
Computational Topology (Jeff Erickson) Shortest Homotopic Paths

Oh! marvellous, O stupendous Necessity–by thy laws thou dost compel every effect to
be the direct result of its cause, by the shortest path. These [indeed] are miracles...

— Leonardo da Vinci, Codex Atlanticus (c. 1500)
translated by Jean Paul Richter (1883)

Those who cannot remember the past are condemned to repeat it.

— George Santayana, Reason in Common Sense (1905)

A straight line may be the shortest distance between two points,
but it is by no means the most interesting.

— The Doctor [Jon Pertwee], The Time Warrior (1973)

2 Shortest Homotopic Paths

2.1 A Few Definitions

Let X be any topological space. A path in X is a continuous function from the unit interval [0, 1] to X ,
and a cycle in X is a continuous function from the standard unit circle S1 := {(x , y) ∈ R2 | x2 + y2 = 1}
to X . A loop is a path whose endpoints coincide; this common endpoint is called the basepoint of the
loop. A path or cycle is simple if it is injective; a loop is simple if its restriction to [0, 1) is injective. We
refer to paths, cycles, and loops collectively as curves.

The Jordan-Schönflies Theorem states that for any simple cycle γ in the plane, there is a homeo-
morphism from the plane to itself whose restriction to S1 is γ. Thus, the image of any simple cycle
partitions the plane into two components, a bounded interior whose closure is homeomorphic to the
disk B2, and an unbounded exterior.

For any paths π and π′ with π(1) = π′(0), the concatenation π ·π′ is the path

(π ·π′)(t) :=

(

π(2t) if t ≤ 1/2,

π′(2t − 1) if t ≥ 1/2.

The reversal π of a path π is the path π(t) := π(1− t).
A path homotopy between paths π and π′ is a continuous function h: [0,1]× [0,1] → X such

that h(0, t) = π(t) and h(1, t) = π′(t) for all t, and h(s, 0) = π(0) = π′(0) and h(s, 1) = π(1) = π′(1)
for all s ∈ [0,1]. (We will omit the word ‘path’ when it is clear from context.) For all t ∈ [0,1], the
function s 7→ h(s, t) is a path from π(0) to π(1). Two paths π and π′ are (path) homotopic if there
is a path homotopy between them; we write π ' π′ to denote that π and π′ are homotopic. Tedious
definition-chasing implies that ' is an equivalence relation. We refer to the equivalence classes as
homotopy classes, and write [π] to denote the homotopy class of path π.

A homotopy between two paths. A homotopy from a contractible loop to its basepoint.

We call a loop ` is contractible if it is path-homotopic to the constant path mapping the entire
interval [0, 1] to the basepoint `(0). Two paths π and π′ with the same endpoints are homotopic if and
only if the loop π ·π′ is contractible. A connected topological space X is simply connected if every loop
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in X is contractible. For example, the plane and the sphere are both simply connected, but the annulus
and the torus are not.

A covering map is a continuous surjection p : X̂ → X such that any point x ∈ X has an open
neighborhood U whose preimage p−1(U) can be written as the union of disjoint open sets

⊔

i∈I Ui , and
the restriction of p to each set Ui is a homeomorphism to U . If there is a covering map from a space X̂
to another space X , we call X̂ a covering space of X . As a trivial example, X is a covering space of X ,
with the identity function (or any homeomorphism) as the covering map. We implicitly consider only
connected covering spaces, to avoid trivial cases like the disjoint union of several copies of X .

The local behavior of every covering map. The infinite strip is the universal cover of the annulus.

The universal covering space X̃ of X is the unique simply-connected covering space of X . If X̂
is a connected covering space of X , then X̃ is also a (universal) covering space of X̂ . The universal
covering space X̃ can be described as the set of all homotopy classes of paths starting at an arbitrary
fixed basepoint x ∈ X :

X̃ := {[π] | π: [0,1]→ X and π(0) = x}.

(The choice of basepoint is not important; different basepoints lead to homeomorphic covering spaces.)
The associated covering map p : X̃ → X maps any homotopy class to its final endpoint: p([π]) = π(1).
For example, the plane is its own universal covering space, as is the sphere. The universal cover of the
closed annulus {(x , y) | 1≤ x2+ y2 ≤ 2} is homeomorphic the infinite strip {(x , y) | 1≤ x ≤ 2}.

2.2 Shortest (Homotopic) Paths in Polygons

The shortest homotopic path problem can be described as follows. The input consists of a topological
metric space X , along with a path π in X , and the desired output is a path π̄ of minimum length that is
homotopic to π.

