
Computational Topology (Jeff Erickson) Graph Separators

In the spring of 1930,. . . König told me that he was about to finish a book that would include
all that was known about graphs. I assured him that such a book would fill a great need; and I
brought up my n-Arc Theorem which, having been published as a lemma in a curve-theoretical
paper, had not yet come to his attention. König was greatly interested, but did not believe
the theorem was correct. “This evening,” he said to me in parting, “I won’t go to sleep before
having constructed a counterexample!”. When me met again the next day he greeted me
with the words “Sleepless night!”

— Karl Menger, “On the origin of the n-arc theorem”, J. Graph Theory 5:341–350, 1981.

10 Graph Separators

“Divide and conquer” is one of the oldest and most widely used techniques for designing efficient algo-
rithms. Divide-and-conquer algorithms partition their inputs into two or more independent subproblems,
solve those subproblems recursively, and then combine the solutions to those subproblems to obtain
their final output. This strategy can be successfully applied to several graph problems, provided we can
quickly separate the graph into roughly equal subgraphs.

An ε-separator of an n-vertex graph G = (V, E) is a subset S ⊆ V such that each connected component
of G \ S has at most εn vertices. Our goal is to find ε-separators, for some constant 1/2 ≤ ε < 1, that
have few vertices. For example, any path has a 1/2-separator consisting of a single vertex; any binary
tree has a 2/3-separator consisting of a single vertex; and any outer-planar graph has a 2/3-separator
consisting of two vertices.

The following classical theorem of Menger [12], which is both a precursor and an easy consequence
of the maxflow-mincut theorem, is a key tool in proving the existence of small separators.

Theorem 10.1 (Menger). Let G = (V, E) be a graph. The minimum number of vertices separating any
subsets A, b ⊆ V is equal to the maximum number of vertex-disjoint paths from A to B.

10.1 Planar Separators

In the late 1970s, Richard Lipton and Robert Tarjan [11] proved the following seminal result.

The Planar Separator Theorem. Any n-vertex planar graph has a 2/3-separator containing at mostp
8n vertices.

Proof (Alon, Seymour, and Thomas [2]): Let G be an embedded planar graph with n ≥ 3 vertices,
and let k = b

p
2nc. Without loss of generality, we can assume that G has no loops or parallel edges,

and that every face is a triangle bounded by three distinct edges. For any simple cycle C in G, let In(C)
and Out(C) denote the vertices inside and outside C , respectively. No vertex of In(C) is adjacent to any
vertex of Out(C). Let C be a simple cycle satisfying three conditions:

(1) C has at most 2k vertices.

(2) |Out(C)|< 2n/3.

(3) Subject to conditions (1) and (2), the difference |In(C)| − |Out(C)| is as small as possible.

The outer face of G satisfies the conditions (1) and (2), so an appropriate cycle C exists.
For purposes of deriving a contradiction, suppose |In(C)| ≥ 2n/3. Let D be the subgraph of G in the

closed interior of C . For any two vertices u and v in C , let c(u, v) denote their distance in C , and let
d(u, v) denote their distance in d. The remainder of the proof rests on two claims about the cycle C .
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Claim 1. d(u, v) = c(u, v) for all vertices u and v in C .

We clearly have d(u, v) ≤ c(u, v) for all u and v, because C is a subgraph of D. Suppose there are
distinct vertices u and v such that d(u, v)< c(u, v); choose such a pair so that d(u, v) is minimized. Let
σ be a shortest path from u to v in D. If σ contained any other vertex w in C , then

d(u, w) + d(w, v) = d(u, v) < c(u, v) ≤ c(u, w) + c(w, v),

so either d(u, w) < c(u, w) or d(w, v) < c(w, v); either possibility contradicts our choice of u and v.
Thus, σ cannot contain and other vertices of C . it follows that σ cuts D into two smaller disks; call
their bounding cycles C+ and C−. Suppose |In(C+)| ≥ |In(C−)|. The cycle C+ has fewer vertices than C ,
because d(u, v)< c(u, v), so C+ satisfies condition (1). We also have

n− |Out(C+)|= |In(C+)|+ |V (C+)|

>
1

2

�

|In(C+)|+ |In(C−)|+ |V (σ)| − 2
�

=
|In(C)|

2
≥

n

3
,

so C+ also satisfies condition (2). Finally, we have |In(C+)|< |In(C)| and |Out(C+)|> |Out(C)|. But this
contradicts condition (3) of C . We conclude that Claim 1 is true.

