
Computational Topology (Jeff Erickson) Testing Homotopic Paths in the Plane

When you turn the corner
And you run into yourself
Then you know that you have turned
All the corners that are left.

— Langton Hughes, “Final Curve” (1951)

3 Testing Homotopic Paths in the Plane

In the previous lecture, we saw an algorithm to compute the shortest path in a polygon with holes that
is homotopic to a given path. Here we consider an apparently easier problem: Given two paths in P, are
they homotopic? Or equivalently, given a loop ` in P, is it contractible. We can solve both problems by
computing the reduced crossing sequence(s) of the input path(s). Two paths are homotopic if and only
if they have the same reduced crossing sequence, and a loop is contractible if and only if its reduced
crossing sequence is the empty string. We can test both of these conditions in time O(nk) using the first
two phases of our previous algorithm.

In this lecture, I’ll describe a faster algorithm for both of these problems for simple paths and loops,
originally due to Cabello et al. [4], with some simplifications by Efrat et al. [6]. Most of the lecture will
concentrate on testing whether a simple loop in a polygon with holes is contractible. We will briefly
return to testing homotopy of simple paths at the end.

3.1 Sentinel Points

If the number of holes in P is small, we can test contractibility more quickly by applying a little more
topology. Let S = {s1, s2, . . . , sh} denote a set of h sentinel points, one chosen arbitrarily inside each hole
of P. Because P is a proper subset of the space R2 \ S, any function from [0, 1]2 to P is also a function
from [0, 1]2 to R2 \ S. It follows that any contractible loop in P is also contractible in R2 \ S. In fact, the
converse is true as well.

Lemma 3.1. Let ` be a loop in P. If ` is contractible in R2 \ S, then ` is contractible in P.

Proof: Let P0 denote the outer boundary of P, and let P1, . . . , Ph denote the boundaries of its holes,
indexes so that each sentinel point si lies in the interior of the corresponding polygon Pi. The Jordan-
Schönflies theorem implies that for each i, there is a homeomorphism φi : R2 → R2 such that the
restriction of φi to S1 is the cycle Pi . Without loss of generality, we can assume that φi(0) = si , where 0
denotes the origin. Let u: R2 \ 0→ S1 be the function u(x) = x/‖x‖; this function is clearly continuous.
Then the function Φi = φi ◦ u ◦φ−1

i maps R2 \ si continuously onto Pi . Finally, let Φ: R2 \ S→ P denote
the function

Φ(x) =







x if x ∈ P,

Φ0(x) if x is outside P0,

Φi(x) if x is inside Pi .

This function is continuous and obviously fixes P. Thus, for any homotopy h: [0, 1]2→ R2 \ S between
two paths in P, the function Φ ◦ h: [0,1]2→ P is a homotopy in P between the same two paths. �

Thus, to test the contractibility of a loop in P, it suffices to work in the simpler space R2 \ S. We
can construct a ‘triangulation’ of R2 \ S (or more accurately, a triangulation of R \ S where R is a
sufficiently large rectangle) in O(h log h) time. Any loop composed of k segments crosses the edges of
this triangulation at most O(hk) times, so we can compute the reduced crossing word of any loop in

1



Computational Topology (Jeff Erickson) Testing Homotopic Paths in the Plane

A polygon with holes P and a set S of sentinel points.

A B

C
D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S
T U

A B C D E F G

a b c d e f g

A triangulation of R \ S. A division of R2 \ S into vertical slabs.

O(hk) time. If the number of holes is small, this is considerably faster than our previous O(nk) time
bound.

We can further simplify the algorithm by subdividing the plane with vertical lines through the points
in S instead of a triangulation. To keep things simple, we assume no two sentinel points have the
same x-coordinate, so each sentinel divides a vertical line into two infinite rays; we give each ray a
unique label. We can still compute crossing words in time O(k+ x) = O(kh), and we have the same
correspondence between equivalent crossing words and homotopic paths.

For many triangulations, and for all sets of vertical lines, there are infinite families of paths that
achieve the worst-case bound x = Θ(hk). For example, consider a path that spirals around all the
sentinel points Θ(h) times, using a constant number of segments per turn. Unfortunately, it is not even
possible to avoid this worst-case behavior by choosing the triangulation carefully, or even using another
subdivision of R2 \ S into constant-complexity polygons with all vertices in (or very far away from) S.
(The last two conditions are required by our algorithm.)

