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Or il y avait des graines terribles sur la planéte du petit prince. .. c’étaient les graines
de baobabs. Le sol de la planéte en était infesté. Or un baobab, si l’on s’y prend trop
tard, on ne peut jamais plus s’en débarrasser. Il encombre toute la planéte. Il la perfore
de ses racines. Et si la planéte est trop petite, et si les baobabs sont trop nombreux, ils
la font éclater.

[Now there were some terrible seeds on the planet that was the home of the little
prince; and these were the seeds of the baobab. The soil of that planet was infested with
them. A baobab is something you will never, never be able to get rid of if you attend to
it too late. It spreads over the entire planet. It bores clear through it with its roots. And
if the planet is too small, and the baobabs are too many, they split it in pieces.]

— Antoine de Saint-Exupéry (translated by Katherine Woods)
Le Petit Prince [The Little Prince] (1943)

11 Treewidth

In this lecture, I will introduce a graph parameter called treewidth, that generalizes the property of
having small separators. Intuitively, a graph has small treewidth if it can be recursively decomposed into
small subgraphs that have small overlap, or even more intuitively, if the graph resembles a ‘fat tree’.
Many problems that are NP-hard for general graphs can be solved in polynomial time for graphs with
small treewidth. Graphs embedded on surfaces of small genus do not necessarily have small treewidth,
but they can be covered by a small number of subgraphs, each with small treewidth. This covering can
be used to develop efficient algorithms (either exact or approximate) for a huge number of problems
on surface graphs that are NP-hard for general graphs. As an example of this technique, I'll describe a
polynomial-time approximation scheme for the maximum independent set problem.

11.1 Definitions

The concept of treewidth was discovered independently by several different researchers and given
several different names. The actual term ‘treewidth’ and its definition in terms of tree decompositions
were introduced by Robertson and Seymour [15]. Almost simultaneously, Arnborg and Proskurowski
independently began the systematic study of partial k-trees [3, 2, 1]. Both groups were apparently
unaware of Bertele and Brioschi’s earlier equivalent definition of the dimension' of a graph [6], or
Halin’s related study of S-functions [13]. Other equivalent definitions are surveyed by Bodlaender [8, 9].

A tree decomposition (T,X) of a graph G = (V,E) consists of a tree T = (I,F) and a function
X : I — 2" satisfying three constraints. To avoid confusion, I will always refer to vertices of G, but nodes
of T. We say that a vertex v is associated with a node i, or vice versa, whenever v € X (i).

e Every vertex in G is associated with at least one node in T. More formally, we have UiGNX (i)=V.
e For every edge uv in G, at least one node in T is associated with both u and v.

e The nodes in T associated with any vertex of G define a subtree (connected subgraph) of T.
Equivalently, X (i) N X (k) € X(j) for every node j on the path from node i to node k in T.

The width of a tree decomposition is max; |[X(i)| — 1. Finally, the treewidth of G is the minimum width
of any tree decomposition of G. A single graph can have several tree decompositions of minimum width.

Conversely, let 8 = {S;,S,,...,S,} be a set of subtrees of a tree T. The intersection graph I() is
the graph with vertices {1,2,...,n}, where two vertices i and j are joined by an edge if and only if S;
and S; share a node in T. The depth of § is the maximum number of subtrees that share any node in T,

'Erdé8s, Harary, and Tutte defined the dimension of a graph to be the minimum dimension of a Euclidean space that allows
an embedding where every edge is a line segment of length 1 [12]. This is not the same as treewidth.
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A graph with treewidth 3 and an optimal tree decomposition.
The subtrees of T corresponding to vertices H and M are highlighted.

minus 1. The treewidth of G is the minimum depth of a subtree system 8 whose intersection graph I(8)
contains G as a subgraph.

A graph G is called a k-tree if and only if either G is the complete graph with k vertices, or G has a
vertex v with degree k — 1 such that G \ v is a k-tree. A partial k-tree is any subgraph of a k-tree. In
particular, a connected graph G is a 1-tree if and only if G is a tree. Unwinding the recursion gives us an
elimination order v{,v,, ..., v, for the vertices of any partial k-tree, in which each node v; has at most
k — 1 neighbors with larger indices.

An elimination order for the example graph.

We can easily derive a tree decomposition of width k for any partial k-tree from an elimination
order. Specifically, the decomposition tree T has n nodes {1,2,...,n}, and for any node i, the subset
X (i) contains vertex v; and its (at most k — 1) larger-indexed neighbors. The converse is true as well;
every tree decomposition of width k defines an elimination order proving that the decomposed graph is
a partial k-tree. (I'll leave the proof as an exercise.)