In this lecture we consider an algorithm for a concrete special case of this problem, originally due to
Hershberger and Snoeyink [6]. We call a curve in the plane polygonal if its image is the union of a finite
number of line segments. A (simple) polygon is the closure of the interior of a simple polygonal closed
curve; when we want to emphasize the curve itself, we refer to the boundary of the polygon. The input
to our algorithm is a simple polygon P and a polygonal path π (which may not be simple). Let n denote
the number of edges of P, and let k denote the number of segments in π.

The Jordan-Schönflies theorem implies that P is homeomorphic to a disk; it follows easily that P is
simply connected. Thus, the shortest path π̄ homotopic to π is just the shortest path in P from π(0) to
π(1). Nevertheless, we will approach this special case as though its topology were nontrivial, because it
illustrates important concepts that are useful in more general settings.
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Without loss of generality, we will assume that the input polygon P has been triangulated. A
triangulation of P is a decomposition of P into a finite set of triangles, such that every triangle vertex is
a vertex of P, and the intersection of any two triangles is either an edge of both, a vertex of both, or the
empty set. (A polygon triangulation is a simple example of a simplicial complex.)

Any simple polygon with n edges can be triangulated in O(n) time [1, 3]; however, the hidden
constants are large, and the algorithms are so complicated that they have no hope of being implemented.
There are much simpler randomized algorithms with expected running time O(n log∗ n) that are almost
certainly more efficient in practice [4, 5, 8].
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A labeled polygon triangulation A path with crossing sequence
DEFGGHIJKKJIMNUVWWVUOPQRSSRQPOVWXYZZY

2.2.1 Crossing Sequences

The first step of the algorithm is to compute the crossing sequence of the input path π, which we
denote X (π). This is the sequence of diagonals that a point moving continuously along π crosses; we
associate a unique label with each diagonal in the input triangulation. (We define ‘cross’ exactly as in
the point-in-polygon algorithm; in particular, we need to be careful when a vertex of π lies directly on
a diagonal of the triangulation.) Let x denote the number of symbols in the crossing sequence. Each
segment of π crosses each diagonal in the triangulation at most once, so x = O(nk).

2.2.2 Reduction

Next the algorithm reduces the crossing sequence by repeatedly removing any adjacent pairs of the same
label. Intuitively, reducing the crossing sequence mirrors a homotopy of the input path that reduces the
length of the path, and therefore the number of edge crossings. For example, we can reduce the crossing
sequence in the figure above as follows:

DEFGGHIJKKJIMNUVWWVUOPQRSSRQPOVWXYZZY

→ DEFHIJJIMNUVVUOPQRRQPOVWXYY

→ DEFHIIMNUUOPQQPOVWX

→ DEFHMNOPPOVWX

→ DEFHMNOOVWX

→ DEFHMNVWX

The reduction step is more formally justified by the following lemma. Recall that π̄ is the path we
are trying to compute: the shortest path homotopic to π.

Lemma 2.1. Reducing the crossing word X (π) yields the crossing word X (π̄).
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DEFGGHIJKKJIMNUVWWVUOPQRSSRQPOVWXYZZY → DEFHIJJIMNUVVUOPQRRQPOVWXYY → DEFHIIMNUUOPQQPOVWX → ·· ·

Proof: Call a string reduced if it contains no repeating pairs, and call two strings equivalent if we can
transform one into the other by a sequence of insertions and deletions of repeating pairs. The lemma
follows from three observations:

First, any two homotopic paths have equivalent crossing sequences. As we continuously deform one
path to the other, the crossing sequence changes only at certain discrete critical values and only by the
insertion or deletion of repeating pairs. It is absolutely crucial here that the vertices of the triangulation
all lie on the boundary of P.

Second, every string is equivalent to exactly one reduced string, called its reduction. An easy
induction argument implies that any two equivalent strings have the same reduction. Thus, any two
homotopic paths have the same reduced crossing word.

Finally, if π crosses any edge e twice in a row, we can make π shorter by homotoping the subpath
between the two crossing points onto e. We conclude that the crossing sequence of π̄ is reduced. �

The crossing word can be reduced in O(x) time using the following algorithm. Here, • is a special
sentinel symbol that is different from every edge label.

