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The infinite possibilities that each day holds should stagger the mind. The sheer number of
experiences | could have is uncountable, breathtaking, and I’'m sitting here refreshing my
inbox. We live trapped in loops, reliving a few days over and over, and we envision only a few
paths laid out ahead of us. We see the same things each day, respond the same way, we think
the same thoughts, every day a slight variation on the last, every moment smoothly following
the gentle curves of societal norms. We act like if we just get through today, tomorrow our
dreams will come back to us.

— Randall Munroe, “Dreams”, http://xkcd.com/137/

7 Homotopy of Curves on Surfaces

In this lecture, we’ll see efficient algorithms to determine whether a given loop £ on a given 2-manifold &
is contractible. (We previously considered this problem for polygons with holes in the plane.) To make
the problem concrete, we assume that X is represented by a polygonal schema IT with complexity n,
and / is a closed walk of length k in the induced embedded graph G or its dual G*. After developing
some necessary mathematical tools, I will describe a classical algorithm of Dehn [3] for the special case
when G is a system of loops, which runs in O(k) time. Dehn’s algorithm and its later generalizations are
the foundation of geometric group theory. Next I will describe a simple extension of Dehn’s algorithm to
more general schemata that runs in O(gn + g2k) time for surface of genus g. Finally, following a result
of Dey and Guha [4], I will show how to improve the running time to O(n + k).

Let X be a fixed, compact, connected 2-manifold. For most of the lecture, for reasons that will
become clear, I will assume that y(3) < 0; thus, X is not the sphere, the projective plane, the torus, or
the Klein bottle. I will briefly reconsider these surfaces at the end of the lecture.

7.1 The Fundamental Group

Recall the following definitions from Lecture 2. A path in ¥ is a continuous function 7: [0,1] — X. The
concatenation 7 - o of two paths 7 and o with (1) = ¢(0) is the path

(- 7)(0) = m(2t) %ftSl/Z,
o(2t—1) ift>1/2.
The reversal of a path 7 is the path 7(t) := 7(1 — t). We easily observe that T-0 =7 - 7.

A loop is a path © whose endpoints coincide; this common endpoint is the loop’s basepoint. The
concatenation of two loops is a loop, and the reversal of a loop is a loop.

A (path) homotopy between paths © and 7’ is a continuous function h: [0,1] x [0,1] — X such
that h(0, t) = n(t) and h(1,t) = 7/(t) for all t, and h(s,0) = 7(0) = =’(0) and h(s,1) = ©(1) = 7’(1)
for all s € [0,1]. Two paths t and =’ are homotopic, written 7 ~ 7/, if there is a homotopy between
them. A loop is contractible if it is homotopic to a constant path at its basepoint.

Homotopy is an equivalence relation; we write [7r] to denote the homotopy class of a path 7. In
particular, we write [x] to denote the homotopy class of contractible loops with basepoint x. We can
extend concatenation and reversal to homotopy classes by defining m =[m]and [n]-[o]=[n-0o].
The following lemma implies that these operations are well-defined; the proof is an easy exercise.

Lemma 7.1. The following invariants hold for all paths rt, 7', 0,0’ in .:
(a) If t~0,thenTT~0.
(b) Ift~n"ando ~o', thenm-c~n'-0’.
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For any point x € X, the set of homotopy classes of loops based at x define a group, with concate-
nation as the group operation, [x] as the identity element, and reversal as the inverse operation. This
group is called the fundamental group of X (based at x) and denoted 7,(X, x). To verify the group
structure, we must check that concatenation is associative and that inverses behave correctly; again, the
proof is an easy exercise.

Lemma 7.2. The following invariants hold for all Ioops ¢, ¢’, and ¢ in > with basepoint x.

(a) [€]-[€]=[]-[€]=[x]
(b) [x]-[]=1[C]- [XJ [f]
(@ ([e1-1¢']) - [e"1=[e]- (L7~ [e7)

The fundamental group is not necessarily abelian; £ - £’ and £’ - £ may not be homotopic.

