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Abstract

In this paper� we show that the universal covering space of a surface can be used to unify previous
results on computing paths in a simple polygon� We optimize a given path among obstacles in the plane
under the Euclidean and link metrics and under polygonal convex distance functions� Besides revealing
connections between the minimum paths under these three distance functions� the framework provided
by the universal cover leads to simpli�ed linear�time algorithms for shortest path trees� for minimum�link
paths in simple polygons� and for paths restricted to c given orientations�

� Introduction

If a wire� a pipe� or a robot must traverse a path among obstacles in the plane� then one might ask what is
the best route to take� For the wire� perhaps the shortest distance is best� for the pipe� perhaps the fewest
straight�line segments� For the robot� either might be best depending on the relative costs of turning and
moving�
In this paper� we �nd shortest paths and shortest closed curves that wind around the obstacles in a

prescribed fashion�that have a certain homotopy type� We consider the Euclidean and link metrics for
paths� and convex and link distance functions for paths that are restricted to use c given orientations� such
as rectilinear paths� Our work presents these distance functions in a unifying framework� a triangulation of
the unversal covering space� In this framework� we can generalize results for simple polygons to compute
shortest paths of a given homotopy class� We also simplify proofs and replace complicated data structures
such as �nger search trees by simple arrays and stacks�
We organize the paper around four variants on shortest path problems� Euclidean shortest paths and

shortest path trees in section �� minimum�link paths in section �� shortest closed loops in section 	� and
paths with restricted orientations in section 
� In the remainder of this section we review previous results
on these problems and summarize our results using the universal cover� Section � gives formal de�nitions
of the universal covering space and of triangulated manifolds� homotopy classes� and distance metrics�the
important topological tools for our algorithms�

��� Euclidean shortest paths

Many researchers have investigated the problems of �nding Euclidean shortest paths in simple polygons�
Chazelle �
� and Lee and Preparata ���� gave a funnel algorithm that� in a triangulated polygon� computes
the shortest Euclidean path between two points in linear time�
The funnel algorithm has been extended to handle one of the tractable cases of river routing in VLSI�

Cole and Siegel ����� Leiserson and Maley ����� and Gao et al� ���� give algorithms for routing wires with
�xed terminals among �xed obstacles when a sketch of the wires is given�that is� when a homotopy class is
speci�ed for each wire� When no sketch is given or when the terminals are not �xed� the resulting problems
are usually NP�hard ��	� ��� �	�� Leiserson and Maley and Gao et al� use the funnel algorithm to compute
the rubber�band equivalent of each wire as a basic preprocessing step�
In section ��� we describe the application of the funnel algorithm in the universal cover of a triangulated

manifold� Then� in section ���� we extend it to e�ciently maintain the shortest path homotopic to a
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path that is given on�line� Both of these algorithms take time proportional to the time needed to trace the
representative of the path through the triangulation and both use simple data structures�arrays and stacks�
Guibas et al� ���� used �nger�search trees to compute the tree of all shortest paths from one polygon

vertex to all other vertices in linear time� they use this as a preprocessing step to solve several shortest path
and visibility query problems� Our on�line shortest path algorithm can compute this shortest path tree using
simpler data structures�
Finding minimumpaths among obstacles when the homotopy class is not given is a more di�cult problem�

and is one that we will not discuss� For the Euclidean metric� one typically builds the visibility graph and
searches it with Dijkstra�s algorithm ��
�� see Ghosh and Mount ���� and Kapoor and Maheshwari ���� for
e�cient algorithms�

��� Link shortest paths

Researchers have also looked at �nding minimumpaths in simple polygons under the link metric� in which the
length of a path is the number of its line segments� Suri ���� developed a linear time algorithm for computing
the minimumpath between two points in a simple polygon� Ghosh ���� recently gave a linear time algorithm
as a consequence of his work on computing the visibility polygon from a convex set� Both algorithms are
based on a triangulation and the shortest path tree algorithmof Guibas et al� ����� We show how to extend our
Euclidean minimum path algorithm to compute the minimum�link path in time proportional to the number
of triangles that this path intersects� This gives yet another linear�time algorithm in a simple polygon� but
one that is more direct and also has application to paths of given homotopy class among obstacles�
When the homotopy type is not speci�ed� Mitchell� Rote� and Woeginger ��
� have given an algorithm

that runs in O�E��n� log� n�� where n is the number of vertices� E is the size of the visibility graph� and
��n� is the inverse of Ackermann�s function� Other recent work has considered combining link and Euclidean
metrics ��� �
��

