is, a function
h: [0,1]2 → R2 such that for all s, the function t 7→ h(s, t) is a parameterized regular closed curve.

1In fact, ᾱ(1) is a much less fragile definition of the winding number of α, since it does not assume that α is in any way
well-behaved.
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Two parameterized regular closed curves γ and δ are regularly homotopic, denoted γ' δ if there is a
regular homotopy h such that h(0, t) = γ(t) and h(1, t) = δ(t) for all t.

Lemma 4.2. Let γ and δ be arbitrary parameterized regular closed curves. If γ and δ are equivalent,
then γ and δ are regularly homotopic.

Proof: Suppose γ(t) = δ(η(t)mod 1). Let H : [0, 1]×R→ R be defined by H(s, t) := (1− s)η(t) + st,
and let h: [0,1]2 → R2 be defined by h(s, t) := δ(H(s, t)mod 1). We easily verify that h(0, t) = γ(t)
and h(1, t) = δ(t) for all t, and that H(s, t + 1) = H(s, t) + 1 for all s and t. Moreover, ∂

∂ t
H(s, t) =

(1− s)η′(t) + s > 0 for all s and t. We conclude that h is a regular homotopy from γ to δ. �

In light of this lemma, we say that two regular closed curves are regularly homotopic if any
parameterizations of those curves are regularly homotopic.

A regular closed curve α is normal if it has a finite number of self-intersections, and each self-
intersection is a pairwise crossing. Any normal curve can be described by a planar embedding of a
planar (multi-)graph where every vertex has degree 4. (However, not all connected 4-regular plane
graphs describe normal curves.) A regular homotopy between two normal curves can be described
combinatorially as a sequence of so-called Whitney moves, of which there are two types: creating or
destroying bigons, and flipping triangles.

Whitney moves; the curve does not change outside the circles

4.3 Turning Numbers and the Whitney-Graustein Theorem

In 1937, Whitney characterized the regular homotopy classes of regular curves in the plane in terms of
turning numbers. The turning number turn(γ) of a regular closed curve γ is the winding number of its
derivative γ′ around the origin.

Equivalently, call a point γ(t) extreme if the derivative vector γ′(t) points in some fixed direction
(say, to the right). For a generic direction, there are a finite number of extreme points of exactly two
types: γ(t) is happy if γ is locally to the left of the tangent ray, and sad if γ is locally to the right of the
tangent ray. If the fixed direction is to the right, happy points have neighborhoods that curve up ^ and
sad points have neighborhoods that curve down_. The turning number of γ is the number of happy
points minus the number of sad points.

+
+

+
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+

–

A regular closed curve with turning number 2. Creating or destroying a happy-sad pair.
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It is not hard to see that regularly homotopic curves have equal turning numbers; indeed, there
is a one-line proof. For any regular homotopy h from γ to δ, the partial derivative ∂ h/∂ t is a (free)
homotopy from γ′ to δ′ that avoids the origin. Thus, if γ and σ are regularly homotopic, their derivatives
are homotopic in R2 \ 0, so γ and δ have the same turning number. Alternately, one can argue that a
regular homotopy can only create or destroy happy and sad points in matching pairs.

Surprisingly, the converse is true as well! The following result appears in a seminal 1937 paper of
Hassler Whitney [7], who attributes both the theorem and its proof to William Graustein.

Theorem 4.3 (Whitney-Graustein). Two regular closed curves in R2 are regularly homotopic if and
only if their turning numbers are equal.

Proof: Let γ and δ be parameterized regular closed curves with the same turning number. Without loss
of generality, we assume that both γ and δ have arc-length 1. (We can scale each curve using a regular
homotopy if necessary.)

We also assume without loss of generality that γ and δ are parameterized by arc length, that is,
‖γ′(t)‖ = ‖δ′(t)‖ = 1 for all t. Let `γ(t) =

∫ t

0
‖γ′(u)‖ du denote the length of the prefix γ([0, t]).

The function `γ : [0,1]→ [0,1] is a continuous and strictly increasing bijection, and therefore has a
continuous and increasing inverse `−1

γ . Let γ̄(t) := γ(`−1
γ (t)); by construction, ‖γ̄′(t)‖ = 1 for all t.

Because `−1 is continuously increasing, γ̄ is equivalent to (and therefore regularly homotopic to) γ.
Because δ and γ have the same turning number, their derivatives γ′ and δ′ have the same winding

number and are therefore homotopic in S1 (not just in R2 \ 0). Let h′ : [0,1]2 → S1 be a homotopy
from γ′ to δ′. If necessary, perturb h′ so that every loop h′(s, ·) is non-constant; this perturbation is only
necessary if turn(γ) = 0.