7.2 Group Presentations

We can derive an explicit description of the fundamental group of any surface from any system of loops
for that surface. The description is an example of a standard presentation of a group; before considering
the fundamental group, we need to define group presentations in general. A presentation is a pair (S | R)
composed of two sets S and R, with the following properties:

The set S is a set of group elements, called generators, with the property that every element of the
group can be written as the product of elements of S and their inverses. A word in S is a string over
the alphabet S US, where S is the set of inverses of generators in S. Each word represents an element
of the group; specifically, the empty string represents the group’s identity element, and concatenation
represents the group operation. The inverse w of a word w is defined by writing W in reverse and then
inverting every character; thus, the inverse of abca is acba.

The set R is a set of words in S, called relators, each of which is defined to be equivalent to the empty
word. To satisfy the group axioms, any words of the form xX or Xx are defined to be equivalent to the
empty word. In general, two words w and x are considered equivalent if the word w - X is equivalent to
the empty word. Finally, (S | R) represents the group of equivalence classes of words, with concatenation
as the group operation.’

For the special case of a free group, where the relator set is empty, we normally use the simpler
notation (S). When the generator and relator sets are given explicitly, we normally write their elements
without the set-braces.

Here are a few examples of group presentations:

e (x) is the group of integers Z. The generator x could represent either 1 or —1.

e (x| xx) is the two-element group Z,. If we describe Z, as the set {0, 1} under mod-2 addition,
the generator x represents the integer 1. Alternatively, if we describe Z, as the set {TRUE, FALSE}
under exclusive-or, the generator x represents the element TRUE.

e (x,y|xyxy) is the planar integer lattice Z2. The relator xyxy implies that xy = yx; thus, the
group is abelian. To see the correspondence with the usual description of Z2, think of x and y as
the vectors (1,0) and (0, 1).

e Similarly, (x,y,z | xyXy,xzXZ, yzyZ) is the three-dimensional integer lattice Z°.

IThe group (S | R) is usually defined as (S)/N, where N is the largest normal subgroup of (S) containing the elements of R.
The two definitions are equivalent.
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Every group has infinitely many presentations. For example, (z | 2z222) and (x,y | xxy,xyy)
are both presentations of the group Zs. (Do you see why?) A group is finitely generated if it has a
presentation with a finite number of generators, and finitely presented if it has a presentation with a
finite number of generators and relators.

7.3 Presentations for the Fundamental Group

Let L be a system of loops for 3, and let x be its only vertex. We give each edge in L an arbitrary
orientation, so it really is a loop.

Lemma 7.3. Let L be a system of loops in ¥ with basepoint x. Any loop in ¥ with basepoint x is
homotopic to a concatenation of loops in L and their reversals.

Thus, in every homotopy class in 7,(%, x), there is a loop whose image lies entirely in L. The
homotopy class of such a loop £ can be described by listing the labels and orientations of the edges in
L that ¢ traverses. Whenever we traverse a loop along its orientation, we record its label; when we
traverse an loop against its orientation, we record its label with a bar over it.

Two loops with the same traversal sequence are clearly homotopic, but homotopic loops can have
different traversal sequences. Specifically, any spur of the form aa or aa is obviously contractible, and
any loop that completely traverses the boundary of the unique face of L is contractible. Thus, any two
traversal sequences that differ only by inserting or deleting spurs and facial walks are homotopic.

The converse implication is true as well—the traversal sequences of two homotopic paths differ only
by inserting or deleting spurs and facial walks. (The proof is another easy exercise. No, really!)

Lemma 7.4. Let L be a system of loops with basepoint x in a 2-manifold %3, and let r be the traversal
sequence of the single face of L. Then (L | r) is a presentation of the fundamental group (%, x).

For example, if the polygonal schema of L has signature (ababcdcd), we obtain the presentation
m1(%,x)={(a,b,c,d | ababcdcd).