REDUCE(X [1 .. x]):
x̄ ← 0
X̄ [0]← •
for i← 1 to x

if X [i] = X̄ [ x̄]
x̄ ← x̄ − 1 〈〈pop〉〉

else
x̄ ← x̄ + 1
X̄ [ x̄]← X [i] 〈〈push〉〉

return X̄ [1 .. x̄]

We can also characterize the reduced crossing sequence in terms of parity. For any diagonal edge e,
the Jordan Curve Theorem implies that P \ e has exactly two components. If an edge label e occurs an
odd number of times in X (π), then π(0) and π(1) lie in different components of P \ e; thus any path
from π(0) to π(1) must cross e, and the shortest path must cross e exactly once. On the other hand, if
an edge label e occurs an even number of times in X (π), then π(0) to π(1) are in the same component
of P \ e, so that shortest path π̄ does not cross e at all. Thus, the reduced crossing sequence X̄ contains
precisely the edge labels that appear an odd number of times in X (π); moreover, these labels are sorted
by their first (or last) occurrence in X (π).

2.2.3 Sleeve

Let X̄ denote the reduced crossing sequence, and let x̄ denote its length. With X̄ in hand, we can restrict
our attention to a subset of the triangles. The crossing sequence defines a sequence of x̄ + 1 triangles,
starting with the triangle containing π(0) and ending with the triangle containing π(1). The sleeve of X̄
is constructed by gluing together copies of the triangles in this sequence along their common edges.

4



Computational Topology (Jeff Erickson) Shortest Homotopic Paths

A
B

C
D

E
F

G H
I
J

KL

M N
O

P

Q

R

S

T

U
V W

X Y

Z

The sleeve for the reduced crossing word DEFHMNVWX.

If x̄ = 0, the sleeve consists of a single triangle, and the shortest path from π(0) to π(1) is a simple
line segment. So assume from now on that x̄ > 0. We can clearly construct the sleeve in O( x̄) time.
Lemma 2.1 implies that π̄ is the shortest path within the sleeve from π(0) to π(1).

2.2.4 Funnel

Finally, we compute this shortest path using an algorithm independently proposed by Chazelle [2] and
by Lee and Preparata [7]. The funnel of any diagonal e of the sleeve is the union of shortest paths from
π(0) to all points on e. The funnel consists of a polygonal path, called the tail, from π(0) to a point a
called the apex, plus a simple polygon called the fan. The tail may be empty, in which case π(0) is the
apex. The fan is bounded by the edge e and two concave chains joining the apex to the endpoints of e.
The shortest path from π(0) to either endpoint of e consists of the tail plus one of the concave chains
bounding the fan. Extending the edges of the concave chains to infinite rays defines a series of wedges,
which subdivide not only the fan but the triangle just beyond e.

tail
apex

fan
e

tailtailtail
apexapexapex

fanfanfan

Anatomy of a typical funnel.

Beginning with a single triangle joining π(0) to the first edge in X̄ , we extend the funnel through the
entire sleeve one diagonal edge at a time. Each diagonal edge shares one endpoint with the previous
edge; suppose we are extending the funnel from edge uv to edge vw. There are two cases to consider.

Let t be the predecessor of u on the shortest path from π(0) to u. If the points v and w lie on
opposite sides of the ray −→ut, then the new endpoint w does not lie inside any wedge of the current fan.
We can detect this case in O(1) time with a single orientation test, and then extend the tunnel in O(1)
time by inserting w as a new fan vertex.

Otherwise, we contract the funnel, intuitively by moving u continuously along the boundary edge uw.
Each time the point crosses the boundary of a wedge, we remove a vertex from the fan. If the removed
vertex is the apex, its successor on the shortest path from π(0) to v becomes the new apex, and the tail
grows by an edge. We can detect whether the moving point will cross any wedge boundary in O(1) time
using our standard orientation test. Thus, the total time in this case is O(d + 1), where d is the number
of vertices deleted from the fan. However, the total number of deleted vertices cannot exceed the total
number of previously inserted vertices, so the amortized time to process this case is also O(1).
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Extending and widening the funnel.

Extending and narrowing the funnel; the apex moves in the fourth step.

2.2.5 Conclusion

When the funnel has reached the last edge in X̄ , we compute the shortest path from π(0) to π(1) in the
sleeve by treating π(1) as a triangle vertex and extending the funnel one last time. Thus, assuming the
polygon is already triangulated, the overall time to compute the shortest path is O(x + x̄) = O(x) =
O(nk).

In an actual implementation, it is not necessary to separate the algorithm into separate crossing
sequence, reduction, sleeve, and funnel phases. Instead, it is possible to compute the tree of shortest
paths from π(0) to every vertex of every triangle crossed by the input path π in O(x) time using single
transversal of π, after which the shortest homotopic path to π(1) can be extracted in O( x̄) time.