Claim 2. C has exactly 2k vertices.

Suppose to the contrary that C has strictly less than 2k vertices. Choose an arbitrary edge uw of C ,
and let v be the third vertex of the face of D adjacent to uw. Let α denote the path uv · vw, and let β
denote the path C \ uw. These two paths must be distinct, because In(C) 6=∅; thus, by Claim 1, v is not
a vertex of C . It follows that C ′ = α ·β is a simple cycle satisfying conditions (1) and (2). But we also
have |In(C ′)| < |In(C)| and |Out(C ′)| = |Out(C)|, contradicting condition (3) of C . We conclude that
Claim 2 is true.

We now return to the main proof. Let v0, v1, . . . , v2k−1, v2k = v0 be the vertices of C in order. Claim 1
implies that the shortest path in D from v0 to vk has length k. Thus, by Menger’s Theorem, there are
k+1 vertex-disjoint paths in D from {v0, v1, . . . , vk} to {vk, vk+1, . . . , v2k}. Call these paths π0,π1, . . . ,πk,
where πi is a path from vi to v2k−i . Claim 1 now implies that

n ≥
k
∑

i=0

�

�V (πi)
�

� ≥
k
∑

i=0

min {2i+ 1, 2k− 2i− 1} ≥
(k+ 1)2

2
,

which implies that k ≤
p

2n− 1. But this contradicts our definition k = b
p

2nc.
We conclude that our assumption |In(C)| ≥ 2n/3 must be false. Thus, C is a 2/3-separator of G of

size 2b
p

2nc. �

10.2 Planar Separators, Take 2

A particularly elegant proof of the planar separator theorem, with slightly weaker constants, was
discovered by Dan Spielman and Shang-Hua Teng in 1996 [16]. Their proof relies on a geometric
characterization of planar graphs, first published by Koebe in 1936 [10], and later independently
rediscovered by Andreev [3, 4] and Thurston [17].
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Let Ĉ denote the extended complex plane C∪ {∞}; this space is homeomorphic to the sphere S2

by stereographic projection. A Möbius transformation is a function φ : Ĉ → Ĉ of the form φ(z) =
(a+ bz)/(c + dz) for some complex numbers a, b, c, d where ad − bc 6= 0. Möbius transformations map
circles to circles, either on the sphere or in the plane (where a line in the plane is considered a circle
through∞).

Theorem 10.2 (Koebe-Andreev-Thurston). A graph is planar if and only if it is the intersection graph
of a finite set of interior-disjoint circular caps on the sphere. Moreover, this representation is unique up
to Möbius transformations from the sphere to itself.

Theorem 10.3. Every n-vertex planar graph G has a 3/4-separator of size at most 2
p

n.

Proof (Speilman and Teng): Let G be an n-vertex planar graph. By the Koebe-Andreev-Thurston
theorem, there is a set of circular caps D1, D2, . . . , Dn on the unit sphere S2, whose intersection graph
is G. Let P = {p1, . . . , pn} be the set of centers of disks Di. A theorem of Rado [15] implies that the
set P has a a center point c: Every plane through c partitions P into subsets of size at most b3n/4c.
(The bound b3n/4c is best possible; consider the vertices of a regular tetrahedron.) Miller et al. [13]
proved that there is a Möbius transformation Π: S2→ S2 such that the origin is a center point of the set
Q = Π(P). Let Ci = Π(Di) for all i. Any plane through the origin intersects a subset of the caps Ci; the
corresponding vertices of G define a 3/4-separator.