Lemma 11.1 (Wimer [17], Scheffler [16]). A graph has treewidth k if and only if it is a partial k-tree.

Finally, a tree decomposition (T,X) can be interpreted as a recursive separator hierarchy as follows.
Choose any node of T to to be the root. For each node i of T, let D(i) denote the union of the subsets
X (j) for all descendants of j of i (including i itself), and let A(i) denote the union of the subsets X (j) for
all proper ancestors of j of i. Each node i is associated with a set of boundary vertices B; = D(i) N A(i)
and a subgraph G;, which is the induced subgraph G[D(i)] minus edges between boundary nodes. Each
subset X (i) is a separator of the corresponding subgraph G;.

We can relate the treewidth of a graph to the existence of small balanced separators as follows. We
say that an n-vertex graph G is s-separable, for some non-decreasing function s: N — N, if either n =1
or G has a 2/3-separator S of size s(n), such that the components of G \ S are also s-separable.
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A separator hierarchy for the example graph, rooted at DHKM.
Lighter (blue) nodes are boundary nodes inherited from ancestors in the hierarchy.
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Lemma 11.2. Any graph of treewidth k is O(k)-separable. Conversely; any s-separable n-vertex graph
has treewidth O(s(n)logn), or treewidth O(s(n)) if s(n) = Q(n®) for some constant ¢ > 0.

Proof (sketch): Let G be a graph with treewidth k, and let (T,X) be a tree decomposition of width k.
Without loss of generality, every node in T has degree at most 3. Thus, there is a node i that separates T
into subtrees, each with at most 2/3 of the nodes of T. The corresponding subset X (i) is a 2/3-separator
for G of size at most k + 1, and the components of T \ X (i) have treewidth at most k.

On the other hand, suppose G = (V, E) is s-separable, and |V| = n > 1. I claim that G has a path
decomposition of the appropriate width. Let S be a 2/3 separator of size s(n), such that both components
of G\ S are also s-separable. Let (T;,X;) and (T,,X,) be path decompositions of the components of G\ S.
Let T be a path obtained by concatenating paths T; and T,. For any node i in T, let X (i) = X;(i)US,
and for any node j in T, let X(i) = X,(i) US. Then (T,X) is a path decomposition whose width k(n)
obeys the recurrence k(n) < k(2n/3) + s(n). O

Corollary 11.3. Every planar graph has treewidth O(4/n). Every graph that has a cellular embedding
on a surface of genus g > 0 has treewidth O(,/gn).

11.2 Dynamic Programming: Maximum Independent Set

An independent set in a graph G is a subset of the vertices, no two of which are connected by an edge
in G. Compute the largest independent set in a graph is one of Karp’s classical NP-hard problems.
Moreover, even approximating the largest independent set to within a factor of n' ¢, for any & > 0, is
NP-hard [14, 18]. However, for any graph of constant (or even logarithmic) treewidth, we can compute
the largest independent set in polynomial time.

Theorem 11.4 (Arnborg and Proskurowski [4]). The size of the largest independent set in a graph
of treewidth k can be computed in O(4“k?n) time.

Proof: Let G be a graph of treewidth k, and let (T,X) be a tree decomposition of width k. Without loss
of generality, the tree T has at most n nodes. Let r denote the arbitrarily chosen root of T. For each
node i, let G; and B; denote the corresponding subgraph and boundary vertices (as defined above).

For any node i of T and any subset A C B;, let MIS(i,A) denote the size of the largest independent
set I in G; such that I N B; = A. This function obeys the recurrence

J is an independent set in G;

MIS(i,A) = Al +max{ D, MIS(j,B;NA) — [B; N4 and ACJ CX(i)

j child of i
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with the base case MIS(i,A) = |A| whenever G; \ B; = @ (in particular, when i is a leaf of T). The
largest independent set in G has size MIS(G, ). We can easily evaluate the recurrence using dynamic
programming.

For each node i, there are at most 2! subsets A to consider. For each subproblem (i,A), and each
child j of i, there are at most 25! subsets J to consider; for each subset J, we can easily determine
in O(k?) time whether J is an independent set in G;. Thus, the total time to evaluate MIS(i,A), not
counting recursion, is O(2Xk? - deg(i)), where deg(i) is the number of children of node i. Thus, the total
running time of the dynamic programming algorithm is ) ; 0(4Kk? - deg(i)) = 0(4*k?n). O

Similar strategies apply to a truly enormous number of other NP-hard optimization problems [1];
some of these are surveyed by Arnborg and Proskurowski [4] and by Bodlaender [7].