A path with a long reduced crossing word, for any suitable subdivision.

For the rest of the lecture, to be consistent with the literature (and common practice), I’ll denote the
number of sentinel points by n, instead of h.

2



Computational Topology (Jeff Erickson) Testing Homotopic Paths in the Plane

3.2 Rectifying Simple Loops

Let S = {p1, . . . , pn} be a set of points in the plane, and let ` be a simple polygonal loop with k edges
in R2 \ S. In the next two sessions, I’ll describe an algorithm to determine whether ` is contractible in
R2 \ S in O((n+ k) log(n+ k)) time. This problem is equivalent to checking whether any point in S lies
in in the interior of `, and thus can be solved more efficiently by other means, but the algorithm we
describe here generalizes to the harder problem of checking whether two simple paths are homotopic.

To simplify the algorithm, assume the points in S and vertices of ` all have distinct x-coordinates.
The contractibility algorithm begins by transforming S and ` into a simpler but equivalent form; Cabello
et al. refer to this process as rectification.

A path in the plane is monotone if it intersects any vertical line at most once, or equivalently, if it is
the graph of a function over some real interval. Our algorithm begins by subdividing ` into a sequence
of monotone paths. Because ` is a loop, we have m≥ 2, and because each monotone path uses at least
one edge of `, we have m≤ n.

Say that a monotone path α is directly above a path β if there is a vertical line segment of non-zero
length whose top endpoint lies on α and whose bottom endpoint lies on β . We can similarly define when
a point is directly above a monotone path or vice versa, by considering the point to be a zero-lenght
monotone path. We write α � β to denote that α is directly above β .

Lemma 3.2. For any set of disjoint monotone paths (and points), the relation � is acyclic.

Proof: For the sake of contradiction, let α1 � α2 � · · · � αr � α1 be a minimum-length cycle, where
each αi is a monotone path in the set. Obviously r ≥ 2.

Think of each αi as the graph of a function over some real interval. Because α1 � α2, we have
α1(x)> α2(x) for some real x . If α2 � α1, then α1(z)< α2(z) for some real z, so by the intermediate
value theorem, there must be some real y between x and z such that α1(y) = α2(y). But this is
impossible, because α1 and α2 are disjoint. We conclude that α2 6� α1, which means r ≥ 3.

Rotate the indices if necessary, so that the right endpoint of α1 has smaller x-coordinate that the
right endpoint of any other path αi . In particular, the right endpoints of α2 and αr are completely to the
right of α1. Thus, the right endpoint of α1 is both directly above some point of α2 and directly below
some point of αr . It follows that αr � α2, which contradicts the minimality of the cycle. �

We can construct a directed graph consistent with � by placing a vertical line segment, called a
fence, through each endpoint or sentinel point, which is as long as possible without crossing any other
path. (If no path lies directly above or below an endpoint, that endpoint’s fence is either a ray or a line.)
The paths and fences partition the plane into simply-connected regions bounded by at most two paths
(above and below) and at most two fences (on the left and right). These O(n+ k) fences can be found in
O((n+ k) log(n+ k)) time using a straightforward sweep-line algorithm. If k is significantly larger than
n, this time bound can be improved to O(k+ n log1+ε n) for any ε > 0, using an algorithm of Bar-Yehuda
and Chazelle [1].

Let us write α Â β to denote that some fence touches both α and β , and the fence point on α is
above the fence point on β . An easy inductive argument implies that the relations � and Â have the
same transitive closure. We can easily extract the relation Â directly from the fence decomposition, after
which a simple topological produces a vertical ranking of the paths and sentinel points so that α � β
implies rank(α)> rank(β).

Finally, we define a set of rectified paths and points by replacing all y-coordinates with vertical
ranks. Thus, for each monotone path αi , the corresponding rectified path ᾱi is a horizontal line segment
whose y-coordinate is the path’s vertical rank, and whose endpoints have the same x-coordinates as the

3



Computational Topology (Jeff Erickson) Testing Homotopic Paths in the Plane

14

13

12

111O
9 8

7
6

5
4

3

2

1

A fence decomposition of the example loop.
Circles are endpoints of monotone paths. Numbers indicate vertical ranks.