7.4 Universal Cover of a System of Loops

Recall that the universal covering space 3 of a surface ¥ is the unique simply-connected covering space
of . Our fixed basepoint x € X is the projection of one or more points in 3, called lifts of x. Let %
denote an arbitrary lift of x. Any path n: [0,1] — X with t(0) = x is the projection of a unique path
ft: [0,1] — £ with #(0) = %. The following lemma follows from tedious definition-chasing:*

Lemma 7.5. A loop { is contractible in % if and only if its lift { is a loop in %.

Let L denote a fixed system of loops in %. Let § = 2 — ¥ () denote the number of loops in L. (The
number g is called the Euler genus of ¥; it is twice the standard genus when X is orientable, and equal
to the standard genus when X is not orientable.) Euler’s formula implies that § > 3. The system of
loops L lifts to an infinite graph L in the universal covering space .. Each face of L is a lift of the unique
face of L, and each vertex of L is a lift of the unique vertex of L. Thus, L is a tiling of 3 by 2g-gons
meeting at vertices of degree 2Z. The only regular geometric structure that fits L is a regular tiling of
the hyperbolic plane by regular r-gons with interior angles 7/g.

We now have three different descriptions of the contractibility problem, with increasing generality:

2Recall that the universal cover can be defined as the set of homotopy classes of paths in X that start at x. In light of this
definition, we can take ¥ to be the homotopy class of the constant path at x, and define 7 by setting 7(t) = [7|[o,;] for all ¢.
In particular, (1) = [«]. Thus, 7 is a contractible loop if and only if (1) = X.
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e Given a loop { in a system of loops L, is £ contractible?
e Given a path { in a regular hyperbolic tiling L, is £ a loop?
e Given a word X(£) in the generators of 71;(X), is X (£) equivalent to the identity element?

The third formulation is called the word problem for finitely presented groups. Dehn [1, 2] proposed
the word problem as a target or algorithmic study, along with two other problems called the conjugacy
problem (Given two words x and y, is there a group element z such that xz = zy?) and the isomor-
phism problem (Given two group presentations, do they describe isomorphic groups?). Soon after he
proposed these problems, Dehn [3] described algorithms for the word and conjugacy problems for
surface fundamental groups, using combinatorial properties of the associated hyperbolic tilings. Dehn’s
algorithms are the seeds of combinatorial and geometric group theory.

Dehn actually conjectured that “Solving the word problem for all groups may be as impossible as
solving all mathematical problems.” This was a remarkable prediction; it would be another 40 years
before Turing provided the formalism to even state this conjecture crisply. All three of Dehn’s problems
are undecidable in general.

7.5 Dehn’s Algorithm

Dehn solved the word problem for surface fundamental groups by recasting it as a problem in hyperbolic
geometry. Dehn’s key insight is the following combinatorial lemma:

Lemma 7.6. Let L be a tiling of the plane by 2g -gons meeting at vertices of degree n, for some integer
g > 2. Let { be a nonconstant simple loop in L. Then { contains 2§ — 2 consecutive edges of some face
of L.

Proof: We construct a nested series of disks D; € D, C D3 C --- in the plane, each of which is the union
of faces of L, as follows. The innermost disk D is an single face in the interior of ?, and for all i > 2, the
disk D; is the union of all faces that have at least one vertex in D;_;. For each i > 1, let C; denote the
boundary of D;. Finally, let A; = C;, and for alli > 2, letA; = D; \ D;_;.

Suppose inductively that every vertex of C;_; has degree at most 3 in D;_;; this claim is trivial when
i = 2. Then each vertex of C;_; is adjacent to at least 2g — 2 faces in A;. Thus, each face of A; contains
at most one edge of C;_; (because 2g > 4). It follows that every face of A; shares edges with at most
three other faces in D;; moreover, these edges are consecutive on the boundary of each face. In other
words, each face of A; has at least 2g — 3 consecutive edges on C;. We conclude easily that every vertex
of C; has degree at most 3 in D;, so our inductive hypothesis is true for all i.