��� Shortest loops

There are special closed loops of interest to computational geometers that �t within the framework of this
research� Under the Euclidean metric� the shortest loop enclosing a set of points or line segments is the
convex hull of the set� The shortest loop enclosing a set and contained in the interior of a polygon is the
relative convex hull of the set� Toussaint and others have studied relative convex hulls� also called geodesic
hulls� in connection with the separability of polygons under translation �	� ��� 	�� 	�� 	��� Czyzowicz et
al� ���� have solved the �Aquarium Keeper�s Problem�� a generalization of the problem of computing the
minimum perimeter polygon that touches each edge of a given convex polygon� Essentially� they use the
re�ection principle to convert this problem to one of computing the shortest loop around a triangulated
annulus or M�obius strip� Our results on closed loops simplify these solutions and generalize them slightly�
Minimum�link loops enclosing a set and contained in a polygon separate the set and polygon using the

smallest number of line segments� Aggarwal et al� ��� considered �nding a minimum�link convex polygon
separating two convex polygons with n total vertices� They obtained an O�n log k� algorithm that �nds
the minimum polygon of k line segments� They also give a simple O�n� algorithm for �nding a polygon
with at most one segment more than the minimum� Wang and Chan �	�� 		� show that the algorithm of
Aggarwal et al� can �nd the minimum�link convex polygon that encloses a convex polygon lying in the kernel
of a star�shaped polygon� They reduce two polygons with a total of n vertices to this case in O�n logn�
time� Ghosh ���� computes the reduction in linear time� allowing the computation of the minimum�link
convex separator in O�n log k� time� For non�convex polygons� Suri and O�Rourke ���� compute a minimum�
link polygon separating an m�gon and its enclosing n�gon in O�mn� time� we note �as did Ghosh and
Maheshwari ����� that this is actually the easy case and can be solved in linear time�

��� Paths restricted to c orientations

In some applications� most notably VLSI� the orientations of paths are restricted� Rectilinear paths are the
most important and� thus� the most studied�
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For computing rectilinear shortest paths among rectilinear barriers under the Manhattan� or L�� metric�
researchers have developed algorithms that work in simple polygons �e�g� ��
�� and in the presence of obsta�
cles ��� �	� ���� Mark de Berg ���� has given an algorithm that �nds a path that is both a minimum�link
and an L� shortest path in a simple polygon� He and others ���� give a quadratic algorithm for a combined
link and L� metric for paths among obstacles� The fastest algorithms for the �globally� shortest path among
rectilinear obstacles have subquadratic worst�case complexity� O�n logn� if the obstacles are disjoint ��	�
and O�n log� n� if they are not ����
G�uting ���� de�ned c�oriented polygons as a generalization of rectangles� he and others ���� ��� 	�� have

looked at various geometry problems with restricted orientations� The recent survey of Nilsson et al� ����
summarizes many results�
We show that the universal cover is also a useful tool to compute shortest and minimum�link c�oriented

paths of a given homotopy type� Speci�cally� we show �in section 
��� that the shortest Euclidean path�
measured under a convex distance function� has the length of the shortest c�oriented path� In section 
���
we give an algorithm to compute minimum�link c�oriented paths and also show how to use it to compute
a shortest c�oriented path from the shortest Euclidean path� We also look at conditions when a c�oriented
path is simultaneously shortest and minimum�link �section 
����

��� Improved data structures for simple polygons

The algorithms that we develop for the universal cover have implications in the special case of triangulated
simple polygons�

Section ��� By developing a dynamic version of the funnel algorithm� we obtain a linear time algorithm for
shortest path trees that uses only a �xed size deque �doubly�ended queue� and a stack for storage�

Section � For minimum�link paths� where distance is measured by the number of line segments� we develop
an output�sensitive algorithm that runs in linear time in a simple polygon and uses deques and stacks
rather than visibility maps and shortest path trees�

Section 	�� By walking around a loop two or four times� we compute the Euclidean shortest loop in both
orientable and non�orientable manifolds without using shortest path trees�

Section 
 We compute minimum length and�or link paths restricted to c orientations in O�n log c� time�

� Preliminaries

We begin by de�ning some important topological objects� triangulated manifolds� homotopy classes� metrics�
and covering spaces�

��� Manifolds and simplicial complexes

Our results apply to boundary�triangulated ��manifolds �BTMs�� which we de�ne below� BTMs are slightly
more general than polygonal regions in the Euclidean plane� We consider them primarily because every
BTM has a simply�connected covering BTM such that paths have a unique lift into the covering space�
First� recall that a two�dimensional manifoldwith boundary �a ��manifold� is a topological space in which

each point has an open neighborhood homeomorphic to a two�dimensional ball or half�ball� The former are
interior points and the latter are boundary points�
A two�dimensional simplicial complex is a triangulated ��manifold� Spelled out� a two�dimensional sim�

plicial complex is a collection of triangles� edges� and vertices such that any two triangles either do not
intersect� intersect at a vertex� or intersect at two vertices and their common edge� no other intersections are
permitted� At most two triangles are incident to an edge� edges incident to a single triangle are boundary
edges� Furthermore� all the triangles and edges incident to a vertex can be ordered so that boundary edges
are adjacent to their triangles in the ordering� All vertices are either boundary vertices with two incident
boundary edges� or interior vertices with none�
Finally� a boundary�triangulated ��manifold or BTM is a simplicial complex in which all vertices are

boundary vertices� Figure � depicts two simplicial complexes� the second is a BTM� Because vertices are the

�



a. b.

Figure �� Two triangulated manifolds� the one on the right is a boundary�triangulated ��manifold �BTM�

only source of curvature in a piecewise�linear surface� this implies that a BTM is �at�the neighborhood of
any point looks like a portion of the Euclidean plane ���� ����
One can represent a BTM� or any other ��d simplicial complex� in a computer using Guibas and Stol��s

quad�edge structure ��	�� Baumgart�s winged�edge structure ���� or the dual graph of the simplicial complex�
In our algorithms� we require that each triangle ofM be able to access its incident edges and each edge ofM
its incident triangles in constant time� If a polygonal region R is given� we can triangulate R and construct
one of the above representations of the triangulation in O�n logn� time by a sweepline algorithm ���� or� if
R has a constant number of boundary components� in linear time by Chazelle�s algorithm ����
A useful example of a BTM is a triangulated polygonal region R in the Euclidean plane� a set bounded

by n line segments with disjoint interiors� Informally� if one considers the line segments as obstacles and
looks at paths avoiding the obstacles� then one can form equivalence classes of paths by relating paths that
can be deformed to each other within R�relating paths that are homotopic�

��� Homotopy classes

The topological concept of homotopy formally captures the notion of deforming paths� Let � and � be
functions from a topological space X to a topological space Y that are continuous� that is� the preimage
����A� of an open set A � Y is open� Functions � and � are homotopic if there is a continuous function
��X � ��� ��� Y such that ��x� �� � ��x� and ��x� �� � ��x�� One can see that homotopy is an equivalence
relation ��� ����
In this paper� the range set Y is always a boundary�triangulated ��manifold M under the subspace

topology� We specify the set X in two di�erent ways�
First and most importantly� we consider paths joining two given points� p and q� a path in M is the

range of a continuous function �� ��� ��� M � We set X � ��� �� and require that the endpoints of a path �
be �xed at ���� � p and ���� � q� Two paths are path homotopic if one can be deformed to the other in
M while keeping the endpoints �xed� Formally� paths � and � are path homotopic if there is a continuous
map �� ��� ��� ��� �� � M such that ��x� �� � ��x� and ��x� �� � ��x�� and ���� y� � ���� � ���� and
���� y� � ���� � �����
Second� we de�ne a closed loop to be the image of a circle under a continuous map intoM � Thus� we set