11.3 PTAS for Planar Graphs
Lemma 11.5. A planar graph with diameter D has treewidth at most 3D — 2.

Proof (Eppstein [10]): Without loss of generality, assume that G is a triangulation; adding edges does
not increase the diameter of the graph. Let (T, @, C) be a tree-cotree decomposition where T is a BFS
tree rooted at an arbitrary node r. For each face f of T, let X(f) be the setof vertices on the shortest
paths from the vertices of f to r. Then (C*,X) is a tree decomposition; each subset X(f) has size at
most 3D — 1, so the width of the decomposition is at most 3D — 2. O

Let G be an arbitrary graph. Choose an arbitrary root vertex r, and for any vertex r, let d(v) denote
the depth of v in a breadth-first search tree rooted at r. For any nonnegative integers i < j, let G[i, j] be
the subgraph of G induced by vertices v such that i <d(v) < j, and let G{i, j] := G[0,j] / G[0,i — 1].
Observe that G[i,j] is a subgraph of G(i, j], and that G[i,j] \ G(i, j] consists of a single vertex: the
contraction of G[0,i — 1].

Lemma 11.6. For any graph G and any nonnegative integers i < j, the graph G(i, j] has diameter at
most2j —2i+ 1.

Finally, for any integers i > 0 and k > 2 such that i <k, let G; ;. denote the subgraph of G induced
by vertices whose depth mod k is not equal to i.

Corollary 11.7 (Baker [5]). For any planar graph G and any integersi > 0 and k > 2 such thati < k,
the subgraph G; . has treewidth O(k).

Proof: G; is the disjoint union of all graphs of the form G[ak + i+ 1,(a + 1)k +i — 1]. For every
integer a, the graph G(ak + i+ 1,(a + 1)k +i — 1] has diameter at most 2k — 3, and therefore has
treewidth at most 3(2k —3) — 2 = 6k — 11. Thus, each subgraph G[ak +i+1,(a+ 1)k +i— 1] also has
treewidth at most 6k — 11. O

Theorem 11.8 (Baker [5]). For any integer k > 1, we can compute a (1 — 1/k)-approximation of the
largest independent set in any n-node planar graph in 2°®n time.

Proof: Let G be a planar graph, and let S be the largest independent set in G. For each integer
0<i<k,letS, ={veS|dlv)modk =i}. For any i, our dynamic programming algorithm can
compute the largest independent set S; in G; in 20 because G; x has treewidth O(k). The set
S\ S; is an independent set in G;, so |S’| > |S\'S;|. Finally, the pigeonhole principle implies that
IS\ S;| > (1—1/k)|S| for some i. O

Equivalently, we can compute a (1 — ¢)-approximation in time 200/8)p In particular, we can compute
a (1 — 1/logn)-approximation in polynomial time.
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11.4 PTAS for Surface Graphs
Lemma 11.9 (Eppstein [11]). A graph with diameter D and genus g has treewidth O(gD).

Proof: Let G be a cellular graph on a surface of genus g. Let (T, L, C) denote a tree-cotree decomposition
of G where T is a breadth-first-search tree. Let R be the reduced cut graph obtained by repeatedly
removing vertices of degree 1 from the cur graph T U L. We proved earlier in the semester that R is the
union of O(g) shortest paths. It follows that R contains O(gD) nodes.

We can embed the graph G /R in the plane by first embedding G \ R so that all neighbors of R are
on the outer face, and then connecting the neighbors of R to a new super-vertex. Thus, G /R is planar.
Contracting an edge can only reduce the diameter of a graph, so G / R has diameter at most D. Thus,
Baker’s Lemma (Corollary 10.7) implies that G / R has a tree decomposition (T’,X) of width at most
3D —1.

We can extend (T’,X) to a tree decomposition (T’,X’) of G by setting X'(i) = X(i) U V(R). The
resulting decomposition has width O(gD). O

Corollary 11.10. For any genus-g graph G and any integersi > 0 and k > 2 with i < k, the subgraph
G; x has treewidth O(gk).

Theorem 11.11 (Eppstein [11]). For any integer k > 1, we can compute a (1 — 1/k)-approximation
of the largest independent set in any n-node graph of genus g in 2°¥n time.

Equivalently, we can compute a (1 —¢)-approximation in time 2°(¢/®)n, In particular, we can compute
a (1 — g/lgn)-approximation in polynomial time.
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