A loop α: [0,1]→ R2 \ 0 is the derivative of a regular closed curve if and only if its center of mass

is the origin:
∫ 1

0
α(t) d t = 0. Let c : [0,1] → R2 be defined by c(s) :=

∫ 1

0
h′(s, t) d t; this is a loop

whose basepoint is the origin. For all s, the loop h′(s, ·) lies on S1 and is non-constant, so its center of
mass c(s) lies in the open interior of S1. In particular, h′(s, t) 6= c(s) for all s and t. Thus, the function
h∗ : [0, 1]2→ R2 be defined by h∗(s, t) := h′(s, t)− c(s) is a homotopy from γ to δ through derivatives of
regular closed curves. We conclude that the function h: [0, 1]2→ R2 defined by h(s, t) :=

∫ t

0
h∗(s, u) du

is a regular homotopy from γ to δ. �

For normal curves, one can also prove this theorem combinatorially, by describing a sequence of
Whitney moves transforming any normal curve to a canonical normal curve with the same winding
number. One possible choice of canonical curves is shown below, but there are other possibilities. I’ll
leave the details of this approach as an exercise. Very recently, Nowik [5] proved that Θ(n2)Whitney
moves are always necessary and sometimes sufficient to transform one normal curve into another, where
n is the total number of self-intersection points in both curves.

–2 –1 0 1 2 3 4

Canonical regular curves for each turning number.

4.4 Regular Curves on the Sphere

The Whitney-Graustein theorem almost immediately implies a similar classification of regular closed
curves on the sphere S2 = {(x , y, z) | x2+ y2+ z2 = 1} ⊂ R3, which are defined just as they are in the
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plane: A differentiable function γ: [0, 1]→ S2 is a regular closed curve if and only if both γ and γ′ are
loops, and γ′ avoids the origin. In this case, however, γ′ is a loop in R3 \ 0, and it is not hard to show
that any two loops in R3 \ 0 are freely homotopic. Perhaps any two regular closed curves on the sphere
are regularly homotopic?

A different perspective should immediately convince you that things are not so simple. Consider the
stereographic projection φ : S2 \ (0, 0,1)→ R2, defined by setting

φ(x , y, z) :=
� x

1− z
,

y

1− z

�

.

The projection of any point p ∈ S2 can be determined geometrically by extending a line through p and
the north pole (0, 0, 1); the intersection of this line with the x y-plane is φ(p). A closed curve γ on the
sphere is regular if and only if, after rotating the sphere so that γ avoid the north pole, the projection
φ(γ) is a regular closed curve in the plane.

Stereographic projection.

Say that a regular curve on the sphere is even if its projection to the plane has even turning number,
and odd otherwise. We easily observe that the parity of a curve is invariant under rotations of the sphere.

A regular homotopy between normal curves on the sphere can again be modeled by a sequence of
Whitney moves on the sphere. Projecting the resulting evolving curve onto the plane almost gives us a
regular homotopy in the plane, except at moments where the spherical curve passes over the north pole.
This event can be modeled in the plane by a Whitney flip, which takes the topmost arc of the curve and
moves it ‘through infinity’ to an arc below the curve, or vice versa.

+

–

A Whitney flip. Everything inside the circle is unchanged.

A Whitney flip changes the turning number of the planar curve by 2, by replacing a happy point
with a sad point or vice versa. Any regular homotopy can be modeled by a sequence of Whitney moves
and Whitney flips, two regularly homotopic curves on the sphere have the same parity. Conversely, we
can change the turning number of any regular curve in the plane by any even number by a sequence of
Whitney moves and Whitney flips, so any two regular curves on the sphere with the same parity are
regularly homotopic.

Corollary 4.4. Two regular closed curves in S2 are regularly homotopic if and only if they are both even
or both odd.

We can also extend the notion of regular homotopy to sets of regular closed curves.
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Corollary 4.5. Let C be a finite set of n regular closed curves on the sphere, of which k are even. Then C
is regularly homotopic to a set of n disjoint non-nested curves, of which k are small figure-8s and the
remaining n− k are small circles.

Nowik’s Θ(n2) bound on the worst-case number of Whitney moves also applies to sets of normal
curves on the sphere [5].

4.5 The Mitchell-Thurston Hex Mesh Theorem

Many applications in scientific computing call for three-dimensional to be decomposed into a mesh
of geometrically simpler pieces. One of the most sought-after types of decomposition is a hexahedral
mesh, or simply hex mesh. A hex(ahedron) is a polyhedron combinatorially equivalent to a cube: six
facets, each with four edges, meeting at eight vertices of degree 3. A hex mesh is a set of hexahedra in
which the intersection of any two hexes is either the empty set, a vertex of both, an edge of both, or a
facet of both.

Now suppose we are given a quadrilateral mesh of the surface of some three-dimensional object. Not
surprisingly, a quad mesh is a set of quadrilaterals, any two of which share a common edge, a common
vertex, or nothing at all; the union of the quads is the surface in question. When can we extend this
surface quad mesh to a hex mesh of the interior body? Specifically, we want a hex mesh whose boundary
facets are precisely the quadrilaterals in the input surface mesh.