14
13

12
11

1O
9

8
7

6
5

4
3

2
1

The resulting rectified paths and points.

endpoints of αi. Whenever two paths αi and α j share and endpoint, we connected the corresponding
endpoints of ᾱi and ᾱ j with a vertical segment (dashed in the figures).

Let S̄ denote the set of rectified sentinel points, and let ¯̀ denote the loop composed of rectified paths
and vertical connectors. It is not hard to prove that the original loop ` is contractible in R2 \ S if and
only if the rectified loop ¯̀ is contractible in R2 \ S̄. Moreover, if we define crossing sequences in terms of
vertical rays shot up and down from each sentinel point, then ` and ¯̀ have identical crossing sequences
in their respective environments.

A B C D E F G

a b c d e f g

A B C D E F G

a b c d e f g

The original loop and the rectified loop have the same crossing sequence: bAAbcDeffeDcbbcDEFgGFEDC.

3.3 Reducing Rectified Paths

After we compute the rectified loop, we reduce it by moving vertical segments. In any orthogonal loop,
there are two types of vertical segments: brackets, where the adjacent rectified paths are on the same
side, and steps, where the adjacent rectified paths are on opposite sides. Initially, every vertical segment
in the rectified loop is a bracket, but the reduction process can introduce steps.

4



Computational Topology (Jeff Erickson) Testing Homotopic Paths in the Plane

To reduce the rectified loop, we slide each bracket as far inward as far as possible, shortening
its adjacent rectified paths. We stop sliding either when the bracket reaches a sentinel point, or the
bracket reaches the basepoint,1 or when one of the adjacent paths collapses to a point. Sliding a bracket
inward reduces the crossing sequence of the loop, and therefore preserves the contractibility of the loop.
Conversely, any repeating pair can be removed from the crossing sequence by a sequence of bracket
slides.

A bracket slide that collapses a path to a point can merges two vertical segments, or temporarily
create a zero-width vertical spike (which we remove). However, we must be careful not to carelessly
remove spikes that contain sentinel points, or to disconnect the loop from the basepoint. Thus, if a
bracket slide ends at a sentinel point, we record whether the bracket lies just to the right or just to the
left of that point. We also allow at most one vertical spike, whose tip is the basepoint of the loop.

A sequence of bracket slides and the final reduced rectified loop.

To determine efficiently how far to slide each bracket, we use a so-called segment-dragging data
structure due to Chazelle [5]. Chazelle’s data structure stores any set of n points in the plane, in O(n)
space, so that given a vertical query segment, the leftmost point (if any) to the right of the segment
can be reported in O(log n) time; the data structure can be constructed in O(n log n) time. Each bracket
slide either moves a bracket up against a point or deletes a horizontal segment. Thus, the cycle is
completely reduced after at most 2k bracket slides. We conclude that the total running time of the
reduction algorithm is O((n+ k) log n).

We claim that the reduced rectified loop is empty if and only if the input loop is contractible. The
forward implication is trivial; the sequence of bracket slides is a homotopy. Suppose the input lop is
contractible. Then the crossing sequence of the reduced loop is empty, which means the reduced rectified

1In fact, if we only want to check whether the loop is contractible, we can ignore the basepoint and treat the loop as a cycle.
A loop is contractible if and only if the corresponding cycle is freely contractible.

5



Computational Topology (Jeff Erickson) Testing Homotopic Paths in the Plane

loop lies between two vertical lines through sentinel points. In particular, there are no sentinel points
in the bounding box of the reduced rectified loop. The leftmost and rightmost vertical edges of any
orthogonal loop are brackets; if the reduce loop is non-empty, we can slide at least one of these brackets
inward. Thus, the reduced loop must be empty.

3.4 Detecting Homotopic Simple Paths

This algorithm can be modified to determine whether two simple paths π and π′ are homotopic in
the same O((n+ k) log(n+ k)) running time. Most of these modifications are easy, but we do have to
address a few subtleties. Most importantly, we have (at least) three choices for the precise definition of
‘homotopy’, depending on the desired behavior at the endpoints of π and π′, each of which leads to
different results. (All three variants are equivalent for the contractibility problem.)

