
Computational Topology (Jeff Erickson) Shortest Noncontractible Cycles

A tie is a noose, and inverted though it is,
it will hang a man nonetheless if he’s not careful.

— Yann Martel, Life of Pi (2001)

(written:) Yakka foob mog. Grug pubbawup zink wattoom gazork. Chumble s̈puzz.
(spoken:) I love loopholes.

— Calvin, explaining Newton’s First Law of Motion ‘in his own words’
Bill Watterson, Calvin and Hobbes (January 9, 1995)

8 Shortest Noncontractible Cycles

In this lecture, I’ll describe several algorithm to compute the shortest noncontractible cycle in a combi-
natorial 2-manifold. The input is a cellularly embedded graph G on a 2-manifold Σ (or equivalently, a
polygonal schema for Σ) with non-negatively weighted edges, and our goal is to compute a cycle in G of
minimum length that is not contractible in Σ.

This problem has several natural motivations. the length of the shortest non-contractible cycle. In
topological graph theory, the length of the shortest non-contractible cycle in an embedded graph is called
the handle girth [1] or edge-width of the embedding [15, 18]; graphs that have embeddings with large
edge-width share many useful combinatorial properties with planar graphs. A closely related concept is
the face-width or representativity of a graph embedding, which is the minimum number of faces of G
intersecting a noncontractible cycle on the surface, or equivalently, half the edge-width of the radial
graph G� [17]. The length of the shortest noncontractible cycle in a Riemannian manifold is called
the systole (to be more specific, the homotopy 1-systole) of the manifold [2]. Shortest non-contractible
cycles are good indicators of topological noise of geometric surface models reconstructed from point
clouds or volume data.

The algorithms described below all require that edge weights are non-negative. We treat the graph
as a continuous metric space, where the edge weights represent distance. I will assume throughout the
lecture that the shortest path between any two vertices of the graph is unique; this assumption can be
enforced if necessary using standard perturbation schemes. However, we do not assume that the edge
weights satisfy the triangle inequality.1

8.1 Thomassen’s 3-Path Property

The first efficient algorithm to compute shortest non-contractible cycles is an easy consequence of the
following observation of Thomassen [18].

Lemma 8.1. Let x and y be two points on a surface Σ, and let α,β ,γ be paths in Σ from x to y . If the
loops α · β̄ and β · γ̄ are contractible, then the loop α · γ̄ is also contractible.

Proof: The concatenation of any two contractible loops is contractible. �

Corollary 8.2. Let σ be the shortest non-contractible cycle in a surface Σ. Any pair of antipodal points
points partition σ into two equal-length shortest paths.

Proof: Fix a pair x and x̄ of antipodal points in σ. These points clearly partition σ into two equal-length
paths; call these paths α and β . Suppose α and β are not shortest paths, and let γ be a shortest path
from x to x̄ . The cycles α · γ̄ and β · γ̄ are both shorter than α · β̄ = σ and thus are contractible. But
then the 3-path property implies that σ is contractible, contradicting its definition. �

1Alternately, we can enforce the triangle inequality by splitting every edge of weight w into two edges of weight w/2.

1

Computational Topology (Jeff Erickson) Shortest Noncontractible Cycles

Thomassen’s 3-path property implies the following O(n3)-time algorithm to find the shortest non-
contractible cycle. The cycle must consist of a shortest path from a vertex x to another vertex y, the
edge yz, and the shortest path from z back to x . There are only O(n2) cycles of this form. We compute
the distance between every pair of vertices in O(n2 log n) time by running Dijkstra’s algorithm n times,
after which we can compute the length of each candidate cycle in O(1) time. Finally, we for candidate
loop `, we test whether ` is contractible in O(n) time, as described in the next paragraph. Finally, we
return the shortest candidate cycle that is noncontractible.

Each candidate loop ` has the form π · `′ · π̄, for some (possibly empty) path π and simple loop `′.
Thus, we only need to test simple loops for contractibility; this simplifies the algorithm considerably. First
we perform a whatever-first search2 of the dual subgraph G∗ \ `∗. If this dual subgraph is connected,
then the surface Σ \ ` is also connected, so ` is non-contractible. If Σ \ ` has two components, we
can compute the Euler characteristic of each component in O(n) time. If either component has Euler
characteristic 1, that component must be a disk, and ` is contractible. Otherwise, ` is noncontractible.

8.2 Mixing Dijkstra with Contractibility Tests

Sariel Har-Peled and I [9] found a faster algorithm to compute the shortest non-contractible cycle,
by interleaving the shortest-path computations and the tests for contractibility. (We were unaware of
Thomassen’s results.)