2.3 Shortest Homotopic Paths in Polygons with Holes

Hershberger and Snoeyink [6] actually solve the shortest homotopic path problem for a much more
general class of spaces than simple polygons. A polygon with holes is a connected planar region whose
boundary consists of two or more disjoint simple polygonal closed curves. One of these curves is the
outer boundary of P. The other curves all lie in the interior of the outer boundary and have disjoint
interiors, which are called the holes of P. Unlike simple polygons, polygons with holes are never simply
connected; in particular, the boundary of any hole is non-contractible.
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Surprisingly, the shortest homotopic path algorithm for simple polygons can be applied to polygons
with holes with (almost) no modifications! As before, let n denote the number of edges in P, and let K
denote the number of segments in π.

• As in the previous section, we assume that we are given a triangulation of P, with all triangle
vertices on the boundary of P. Otherwise, we can triangulate P in O(n log n) time, or even in
O(n log∗ n+ h log n) expected time, where h is the number of holes [8]. This is the only change in
the algorithm or its running time.

• We can still compute the crossing sequence X (π) in O(x) time, where x = O(kn) is the number of
crossings.

• We can still reduce the crossing sequence in O(x) time, using the same algorithm. The proof
of Lemma 2.1 never used the fact that P is simply-connected, so the lemma applies without
modification to polygons with holes. We emphasize that the reduced crossing sequence X̄ can still
contain the same edge label more than once, just not twice in succession.

• We can still compute the sleeve of X̄ in O( x̄) time, where x̄ is the length of X̄ . Each time a path
following X̄ enters a triangle, we add a new copy of that triangle to the evolving sleeve. Thus,
if a reduced path enters the same triangle five times, the resulting sleeve contains five different
copies of that triangle. The sleeve is no longer a triangulated simple polygon; however, it is still
homeomorphic to a disk. Moreover, if we represent the sleeve as a linked list of triangles, any
self-overlaps are simply irrelevant.
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A reduced path in a polygon with two holes, with and the resulting non-simple sleeve.
The crossing sequence of the path is UTS21ZYWVTSRQPJIHGFCBDEKLMNOJ.

• We can still compute the shortest path in the sleeve using the funnel algorithm in O( x̄) time. Even
in this more general setting, the fan is always a simple polygon, and so each extension step can be
carried out exactly as described. The tail may intersect itself or the fan any number of times, but
the algorithm won’t notice.

• The running time of the algorithm, assuming the input space is triangulated, is still O(x + x̄) =
O(x) = O(nk).

Another useful way to think about the behavior of the algorithm is that it cannot distinguish between
the original polygon with holes P and its universal cover P̃. The correspondence between homotopy
classes of paths and reduced crossing sequences implies the following description of P̃ in terms of the
triangulation of P. We describe an infinite triangulation of P̃ by listing its constituent triangles and then
declaring which pairs of edges should be identified.

Fix an arbitrary basepoint p ∈ P. Call a string X of edge labels legal if it is the reduced crossing
sequence of a path πX with πX (0) = p. For each legal string X , let ∆X denote a unique copy of the
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triangle containing πX (1). Each triangle ∆ lifts to an infinite number of triangles ∆X , one for each
reduced crossing sequence ending in ∆. If X and Y are legal strings with Y = X e, the triangles ∆X
and ∆Y each contain a copy of edge e on their boundary; call these copies eX and eY .

The universal cover P̃ is obtained from the disjoint union of all triangles ∆X by identifying
all pairs of edges eX and eY such that X = Ye for some edge e.

The choice of basepoint is unimportant; different basepoints induce different legal crossing sequences
and therefore differently labeled triangles, but the resulting infinite triangulations are isomorphic.

The resulting triangulation of P̃ is infinite, but this is not a problem—our shortest (homotopic) path
algorithm only examines the finite set of triangles that intersect the input path π.

We can also describe the transformation from P to P̃ strictly in terms of crossing sequences. In
any crossing sequence X , call two edge labels X [i] and X [ j] equivalent if the substring X [i .. j] is
equivalent to the empty string. For example, in the crossing sequence ABCCCBCABCCBACBBC, we can
indicate equivalent labels with subscripts: A1B1C1C1C1B2C2A2B3C3C3B3A2C2B2B2C2. Then the reduced
crossing sequence is simply the subsequence of distinct labels that occur an odd number of times, in
order by their first occurrence, exactly as in the simply polygon case. For example, the crossing sequence
A1B1C1C1C1B2C2A2B3C3C3B3A2C2B2B2C2 reduces to A1B1C1B2C2 = ABCBC. Nonequivalent labels that refer
to the same edge ‘really’ refer to two different lifts of that edge in the universal cover.
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