• Tacks: The endpoints of π and π′ are not obstacles; during a homotopy, the moving path can pass
freely over the endpoints. This is arguably the most natural variant, but (surprisingly) it presents
the most technical difficulty in the algorithm. I’ll describe the algorithm for this variant last.

• Pins: The endpoints of π and π′ are sentinel points in S; during a homotopy, the moving path
must never pass over either endpoint. This is the simplest case to deal with algorithmically;
however, according to our existing definitions, this case cannot happen at all! We can generalize
our definitions as follows to avoid the discrepancy. A legal path is a function π: [0, 1]→ R2 such
that π(t) ∈ S implies t = 0 or t = 1, and a legal homotopy is a homotopy through legal paths.
Now we can formally state the problem as follows: Given two simple legal paths, are they legally
homotopic? I’ll describe the algorithm for this variant in the next subsection.

• Pushpins: The endpoints of π and π′ lie on the boundary of P; during a homotopy, the moving
path must never pass over the holes, and therefore cannot pass over the endpoints of π. This case
differs from the previous one in how paths that wind around their endpoints are classified. A path
that winds multiple times around an endpoint is (legally) homotopic to a path that does not, but a
path that winds several times around a hole is not homotopic to a path that does not. Nevertheless,
we can reduce the pushpin model to the pin model, by replacing each hole Pi (including the
exterior of the outer boundary) with a pair of sentinel points si and s′i . If the endpoints of π
and π′ lie on boundaries Pi and Pj , we add segments to the ends of π and π′, extending them to
corresponding sentinel points si and s j .

Three paths in the plane minus points. All three paths are homotopic in the tack model.
Only the last two are homotopic in the pin model. Every pair is non-homotopic in the pushpin model.

3.4.1 Pins

First let’s consider the pin model. Given two simple legal paths π and π′, the algorithm starts by
independently rectifying and reducing each path. We must make one change to the reduction algorithm
to ensure that the reduced paths are simple. The only way to introduce a self-intersection (in the pin

6



Computational Topology (Jeff Erickson) Testing Homotopic Paths in the Plane

model) is to slide a bracket over another smaller bracket with the same handedness. Thus, if we always
slide either the rightmost free left bracket or the leftmost free right bracket, the path remains simple
throughout the reduction process. By keeping brackets in a priority queue, we can select an extreme
bracket in O(log k) time, so this restriction does not change the algorithm’s running time.

Now we must compare the reduced rectified paths. Unfortunately, even if the input paths are
homotopic, their reduced rectified paths be very different, because they were reduced with respect to
different vertical rankings. However, if π ' π′, both rectified reduced paths are consistent with the
shortest path π∗ in their homotopy class. Thus, we can compare the reduced rectified paths as follows.
First, we check that both paths have the same sequence of bracket x-coordinates; if not, we report that
π and π′ are not homotopic. Next, we compute a fence decomposition of each rectified reduced path
and its associated sentinels, using the same sweep algorithm as before. If the two fence decompositions
are combinatorially identical, then the two reduced rectified paths have a common re-rectification and
therefore equal crossing sequences, so the original paths π and π′ are homotopic. Otherwise, π 6∼ π′.

Two homotopic paths, rectified and then reduced.

3.4.2 Tacks

In the peg model, it may be impossible to avoid self-intersections; the shortest path homotopic to a
simple path is not necessarily simple. In this setting, if we only slide extreme brackets, as in the previous
section, the only way to introduce a self-intersection is to slide a bracket over one of the endpoints.
Since each vertical segment can cross each endpoint at most once, each reduced rectified path crosses
itself at most 2k times.

These self-intersections prevent us from using the same straightforward sweepline algorithm to
compute a common ‘above’ relation for the reduced rectified paths; the relation ≺ we defined earlier
may not be a partial order. However, we can still compare reduced rectified paths by restricting ≺ to a
bipartite relation between sentinel points and monotone subpaths.