As a geometry problem, this is still open, even for some very simple special cases. (See in particular
Bern and Eppstein’s bicuboid [1].) As a topological question, however, there is a very simple solution,
at least for surfaces homeomorphic to the sphere, independently discovered by Bill Thurston [6]
and Scott Mitchell [4]. In this setting, we don’t require the quads and hexes to have any particular
geometry—they’re just balls and disks with certain constraints on their intersection pattern.

Let X be a topological space. A cube in X is a continuous injective map Q : [0, 1]d → X . A facet
of Q is another cube Q′ : [0,1]d−1 → X that is equal to the restriction of Q to one of the 2d facets of
the reference hypercube [0,1]d (ignoring the fixed coordinate). A face of Q is either Q itself or a face
of a facet of Q. A (geometric) cube complex in X is a set Q of cubes in X that satisfy the following
properties:

• If Q ∈Q, then every facet of Q is also in Q.

• For any pair of cubes Q,Q′ ∈ Q whose images in X intersect, there is another cube Q′′ that is a
face of both Q and Q, such that imQ′′ = imQ ∩ imQ′.

The underlying space of a cube complex is the union of the images of its cubes.
When we speak of ‘a quad mesh of the sphere’, we really mean a finite cube complex in R3 whose

underlying space is the standard unit sphere S2; Similarly, ‘a hex mesh of the ball’ means a finite cube
complex in R3 whose underlying space is the standard unit ball B3. (Obviously, we can replace B3 and S2

with any subset X of R3 homeomorphic to B3 and its boundary, but imposing our own geometry makes
the following argument simpler.)

Theorem 4.6 (Mitchell-Thurston). A quad mesh Q of the sphere can be extended to a hex mesh of the
ball if and only if the number of quads in Q is even.

Proof: One direction follows from an easy inductive argument: The empty complex obviously has zero
boundary quads. Removing any cube from any other cube complex destroys some number k < 6 of
boundary quads, but creates 6− k more, so the total change in the number of boundary quads is 6− 2k,

6



Computational Topology (Jeff Erickson) References

which is even. Thus, every (pure three-dimensional) cube complex has an even number of boundary
quads.

On the other hand, let Q be an even quad mesh of the sphere. The combinatorial dual Q∗ of Q is a
connected 4-regular plane graph, which we can interpret as a set of regular closed curves on the sphere.
By Corollary 4.5, there is a regular homotopy of those curves to a collection of disjoint, non-nested
circles and figure-8s. Because Whitney moves preserve the parity of the number of intersection points,
there are an even number of figure-8s.

Now think of the regular homotopy as the intersection of a shrinking sphere with a collection of
surfaces. Edges sweep out sections of surfaces, and vertices sweep out curves where two such surfaces
cross. A Whitney-II move occurs at every local minimum or maximum of the radius function along some
intersection curve. A Whitney-III move occurs whenever three surfaces meet at a common point. Within
the innermost sphere, cap off the small circles and join the figure-8s in pairs with self-intersecting tubes.

We now have a collection of surfaces inside the unit ball that locally resembles the dual of a hex
mesh. These surfaces subdivide the ball into a cell complex, whose vertices are intersection points of
three surfaces (one of which may be the bounding sphere), whose edges are segments of intersection
curves bounded by vertices, and whose sheets are maximal subsets of surfaces bounded by edges.
Locally, the cell complex resembles the dual of a hex mesh; the neighborhood of each interior vertex is
homeomorphic to the intersection of three planes.

However, in general, the cell complex contains structures inconsistent with a dual hex mesh: edges
incident to zero or one vertices, edges incident only to boundary vertices, sheets incident to the same
edge more than once, and sheets incident only to boundary edges. To eliminate these features, we add
several spheres to the surface arrangement:

• one just inside the bounding sphere;

• one around each interior vertex;

• one around the interior of each edge, intersecting the sphere(s) around its endpoint(s), but not
containing the endpoint(s) themselves;

• two surrounding each edge without vertices;

• one around each sheet, intersecting the spheres around its edges and vertices, but not containing
the edges and vertices themselves;

Adding these spheres increases the complexity of the surface arrangement by a (not particularly small)
constant factor. The resulting cell complex is dual to a hex mesh of the ball, whose boundary facets are
the original surface quad mesh. �

The hex mesh that results from this procedure is considerably more complex than the given quad
mesh. If the input quad mesh has complexity n, then Nowik’s analysis [5] implies that we may need
Θ(n2)Whitney moves to reach a collection of circles and eights. Thus, this algorithm results in a hex
mesh of complexity Θ(n2) in the worst case. A more recent algorithm of Eppstein [3] computes a
topological hex mesh with complexity O(n).
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