In particular, for all i, every face of A; has at least 2g — 3 consecutive edges on C;.

Suppose ¢ intersects C; (and thus A;) but not C;41. Any maximal subpath in A; must consist of an
edge from C;_; to C;, a subpath of C;, and an edge back to C;_;. This subpath contains at least 2g — 2
consecutive edges of at least one face of A;. O

We can restate this lemma in terms of systems of loops or group presentations as follows:

Lemma 7.6. Let L be a system of loops on a surface with Euler genus g > 2. Let R be the traversal
sequence of the boundary of the unique face of L, and let { be a non-constant contractible loop in L.
Then the traversal sequence X ({) contains a subword of length 2g — 2 that is also a subword of a cyclic
shift of R orR.
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Lemma 7.6. Let (L | R) be a one-relator presentation of 1t,(%), for some surface ¥ with Euler genus
g > 2. Let X be an nonempty trivial word in (L U L)*. Then X contains a subword of length 2g — 2 that
is also a subword of a cyclic shift of R or R.

To simplify the presentation, let’s use the term subrelator to mean a subword of a cyclic shift of
either R or R. We say that a subrelator is large if its length is at least 2§ — 2.

Dehn used this lemma as the basis for the following algorithm. Scan through the traversal sequence
one character at a time. At each step, check whether the last two characters define a spur, or if the last
2g — 2 characters are a subrelator. In the former case, remove the last two characters; in the latter case,
replace a maximal subrelator with its complement in O(g) time. The input loop is contractible if and
only if this algorithm transforms its traversal sequence into the empty word.

Dehn did not analyze the running time of his algorithm—remember, he did this in 1912—but a naive
0(g2x) time bound is straightforward, where x is the length of £ (or its traversal sequence). It takes
at most O(g2) time to check whether the current prefix ends with a large subrelator, plus O(g) time to
reduce the word if necessary. More careful analysis reduces the running time to O(gx). There is at most
one cyclic shift of the relator (or its inverse) that ends with any pair of characters; otherwise, the system
of loops would have more than one vertex. Thus, we really only need O(g) time to check if a reduction
is possible.

In fact, the last factor of r can also be removed. There are several ways to improve the search
time. One approach, reminiscent of the Knuth-Morris-Pratt string-matching algorithm, is to construct a
finite-state machine that accepts a string if and only if it has a large subrelator as a suffix. A suitable
finite-state machine with O(g?) states can be constructed in O(g2) time.® I'll describe another, arguably
simpler method later in this lecture.

Finally, we can amortize away the reduction time, by charging each reduction to the resulting
decrease in length. Canceling a spur takes O(1) time and decreases the length of the word by Q(1), and
teplacing most of a relator with its complement takes O(g) time and decreases the length by at least
2g —4 = Q(g). Since the total decrease in length over the entire algorithm is trivially at most x, the
total reduction time is also at most O(x).

Theorem 7.7. Let L be a system of loops on a surface ¥ with Euler genus § > 3. There is an algorithm
to determine whether a given closed walk { in L of length x is contractible in 3 in O(g + x) time.

7.6 ...in More General Graphs

So far we have considered only closed walks in a system of loops; we need to do a bit more work to
apply Dehn’s algorithm to loops in more complicated embedded graphs. Let G be an arbitrary cellularly
embedded graph in X, and let £ be a closed walk in G. We want to determine whether £ is contractible
in X. Without loss of generality, we will assume that every face of G is a triangle.

Lemma 7.8. Let G be cellularly embedded graph in a surface =, and let x be a vertex of G. Any loop
in X with basepoint x is homotopic to a closed walk in G.

As in the proof of the surface classification theorem, we begin by constructing a tree-cotree decom-
position (T, C,X). Recall that in such a decomposition, T is a spanning tree; C is spanning cotree (dual
to a spanning tree of G* \ T*); T and C are disjoint; and X = G \ (T U C). Contracting every edge in T
and deleting every edge in C transforms X into a system of loops; thus, X contains exactly g edges.