For any vertex x , we can compute the shortest non-contractible loop with basepoint x in O(n log n)
time, as follows. We grow a shortest-path tree from x via Dijkstra’s algorithm. Whenever the wavefront
meets itself (without loss of generality) in the interior of an edge e, we check whether the loop γ defined
by e is contractible, by performing simultaneous whatever-first searches on either side of γ. If the two
searches meet, then γ is nonseparating and therefore noncontractible. If one search ends before the
other, then γ is separating. In this case γ is contractible if and only if the Euler characteristic of the
component we just searched is either 1 or χ − 1. If γ is contractible, we can discard the contractible
component of Σ \ γ. The complexity of the discarded subgraph is more than the running time of the
whatever-first search. Thus, the total time spent in all such searches is only O(n); this is dominated by
the O(n log n) time required to grow the shortest-path tree.

Theorem 8.3. The shortest non-contractible cycle in a combinatorial surface with complexity n can be
computed O(n2 log n) time.

8.3 The Annulus

The algorithm just described is the fastest known for arbitrary surfaces. However, faster algorithms
are known for surfaces with small genus; these are all based on a second straightforward corollary of
Thomassen’s 3-path property.

Corollary 8.4. Let σ be the shortest non-contractible cycle in a surface Σ. Any shortest path in Σ
crosses σ at most once.

Proof: Suppose some shortest path π crosses σ more than once. Fix two vertices x and y in different
components of π∩σ. These vertices partition σ into two paths; call these paths α and β . Finally, let γ
denote the subpath of π from x to y; this is also the shortest path from x to y . The cycles α · γ̄ and β · γ̄
are both shorter than α · β̄ = σ and thus are contractible. But then the 3-path property implies that σ is
contractible, contradicting its definition. �

2Depth-first, breadth-first, random-first, whatever.

2

Computational Topology (Jeff Erickson) Shortest Noncontractible Cycles

Itai and Shiloach [12] first observed this corollary for the special case of an annulus, which is a
disk minus a smaller disk. Specifically, let π be the shortest path between a vertex on one boundary
cycle of the annulus to a vertex on the other boundary cycle. Itai and Shiloach proved that the shortest
noncontractible cycle σ crosses π exactly once. It follows that σ is homotopic to both boundary cycles
of the annulus.

Let G \\π denote the planar graph obtained from G by cutting along the path π, transforming the
underlying annulus Σ into a disk, the closure of Σ\π.3 The path π in G becomes two paths π[and π] in
G \\π, and every vertex and edge of π appears twice in G \\π. (In our proof of the surface classification
theorem, we cut the surface along a loop.)

Itai and Shiloach observe that the shortest noncontractible cycle σ appears as the shortest path from
x [to x], for any vertex x in the subpath π ∩σ. Thus, to find σ, it suffices to find the shortest path
between every corresponding pair of nodes in G \\π. Each shortest path can be found in O(n log n) time
via Dijkstra’s algorithm, so the overall running time of Itai and Shiloach’s algorithm is O(n2 log n).

x x♭ x♯

The shortest noncontractible cycle in G becomes a shortest path between clones in G \\π.

Reif [16] improved Itai and Shiloach’s algorithm by adopting the following divide-and-conquer
strategy. In an initialization phase, we compute the shortest paths in G \\π from each endpoint of π[to
the corresponding endpoint of π]. Call these paths τ and β (for ‘top’ and ‘bottom’); no other shortest
path from π[to π] crosses τ or β , so we can safely consider only the component of (G \\π) \\τ \\β that
contains the paths π[and π]. This subgraph H is the initial input to Reif’s recursive algorithm.

The recursive algorithm has two cases:

• Suppose H has an articulation vertex: a vertex z that lies on every path from π[to π]. In this
case, we compute a shortest path tree rooted at z using Dijkstra’s algorithm. Then for every vertex
x [in π[, we can compute the length of the shortest path from x [to x] in O(1) time. This case
requires O(n log n) time altogether.

• Suppose H has no articulation vertex. In this case, we find the median vertex x [in π[, and compute
the shortest path πx from x [to x] in H using Dijkstra’s algorithm. We then recursively consider
each component of H \\πx as an independent subproblem.

To help determine whether H has an articulation vertex, we mark every vertex of τ as a ‘top’ vertex
and every vertex of β as a ‘bottom’ vertex. A vertex is marked both ‘top’ and ‘bottom’ if and only if it is
an articulation vertex. In the second case, we mark each copy of each vertex of πx as ‘top’ or ‘bottom’ in
the appropriate subproblem. This marking requires at most O(n) time, and allows us to distinguish the
two cases in later recursive calls in O(1) time.