7



Computational Topology (Jeff Erickson) References

Lemma 3.3. Paths π and π′ are homotopic if and only if (1) the reduced rectified paths have the same
sequence of bracket x-coordinates, and (2) corresponding monotone subpaths lie above corresponding
sentinel points.

Proof: The reduced rectified paths π̂ and π̂′ are rectifications of the shortest paths π̄ and π̄′ homotopic
to π and π′, respectively. Suppose π ' π′. Then π̄ = π̄′, which implies that the maximal monotone
subpaths of π̂ and π̂′ end at the same sequence of x-coordinates, so condition (1) is satisfied. Similarly,
π̂ and π̂′ have the same crossing sequences with respect to their respective rectified sentinel points Ŝ
and Ŝ′. In particular, each monotone subpath of π̂ has the same crossing sequence as the corresponding
subpath of π̂′, so condition (2) is satisfied.

Conversely, if conditions (1) and (2) are satisfied, then each monotone subpath of π̂ has the same
crossing sequence as the corresponding subpath of π̂′, which implies that π̂ and π̂′ have the same
crossing sequences, which implies that π' π′. �

We have already seen that condition (1) can be tested in O(k) time. Cabello et al. [4] describe a
sweepline algorithm to test condition (2) in O((n+ k) log(n+ k)) time; we refer the reader to the paper
for further details. The fact that each reduced rectified path crosses itself only O(k) times is crucial for
the time analysis.

3.5 Non-Simple Paths and Loops

Given two non-simple paths in a polygon with holes, it is possible to check whether they are homotopic
in O((n+ n2/3k2/3 + k)polylog(n+ k)) time, using an algorithm of Bespamyatnikh [2]; see also [3].
This algorithm is always faster than the algorithm of Hershberger and Snoeyink [8] described in the
previous lecture. The algorithm is quite complex; I won’t even attempt a sketch here.

There is strong evidence that Bespamyatnikh’s algorithm is optimal, at least up to polylogarithmic
factors, even for the special case of checking whether a cycle is contractible. Cabello et al.[4] describe a
reduction from Hopcroft’s problem—Given a set of n points and k lines in the plane, does any point lie
on any line?—to testing the contractibility of a non-simple cycle of O(k) edges, in the plane minus a set
of n points. Erickson [7] proved a lower bound of Ω(n log k+ n2/3k2/3+ k log n) on the complexity of
Hopcroft’s problem in a natural (but restricted) model of computation.

Reducing Hopcroft’s problem to the contractibility of a non-simple cycle.

References

[1] R. Bar-Yehuda and B. Chazelle. Triangulating disjoint Jordan chains. Int. J. Comput. Geom. Appl.
4(4):475–481, 1994.

8



Computational Topology (Jeff Erickson) References

[2] S. Bespamyatnikh. Computing homotopic shortest paths in the plane. J. Algorithms 49(2):284–303,
2003.

[3] S. Bespamyatnikh. Encoding homotopy of paths in the plane. Proc. LATIN 2004: Theoretical
Infomatics, 329–338, 2004. Lecture Notes Comput. Sci. 2976, Springer-Verlag.

[4] S. Cabello, Y. Liu, A. Mantler, and J. Snoeyink. Testing homotopy for paths in the plane. Discrete
Comput. Geom. 31:61–81, 2004.

[5] B. Chazelle. An algorithm for segment-dragging and its implementation. Algorithmica 3:205–221,
1988.

[6] A. Efrat, S. G. Kobourov, and A. Lubiw. Computing homotopic shortest paths efficiently. Comput.
Geom. Theory Appl. 35(3):162–172, 2006.

[7] J. Erickson. New lower bounds for Hopcroft’s problem. Discrete Comput. Geom. 16:389–418, 1996.

[8] J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homotopy class.
Comput. Geom. Theory Appl. 4:63–98, 1994.

c© Copyright 2009 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.illinois.edu/~jeffe/teaching/comptop/ for the most recent revision.

9

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.illinois.edu/~jeffe/teaching/comptop/

	Testing Homotopic Paths in the Plane
	Sentinel Points
	Rectifying Simple Loops
	Reducing Rectified Paths
	Detecting Homotopic Simple Paths
	Pins
	Pegs

	Non-Simple Paths and Loops