3Even this O(g?) term can be reduced to O(g) by representing the finite state machine implicitly. Details are left as an
entertaining exercise for the reader.
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Now let £ be an arbitrary loop in G. We can determine whether £ is contractible by first transforming
it into a homotopic loop £” in the system of loops L = G / T \ C, and then applying Dehn’s algorithm
to £”. In principle, we can compute £” as follows.

The subgraph G\ C = T UL is a cellularly embedded graph with a single face, and thus can be
represented by a polygonal schema with one polygon P; the edges of C define an internal triangulation
of this polygon. We first define an intermediate loop £’ by replacing each edge e € C with a walk 7,
around the boundary of P between the same corners. (It doesn’t actually matter which walk we choose,
but for concreteness, think of 7, as a shortest path on the boundary of P.) Finally, we set £ =¢'/ T.

Unfortunately, replacing a single edge of C might require a path of length ©(n), so explicitly
constructing ¢” might require ®(nk) time and space in the worst case. So instead, we compute the
traversal sequence of £ directly from £, after the following further preprocessing of the graph.

Choose an arbitrary face as the root of C*, and orient all edges of C* away from this root. By
orienting C*, we assign a parent edge and two child edges to every face of G except the root face.
Moreover, each edge e € C is a parent of exactly one face; call the other two edges of that face left(e)
and right(e), so that e ~ left(e) - right(e).

We now recursively define the signature X(e) of an edge e as follows: (1) If e € T, then X(e) is the
empty string. (2) If e € L, then X(e) is the label of e. (3) If e € C, then X(e) = X(left(e)) - X (right(e)).
We can compute the signature of every edge of C in O(gn) time by depth-first search.

Given any loop £, we can compute its signature (which we called X(¢”) earlier) in O(gk) time by
concatenating the signatures of its edges. A direct implementation of Dehn’s algorithm now checks
whether this signature represents a contractible loop in O(g? + gk) time. The total running time is
O(gn+ gk). (The g2 term vanishes because § < n.)

Theorem 7.9. Let G be a cellular graph of complexity n on a surface > with Euler genus § > 3. There is
an algorithm to determine whether a given closed walk in G of length k is contractible in ¥ in O(gn+ gk)
time.

7.7 ...in Linear Time

If g = O(1), the algorithm we just described already runs in O(n + k) time, but if g is large compared to
n or k, more work is required to obtain a linear-time algorithm. The final improvement, suggested by
Dey and Guha [4], is to use a compressed representation of traversal sequences that is still amenable to
Dehn’s approach. Dey and Guha actually describe an algorithm for the following harder problem: Given
two cycles, are they freely homotopic? Specializing their approach to test only contractibility allows us
to simplify their algorithm considerably.

We will represent subrelators by ordered pairs of integer (i, j), where 0 <i,j < 2g, as follows:

iy [RIEFT) ifi <j,
i,j):=
P =A\Rli+1..25]-R[0..]] ifi>].

For example, if R = abcadbcd, then (0,4) = abca and (7,2) = dab. Observe that (i, j) - (j, i) is always a
cyclic shift of the relator R, and thus equal to the trivial group element. Thus, each pair (i, j) actually
represents two subrelators, but only a single group element. More generally, we have (i, j) - (j, k) = (i, k)
for any indices i, j, and k.

Any subrelator of length at least 2 is represented by a unique pair (i, j). For individual generators,
however, our representation is ambiguous; any generator is represented by exactly two pairs of the
form (i,i = 1). For example, if R = abcadbcd, the pairs (0, 1) and (4, 3) both represent the generator a.
To avoid this ambiguity, we represent individual generators explicitly. Finally, the empty subrelator is

6
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represented by all 2§ pairs of the form (i,1); to avoid this ambiguity, we represent the empty subrelator
with a special symbol @.

For every edge in C, the associated traversal sequence is a subrelator, and thus can be represented by
a pair, a single generator, or the identity symbol &. Moreover, if the concatenation of two subrelators is a
new subrelator, we can compute that new subrelator in O(1) time. Thus, we can compute the subrelator
associated with each edge in C in O(n) time with a straightforward depth-first search of C*.