Assume that every face of H (except possibly the outer face) is a triangle; add infinite-weight edges
if necessary. If H has an articulation vertex, the running time is clearly O(n log n). Otherwise, H must
have at least n/3 = Ω(n) faces. Let T(n, k) denote the running time of Reif’s algorithm in this case,

3Cabello and Mohar [4, 6] introduced the notation G Qπ, which is more evocative but too hard to write on the blackboard.

3

Computational Topology (Jeff Erickson) Shortest Noncontractible Cycles

given a combinatorial disk with n faces, where the boundary paths π[and π] each have k edges. This
function satisfies the recurrence

T (n, k)≤ O(n log n) + T (n1, k/2) + T (n2, k/2)

for some non-negative integers n1 and n2 with n1+ n2 = n. (The O(n log n) term absorbs the possibility
that one or both recursive subproblems has an articulation point.) It is easy to prove by induction that
T(n, k) = O(n log n log k). Because k = O(n) initially, the overall running time of Reif’s algorithm is
O(n log2 n).

Theorem 8.5. The shortest non-contractible cycle in a combinatorial annulus with complexity n can be
computed O(n log2 n) time.

Frederickson [10] improved the running time of Reif’s algorithm to O(n log n) using balanced
separator hierarchies (which we will see later in the semester) and very careful analysis. Several other
O(n log n)-time algorithms are now known for this problem [11, 13, 3, 8].

8.4 Cutting and Gluing with Shortest Paths

Corollary 8.4 was used by Cabello and Mohar [4, 6] to derive algorithms to find shortest non-contractible
cycles in any surface of fixed genus in subquadratic time. In this section, I’ll describe an algorithm of
Kutz [14] to find the shortest non-contractible cycle in time ḡO(ḡ)n log n, where ḡ = 2−χ is the Euler
genus of the underlying surface Σ.

Recall that a tree-cotree decomposition (T, L, C) of a surface graph G is a partition of the edges into
three disjoint subsets: a spanning tree T of G, a spanning cotree C of G / T (the dual of a spanning
tree C∗ of G∗ \ T ∗), and the leftover edges L = G \ (C ∪ T). For any tree-cotree decomposition (T, L, C),
the subgraph T ∪ L = G \ C inherits a cellular embedding from G that has exactly one face. Equivalently,
if Σ is the underlying surface, the complement Σ \ (T ∪ L) is homeomorphic to an open disk. We call any
subgraph with these properties a cut graph.

Now suppose T is a shortest-path tree rooted at some vertex x in G. For each leftover edge e ∈ L,
let γe denote the unique cycle in the graph T ∪ {e}. Finally, let R= ∪e∈Lγe. The subgraph R is also a cut
graph; moreover, because R has no vertices of degree less than 1, we call X a reduced cut graph. R can
also be defined as the result of repeatedly ‘shaving’ vertices of degree 1 from the cut graph T ∪ L.

Lemma 8.6. R is the union of O(ḡ) edge-disjoint shortest paths in G (possibly ending in the interiors of
edges), where ḡ is the Euler genus of Σ.

Proof: Recall that the number of edges in L is equal to the Euler genus ḡ. Within each edge e in L (in
fact, each edge in G \ T), there is an interior point pe that has two shortest paths to x . Split every edge e
of L at the corresponding point pe; this transforms the reduced cut graph R into a tree TR. This tree has
at most 2 ḡ + 1 leaves (possibly including x), and therefore at most 2 ḡ nodes with degree greater than 2.
These nodes (and x) subdivide TR into at most 4 ḡ + 1 shortest paths. �

Now we can think of Σ \\ R as a polygonal schema for the surface Σ, whose O(ḡ) sides are shortest
paths. Give each side of this schema a unique label. The crossing sequence of the shortest noncon-
tractible cycle σ is the (circular) sequence of labels of shortest paths in R that σ crosses. Corollary 8.4
implies that each label appears in this crossing sequence at most once.

Kutz’s algorithm enumerates all crossing sequences that use each label at most once and finds the
shortest cycle with each crossing sequence. There are clearly at most ḡO(ḡ) candidate crossing sequences,

4

Computational Topology (Jeff Erickson) References

which can be enumerated in constant time each. For each candidate crossing sequence X , we assemble
an annulus AX by gluing together k copies of Σ \\R along the corresponding shortest paths. This annulus
has complexity O(ḡn), and we can construct it in O(ḡn) time. The shortest cycle σX with crossing
sequence x is the projection of the shortest noncontractible cycle in AX back into G. Thus, we can
compute σX in O(ḡn log n) time using the Reif-Frederickson algorithm.