It remains only to show that there is a plane through the origin that intersects at most 2
p

n caps Ci .
In fact, we will show that the expected number of caps intersecting a random plane through the origin
is at most 2

p
n. In fact, this probabilistic bound holds for any collection of n circular caps, even with

intersecting interiors; we require only that each cap is no bigger than a hemisphere.
Let ri denote the radius of the boundary circle of Ci . We have ri ≤ 1 for all i, because the origin is a

center point for Q. For each cap Ci, let Bi denote the set of unit normal vectors of planes through the
origin that intersect Ci . The set Bi is a belt of points in S2 between two parallel planes symmetric about
the origin; the distance between these planes is exactly 2ri . By construction, a plane intersects Ci if and
only if its unit normal vector lies in Bi . Thus, we need to show that a random point in S2 lies in at most
2
p

n belts Bi , on average.
The surface area of belt Bi is exactly 4πri , and the surface area of the entire sphere S2 is 4π. Thus,

the probability that a random point in S2 lies inside Bi is exactly ri . It follows that the expected number
of belts Bi containing a random point in S2, and thus the expected number of caps Ci intersecting a
random plane through the origin, is exactly

∑

i ri . On the other hand, the area of cap Ci is at least πr2
i .

Because the caps Ci have disjoint interiors, we have
∑

i r2
i ≤ 4. Given this constraint, the sum

∑

i ri is
maximized when ri = 2/

p
n. Thus, the the expected number of caps Ci intersecting a random plane

through the origin is at most 2
p

n, as claimed. �

10.3 Separators for Surface Graphs

Gilbert, Hutchinson, and Tarjan [8] observed that the following result of Albertson and Hutchinson [1]
immediately implies a separator theorem for graphs of small genus. A cycle γ in a surface Σ is separating
if Σ \ γ is disconnected, and nonseparating otherwise.

Lemma 10.4. Any n-vertex triangulation of an orientable surface of positive genus contains a nonsepa-
rating cycle of length at most 2

p
n.

Proof: Let σ be the shortest nonseparating cycle in G. The graph G \\σ has two copies of σ; call these
cycles σ[ and σ]. Let m denote the number of vertices in σ.
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Let S be the smallest set of vertices of G \\ σ that separates σ[ and σ]. The induced subgraph
G[S] must contain (and therefore must be) a cycle τ in G that is homologous with σ and therefore
nonseparating. Thus, τ has at least m vertices. Menger’s Theorem now immediately implies that there
are at least m vertex-disjoint paths from σ[ to σ] in G \\σ.

On the other hand, let π be the shortest path in G \\σ from a node in σ[ to its clone in σ]. The
edges of π comprise a nonseparating cycle in G, which implies that π has length at most m. At most
m/2 edges in π lie in σ[ or σ]. Thus, every path from σ[ to σ] has at least m/2 edges.

We conclude that n≥ m2/2. �

Corollary 10.5. Any n-vertex graph G embedded on an orientable surface of genus g has a 2/3-
separator S of size at most 2g

p
n+
p

8n. Moreover, every component of G \ S is planar.

Proof: Let G be a graph on an orientable surface of genus g. Without loss of generality, we can assume
that the embedding is a cellular triangulation; otherwise, replace any non-disk faces with disks, remove
all loops and parallel edges, and triangulate any faces with more than three sides. Let σ be the shortest
noncontractible cycle in G, and let G′ be the induced subgraph of G obtained by removing the vertices
of σ. This graph can be embedded on a surface of genus g − 1. The inductive hypothesis implies that G′

has a 2/3-separator S′ of size at most 2(g − 1)
p

n+
p

8n. Thus, S = S′ ∪ V (σ) is a 2/3-separator of size
at most 2g

p
n+
p

8n, as required. The base case for the recursion is the Lipton-Tarjan theorem. �

Hutchinson [9] proved that any surface graph has a noncontractible cycle of length O(
p

n/g log g).
An easy extension of the proof of Corollary 10.5 implies that any surface graph has a 2/3-separator
of size O(

p
gn log g). Przytycka and Przytycki [14] proved that there are surface graphs in which the

shortest noncontractible cycle has length Ω(
p

n log g/g), so the best bound on separator size one can
hope to prove using this technique is O(

p
gn log g). (As far as I know, a tight bound on the length of the

shortest noncontractible cycle is still unknown.)