Finally, we compute the signature of any loop £ by concatenating the subrelators associated with
the edges traversed by ¢, and then reduce the signature as much as possible. Our target representation
for an arbitrary word is a minimal sequence of subrelators, where no adjacent pair of subrelators can
be merged. The loop £ is contractible if and only if its reduced signature is empty. In general, the
reduced signature of a path is not unique. For example, if R = abcadbcd, then the word abcbda has four
signatures:

(0,2)-(7,5)-(7,1) = ab-cb-da
=(0,2)-(7,4)-a = ab-cbd-a
=(0,3)-(6,4)-a = abc-bd-a
=(0,3)-b-(7,1) = abc-b-da

Despite this ambiguity, we can reduce any signature of length k in O(k) time, as follows. We scan
through the subrelators one at a time. At each step, we repeatedly check whether the last subrelator
is trivial, the last two subrelators define a spur, or the last two subrelators can be concatenated, and
simplify the signature in each case. We continue to the next subrelator only when the current prefix
cannot be further simplified.

The figure below shows an example of the reduction algorithm in action for the relator abcadbcd;
thus, the underlying surface is the double-torus. The input is the signature (6,1)-(6,2)-b-(1,6)-(3,1)-
(6,4)-(0,5)-(2,6) of the trivial traversal sequence cda- cdab-b-bcadb-cb-cdabca - dcb - cadb.

(6,1) cda (6,2)-b-(1,6)-(3,1)-(6,4)-(0,5)-(2,6)  getnext
(6,1)-(6,2) | cda-cdab | b-(1,6)-(3,1)-(6,4)-(0,5)-(2,6) get next
(6,1)-(6,2)-b cdab-b (1,6)-(3,1)-(6,4)-(0,5)-(2,6) cancel spur
(6,1)-(6,1) | cda-cda | (1,6)-(3,1)-(6,4)-(0,5)-(2,6) get next
(6,1)-(6,1)-(1,6) | cda-bcadb | (3,1)-(6,4)-(0,5)-(2,6) concatenate
(6,1) @ ‘cdabcadb | (3,1):(6,4)-(0,5)-(2,6) delete
@ cda (3,1)-(6,4)-(0,5)-(2,6) get next
(6,1)-(3,1) cda-cb (6,4)-(0,5)-(2,6) get next
(6,1)-(3,1)-(6,4) cb-bd (0,5)-(2,6) cancel spur
(6,1)-c-d c-d (0,5)-(2,6) concatenate
(6,1)-(6,0) cda-cd (0,5)-(2,6) get next
(6,1)-(6,0)-(0,5) cd-dcb (2,6) concatenate
(6,1)-b cda-b (2,6) concatenate
@ ‘cdab (2,6) get next
(6,2)-(2,6) | cdab-cadb concatenate
(6,6) | cdabcadb delete
1 done!

Reducing the signature of a trivial word in the surface group (a, b, c,d | abcadbcd).
The middle column shows the expansion of the underlined subrelators.
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One important difference between this algorithm and the algorithm described in the previous section
(Theorem 7.9) is that we do not need to make any assumptions about the Euler characteristic of the
surface. Exactly the same algorithm works without modification for paths on the torus, the Klein bottle,
the projective plane, and even (duh) the sphere!

Theorem 7.10. Let G be a cellular graph of complexity n on a surface .. There is an algorithm to
determine whether a given closed walk in G of length k is contractible in ¥ in O(n + k) time.

It is tempting to make an even stronger claim: The algorithm does not even require that the
underlying group is the fundamental group of the surface. The only assumption the algorithm requires
is that the group has a finite presentation with one relator, in which each generator appears at most
twice; these are called. But in fact, this claim is not stronger, because every group with that property is
the fundamental group of a 2-manifold (possibly with boundary); the relator is the traversal sequence of
a polygonal schemal!
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