However, not all crossing sequences induce noncontractible cycles; consider, for example, the crossing
sequence of a cycle around a high-degree vertex of R. Fortunately, this is easy; we can use Dey and
Guha’s modification of Dehn’s algorithm [7] to test whether any (and thus every) cycle with crossing
sequence X is contractible in O(ḡ) time. (Crossing sequences are just the dual of traversal sequences!)

Theorem 8.7. The shortest non-contractible cycle in a combinatorial surface with complexity n and
Euler genus ḡ can be computed ḡO(ḡ)n log n time.

Cabello and Chambers described an algorithm that finds the shortest noncontractible cycle in
O(g3n log n) time, using more advanced data structures [5]. This is the fastest published algorithm for
surfaces of small genus.

References

[1] M. O. Albertson and J. P. Hutchinson. The independence ratio and genus of a graph. Trans. Amer.
Math. Soc. 226:161–173, 1977.

[2] M. Berger. What is... a systole? Notices Amer. Math. Soc. 55(3):374–376, 2008.

[3] G. Borradaile and P. Klein. An O(n log n) algorithm for maximum st-flow in a directed planar
graph. J. ACM 56(2), 2009.

[4] S. Cabello. Many distances in planar graphs. Proc. 17th Ann. ACM-SIAM Symp. Discrete Algorithms,
1213–1220, 2006.

[5] S. Cabello and E. W. Chambers. Multiple source shortest paths in a genus g graph. Proc. 18th Ann.
ACM-SIAM Symp. Discrete Algorithms, 89–97, 2007.

[6] S. Cabello and B. Mohar. Finding shortest non-separating and non-contractible cycles for topologi-
cally embedded graphs. Discrete Comput. Geom. 37:213–235, 2007.

[7] T. K. Dey and S. Guha. Transforming curves on surfaces. J. Comput. System Sci. 58:297–325, 1999.

[8] J. Erickson. Maximum flows and parametric shortest paths in planar graphs. Proc. 21st ACM-
SIAM Symp. Discrete Algorithms, p. to appear, 2010. 〈http://compgeom.cs.uiuc.edu/~jeffe/pubs/
parshort.html〉.

[9] J. Erickson and S. Har-Peled. Optimally cutting a surface into a disk. Discrete Comput. Geom.
31(1):37–59, 2004.

[10] G. N. Frederickson. Fast algorithms for shortest paths in planar graphs with applications. SIAM J.
Comput. 16(6):1004–1004, 1987.

[11] M. R. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algorithms for planar
graphs. J. Comput. Syst. Sci. 55(1):3–23, 1997.

[12] A. Itai and Y. Shiloach. Maximum flow in planar networks. SIAM J. Comput. 8:135–150, 1979.

5

http://compgeom.cs.uiuc.edu/~jeffe/pubs/parshort.html
http://compgeom.cs.uiuc.edu/~jeffe/pubs/parshort.html

Computational Topology (Jeff Erickson) References

[13] P. Klein. Multiple-source shortest paths in planar graphs. Proc. 16th Ann. ACM-SIAM Symp. Discrete
Algorithms, 146–155, 2005.

[14] M. Kutz. Computing shortest non-trivial cycles on orientable surfaces of bounded genus in almost
linear time. Proc. 22nd Ann. ACM Symp. Comput. Geom., 430–438, 2006.

[15] B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins University Press, 2001.

[16] J. Reif. Minimum s-t cut of a planar undirected network in O(n log2 n) time. SIAM J. Comput.
12:71–81, 1983.

[17] N. Robertson and P. D. Seymour. Graph minors. VII. Disjoint paths on a surface. J. Comb. Theory
Ser. B 45(2):212–254, 1988.

[18] C. Thomassen. Embeddings of graphs with no short noncontractible cycles. J. Comb. Theory Ser. B
48(2):155–177, 1990.

c© Copyright 2009 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.illinois.edu/~jeffe/teaching/comptop/ for the most recent revision.

6

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.illinois.edu/~jeffe/teaching/comptop/

	Shortest Noncontractible Cycles
	Thomassen's 3-Path Property
	Mixing Dijkstra with Contractibility Tests
	The Annulus
	Cutting and Gluing with Shortest Paths