10.4 Greedy Tree-Cotree Decomposition

Djidjev [5] and Gilbert, Hutchinson, and Tarjan [8] independently proved that any graph embedded on
an orientable surface of genus g > 0 has a 2/3-separator of size O(pgn), which is optimal up to constant
factors. Removing the logarithmic factor from Hutchinson’s bound requires considering structures larger
than individual cycles. For any graph G = (V, E) embedded on a (possibly nonorientable) surface Σ of
Euler genus ḡ, we define the following greedy tree-cotree decomposition.

Let T be a breadth-first search tree rooted at an arbitrary vertex r. For each vertex v, let P(v)
denote the path in T from v to r, and let d(v) denote the length of this path. For any edge uv in G \ T ,
let `(uv) = d(u) + d(v) + 1. We inductively define sequences of edges e1, e2, . . . , eḡ and subgraphs
Q0, Q1, . . . ,Qḡ as follows. Let Q0 =∅. For any index i > 0, let ei = ui vi be an edge of minimum weight
`(ei) such that Σ \ (Q i−1 ∪ P(ui)∪ P(vi)∪ {ei}) is connected, and let Q i = Q i−1 ∪ P(ui)∪ P(vi)∪ {ei}.
Finally, let L = {e1, e2, . . . , e ḡ} and C = G \ (T ∪ L).

Alternately, we can define L and C directly in terms of the graph G in the following way. Let
H0 = (G \ T)∗. For each index i > 0, let ei be an edge of minimum weight `(ei) such that Hi−1 \ e∗i is
connected, and let Hi = Hi−1 \ e∗i . Finally, let L = {e1, e2, . . . , e ḡ} and C∗ = H ḡ . It should be clear from
this inductive definition that C∗ is a maximum spanning tree of (G \ T )∗, where the weight of any dual
edge e∗ is `(e).

It is not hard to prove that these two definitions are equivalent [7]. In particular, for any integer i,
the subgraph Hi is a retract of the surface Σ\Q i . Thus, for any edge uv, the graph Hi \(uv)∗ is connected
if and only if the surface Σ \ (Q i ∪ P(u)∪ P(v)∪ {uv}) is connected.
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Finally, Euler’s formula implies the subgraph Q := Q ḡ is a cut graph for Σ. In fact, Q is almost a
reduced cut graph; the root vertex r might have degree 1 in Q.

10.5 Surface Slicing

Now without loss of generality, assume that G is a triangulation. Define the depth of any edge or face to
be the maximum depth of its vertices. For any integers i and j, let G[i, j] be the subgraph of vertices
and edges whose whose depth lies in the interval [i, j], and let Σ[i, j] denote the surface composed of
vertices, edges, and faces whose depth lies in the interval [i, j].

For any integer 1 ≤ i ≤ ḡ, define di := d(ei), where ei is the ith edge in L, and define d0 = 0 and
d ḡ+1 =∞. For any integers i and j, let Q[i, j] := G[i, j]∩Qk, where dk ≤ j < dk+1.

Lemma 10.6. For any integers i ≤ j, the subgraph G[i, j] \Q[i, j] is planar.

Proof: Any subgraph of a planar graph is planar, so it suffices to consider the special case i = 0. Fix an
integer j, and let k be the integer such that dk ≤ j < dk+1 and therefore Q[0, j] =Qk. We will actually
prove that the surface Σ[0, j] \\Qk has genus 0.

A loop in a surface with boundary is essential if it is not homotopic to a separating cycle; in particular,
boundary cycles are inessential. Every surface with positive genus has at least one essential loop.

Suppose Σ[0, j] \\Qk has positive genus. Let ` be the shortest essential loop in Σ[0, j] \\Qk. Exactly
one edge e in ` does not lie in the breadth-first spanning tree T ∩ G[0, j]. Moreover, e is an edge of
minimum depth that defines an loop that is essential in Σ[0, j] \\Qk, and therefore is also essential in
Σ \\Qk. It follows that e = ek+1; but this is impossible, because d(e)≤ j < dk+1. �

For any integers 0≤ i < k, let D(i, k) denote the set of vertices whose depth mod k is equal to i:

D(i, k) := {v ∈ V | d(v)mod k = i}.

Removing the vertices in D(i, k) breaks G into several slices:

G \ D(i, k) =
⋃

a

G[i+ ak+ 1, i+ (a+ 1)k− 1].

Let Q(i, k) denote the corresponding subgraph of the cut graph Q:

Q(i, k) :=
⋃

a

Q[i+ ak+ 1, i+ (a+ 1)k− 1].

Finally, let S(i, k) denote the vertex set D(i, k)∪ V (Q(i, k)). Lemma 10.6 immediately implies that the
subgraph G \ S(i, k) is planar, for all i and k.

Lemma 10.7. For some integers i and k, the set S(i, k) contains at most 2
p

nḡ vertices.

Proof: Let v be an endpoint of an edge in L. The cut graph Q(i, k) contains the path from v to its
nearest ancestor in T that lies in D(i, k); this path has length (d(v)− i)mod k. Moreover, Q(i, k) is the
union of all 2 ḡ such paths. Thus, for any integer k, we have

k−1
∑

i=0

|V (G(i, k))| ≤
∑

v∈V (L)

k−1
∑

i=0

(d(v)− i)mod k = ḡk(k− 1) < ḡk2.
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Each vertex of G belongs to exactly one subset D(i, k), so

k−1
∑

i=0

D(i, k) = n.

We conclude that
k−1
∑

i=0

|S(i, k)| ≤ n+ ḡk2,

which implies that |S(i, k)| ≤ n/k + ḡk for some i. In particular, if we set k =
p

n/ ḡ, then we have
mini|S(i, k)| ≤ 2

p
nḡ. �

Corollary 10.8 (Eppstein [6]). Any n-vertex graph G embedded on a surface of Euler genus ḡ has a
2/3-separator S of size at most (2

p
ḡ +
p

8)
p

n. Moreover, each component of G \ S is planar.
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12(2):270–259, 1970.

[5] H. N. Djidjev. A separator theorem. Compt. Rend. Acad. Bulg. Sci. 34:643–645, 1981.

[6] D. Eppstein. Dynamic generators of topologically embedded graphs. Proc. 14th Ann. ACM-SIAM
Symp. Discrete Algorithms, 599–608, 2003.

[7] J. Erickson and K. Whittlesey. Greedy optimal homotopy and homology generators. Proc. 16th
Ann. ACM-SIAM Symp. Discrete Algorithms, 1038–1046, 2005.

[8] J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan. A separator theorem for graphs of bounded genus.
J. Algorithms 5(3):391–407, 1984.

[9] J. P. Hutchinson. On short noncontractible cycles in embedded graphs. SIAM J. Discrete Math.
1(2):185–192, 1988.

[10] P. Koebe. Kontaktprobleme der Konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys.
Kl. 88:141–164, 1936.

[11] R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM J. Applied Math.
36(2):177–189, 1979.

[12] K. Menger. Zur allgemeinen Kurventheorie. Fund. Math. 10:96–115, 1927.

[13] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Geometric separators for finite-element
meshes. SIAM J. Sci. Comput. 19(2):364–386, 1998.

6



Computational Topology (Jeff Erickson) References

[14] T. M. Przytycka and J. H. Przytycki. A simple construction of high representativity triangulations.
Discrete Math. 173:209–228, 1997.

[15] R. Rado. A theorem on general measure. J. London Math. Soc. 21(4):291–300, 1946.

[16] D. Spielman and S.-H. Teng. Disk packings and planar separators. Proc. 12th Ann. ACM Symp.
Comput. Geom., 349–358, 1996.

[17] W. P. Thurston. The Geometry and Topology of 3-Manifolds. Princeton University lecture notes, 1980.
〈http://www.msri.org/communications/books/gt3m〉.

c© Copyright 2009 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.illinois.edu/~jeffe/teaching/comptop/ for the most recent revision.

7

http://www.msri.org/communications/books/gt3m
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.illinois.edu/~jeffe/teaching/comptop/

	Graph Separators
	Planar Separators
	Planar Separators, Take 2
	Separators for Surface Graphs
	Greedy Tree-Cotree Decomposition
	Surface Slicing