X � S�� the unit circle under the standard topology� Two loops with maps � and � are homotopic if there
is a continuous map ��S� � ��� ���M such that ��x� �� � ��x� and ��x� �� � ��x�� We use this de�nition
only in section 	� �A closed loop is di�erent from a path with the starting and ending points identit�ed�
because our de�nition of path homotopy never moves the endpoints of a path��
One could go on to de�ne homotopy in M for two subdivisions � and ��indeed� we do so in a paper

with Guibas and Mitchell ��
� and show that computing minimum�link subdivisions is NP�hard�
A homotopy relation partitions paths or closed loops into equivalence classes� Thus� we can describe a

homotopy class by giving a representative path or loop �� Given �� we seek to compute a minimum length
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representative of ��s class under the Euclidean and link metrics�
Let�s look at one concrete example of a path homotopy� In a BTM� a path gives a sequence of triangulation

edges� we can form a canonical path that visits the midpoints of triangulation edges in the same sequence�
It is easy to see that a path is homotopic to its corresponding canonical path�at times we will �nd it
convenient to use the canonical path as the representative of a homotopy class�
We can concatenate two paths if one ends where the other begins� The next theorem is a well�known

tool for studying paths�

Theorem ��� ���� �	
� The operation of path concatenation has group properties� associativity� identities�
and inverses�

This has an easy corollary for simply�connected ��manifolds� in which every loop is homotopic to a point�

Corollary ��� In a simply connected manifold� any two paths with the same starting and ending points are
homotopic�

��� Path complexity and metrics

In computer applications� paths are most often speci�ed as a sequence of line segments or pieces of low�degree
polynomials� We de�ne the complexity of a path �� denoted C�� to be the number of pieces that compose
�� For a path � in a BTM M we also count ��� the number of times that � crosses a triangulation edge of
M � For the canonical path de�ned above� we have C� � ��� but� in general� either one of the two quantities
could be greater�
We assume that � is represented in the computer in some form that can be traced through the BTM data

structure in time proportional to O�C�  ���� For example� if � is piecewise linear� then for each segment
in each triangle we can compute a constant number of segment�segment intersection points to determine
whether we need to advance to the next segment or to the next triangle� Storing the vertices of � in an array
and the BTM M in any of the data structures mentioned above permits tracing � in O�C�  ��� time�
We consider two metrics for unrestricted paths in a BTM� the Euclidean and link metrics� The Euclidean

metric is the usual L� metric� the length of a path or loop is the sum of the lengths of its pieces in all the
triangles it intersects� In the link metric� the length of a path or loop is the number of its line segments�
Because BTMs are �at� the minimum length paths under both metrics are composed of line segments�
In applying the link metric� we would like to consider two adjacent triangles of a BTM to be coplanar�

even if they are not� Thus� contiguous �line segments� that would be collinear if the triangles they passed
through were laid out �at in the plane are counted as a single segment� This unfolding process is what is
used to �nd shortest paths on the surface of a polyhedron ���� �
��
For some applications� such as VLSI� the paths constructed must use a constant number of �xed directions

or orientations� Rectilinear paths with the four orientations of north� south� east and west are the most
common� When paths are restricted� the link metric remains the number of line segment of a path� The
Euclidean metric� however� should be replaced by a distance function that gives the length of the shortest
restricted path between two points� We discuss this more fully in section 
�

��� Covering spaces

Informally� a topological space U is a covering space of a space X if� at each point u � U � there is a
corresponding point x � X such that things around u and x look the same in their respective spaces� but
there may be many points of U mapping to the same point x�
Formally� let p�U � X be a continuous and onto map between connected topological spaces U and X� If

every point x � X has an open neighborhood N where the inverse image p���N � is a union
S
i
Ui of disjoint

open sets of U and the restriction pjUi is a homeomorphism from Ui onto N � then p is a covering map and
U is a covering space of X�
A space is always a covering space of itself under the identity map� For a more useful example� consider

the covering space of a BTM M formed by the following procedure �see �gure ��� Choose a base triangle of
M � copy it� and make its edges active� Now� any triangle t with an active edge e is a copy of some triangle
t� � M and of an edge e� of t�� There is another triangle u� � M incident to e��copy it� forming u� and
attach u to t along edge e� Make edge e inactive and the other two edges of u active� One can see that the

	



function that sends the copy of a point to its original is a covering map� The covering space thus formed is
the universal covering space of M �
The dual graph of the universal covering space� the

Figure �� A portion of the universal cover

graph with a node for each triangle and an arc joining nodes
that correspond to triangles that are incident to the same
edge� is an in�nite tree rooted at a copy of the base trian�
gle� One can show that the dual graph� considered as an
unrooted tree� is not a�ected by the base triangle chosen� so
the universal cover does not depend on the base triangle�
Furthermore� the universal cover is simply connected�it
has no holes�

Lemma ��� The universal covering space U of a BTM is
simply connected�

Proof � Consider any path � starting and ending at a
point p in the universal covering space U of the BTMM �
The path � intersects some connected subset of the tri�
angles of the covering space�
If � intersects only one triangle� then � collapses to the point p by the homotopy f�t� � ��� t�� tp�

Otherwise� we can consider the triangle containing p as the base triangle for the covering space� The
dual graph of the space is a tree� so the dual of the connected subset of triangles that � intersects must
also be a tree� In any leaf� subpaths of � start and end at the same edge� we can deform these subpaths
to the edge by an easy homotopy and trim the leaves� By induction� � can be contracted to p�
Thus� the universal covering space is simply connected�

Figure �� The lift of �

Any path that begins in the base triangle has a unique lifting to the covering space� as indicated in
�gure �� Formally� let p�U � M be a covering map� If a function f from a space W to the BTM M is
one�to�one and continuous� then a lifting of f is a map !f �W � U such that the composition p !f � f � When
we lift a path �� we use U� � U to denote the BTM composed of the triangles of the universal cover U that
intersect the path !��
One last lemma pulls all of the constructs in this section together�

Lemma ��� If � is a path in a BTM� M � then we can construct U�� the portion of the universal covering
space of M that contains the lift of �� in O�C�  ��� time�

Proof � The construction algorithm is simple� Begin with U� equal to a copy of the triangle of M that
contains the starting point of the path �� Then trace � through M and� simultaneously� trace the lift of
� through the covering space�when � crosses a triangulation edge into a triangle of M � add a copy of
the triangle to U� if the lift has never crossed the corresponding edge before� �Otherwise� the triangle is
already present�� We can trace the path � through the triangles of M in the stated time bound�






� The Euclidean metric

We begin by applying these topological tools to the funnel algorithm� developed by Lee and Preparata ����
and Chazelle �
� and used by many researchers to �nd shortest paths ���� ��� �
� ���� Section ��� reviews this
algorithm and remarks that it can be used to �nd shortest paths between two points of a given homotopy
type� Section ��� extends this algorithm to maintain the shortest path homotopic to a path that is given
on�line� As a by�product� we can �nd shortest path trees in linear time without using �nger search trees�
This simpli�es an important algorithm of Guibas et al� �����

��� Funnels and the shortest path between two points

ap v

u

Figure �� A funnel

First we review funnels� de�ned by Lee
and Preparata ����� Let p be a point and
uv be a line segment in a simply connected
BTM� The shortest paths from p to v and
from p to umay travel together for a while�
At some point a they diverge and are con�
cave until they reach u and v� as illustrated
in �gure �� The region bounded by uv and
the concave chains to a is called the fun�
nel� a is the apex of the funnel� We store
the vertices of a funnel in a double�ended
queue� a deque�
Figure 	 shows that the extensions of

funnel edges de�ne wedges� If we cross the
segment uv into a triangle �uvw� then we
would like to obtain the shortest path to
w to construct the funnel for the segment uw or vw� To �nd the funnel for uw� we pop points from the v
end of the deque until we reach b� the apex of the wedge that contains w� then we push w� If the apex of
the previous funnel is popped during the process� then b becomes the new funnel apex� Notice that the edge
bw is on the shortest path from p to w�
The shortest path algorithms of Chazelle �
� and

a

w

v

u

b

Figure 	� Splitting a funnel about w

Lee and Preparata ���� both look for a path in a sleeve
polygon�a triangulated simple polygon whose dual tree
is a simple path� We shall look for a path in a sleeve
BTM�

Lemma ��� Let � be a path from p to q� One can
compute� in O�C� ��� time and space� a sleeve BTM
that contains the Euclidean shortest path homotopic to
��

Proof � Choose the triangle that contains p as the
base triangle and construct U�� the portion of the
universal cover that contains the lift of �� according
to lemma ����
In the dual tree of U�� there is a unique path

to the triangle containing the lift of q� let �� be the
canonical path in U� that corresponds to this dual
path� Since U� is simply connected� the lift of �
and �� are homotopic �corollary �����
The BTM U�� � U� is a sleeve� A boundary edge e of U�� may separate the universal cover but

can not separate p from q� Any path homotopic to �� that crosses e does so twice and can be shortened






by following e� Thus� the shortest path from p to q homotopic to �� �and� under projection� to �� is
contained in U�� �

Trace the canonical path �� through U�� and maintain the funnel of the triangulation edges crossed� The
set of all edges added to the funnel comprises the shortest path tree rooted at p� that is� the union of all
shortest paths from p to vertices of U�� � From this tree it is easy to recover the shortest path from p to q�
Thus� we have obtained

Theorem ��� The Euclidean shortest path that is homotopic to a given path � can be computed in O�C� 
��� time and jU�j space�

��� On
line shortest paths and shortest path trees

In this section� we show how to maintain the deque that represents the funnel for a path � that is given
on�line� We wish to trace � through the universal cover in O�C�  ��� time� as above� Since� however� we
do not know the entire path ahead of time� we must be able to handle doubling back over the same triangle
edge many times� we cannot a�ord to do more than a constant amount of work to update the deque each
time�
Besides being useful for interactive applications� this procedure can be adapted to compute shortest path

trees in a simply connected BTM� �The shortest path tree from a point p is the union of all shortest paths
from p to vertices of the BTM�� Guibas et al� ���� compute the shortest path tree of any triangulated simple
polygon by splitting funnels�they use �nger search trees to �nd the splitting vertices and split the funnels
e�ciently� We �nd the shortest path tree by tracing the boundary and maintaining the funnel� the edges
added to the funnel compose the tree� Our algorithm uses arrays in place of �nger search trees and still runs
in linear time� We describe �rst the data structure and then the algorithm that uses it�
We use an array and a history stack to support �ve operations on a deque that stores a funnel�

Length�deque� Return the number of items in the deque�
Index�deque� i� Return the ith item in the deque�
Add�f� deque� x � Add the item x to the f�front �or b�back� of the deque�
Split�f� deque� i� Return the items in f�front �or b�back� of and including

item i and discard the other half of the deque�
Undo�deque� Undo the most recent Add�� or Split�� operation�

We store the deque in the entries of an array with indices from �rst through last � When we perform an
Add�� or Split��� we record the previous values of changed array entries and�or indices in a history stack
so that the Undo�� operation can return the array to the previous state� The code fragments in table �
indicate that the operations can be implemented to run in constant time� If we begin with an empty deque�
denoted by indices �rst � n and last � n � �� and perform at most n Add�� operations� then an array of
size �n is su�cient to hold the deque�

Length�deque�
return last � �rst  �

Add�f� deque� x �
decrement �rst
push �Add� f� deque��rst�� to stack
set deque��rst�� x

Split�f� deque� i�
check � � i � Length�deque�
push �Split� f� last� to stack
set last � i �rst

Index�deque� i�
check � � i � Length�deque�
return deque�i  �rst�

Undo�deque�
if stack top is �Add� f� x�

set deque��rst�� x
increment �rst

else stack top is �Split� f� i�
set last � i

Table �� Code fragments for the front�of�deque operations
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Suppose the path � begins at point p in a BTM M � The algorithm will trace � through the universal
cover according to lemma ����beginning with the base triangle that contains p� Notice that whenever the
lift of � is in the base triangle� the funnel deque should consist only of p� Whenever the lift of � crosses
an edge uv out of the base triangle� we add the endpoints to the funnel deque by Add�f� deque� u� and
Add�b� deque� v��
Suppose the path � crosses an edge uv into a new triangle �uvw that is added to U�� If � later leaves

through one of the other edges of �uvw� then the current funnel is split into the funnels de�ned by uw and
by vw as illustrated in �gure 	� The key observation is that whenever the lift of � is in �uvw� the index
i of where the deque is to split is the same� We use an increasing increment search to compute this index
i� check the extension of the �st� �nd� �th� �th� etc�� edge of the funnel until we pass the point w� then
perform binary search to �nd the wedge containing w� By searching from the front and back simultaneously�
we �nd the splitting index in O�log d� steps� where d � minfi�Length�deque�� ig� Finger search trees were
used in ���� to implement the simultaneous increasing�increment search� but arrays avoid the extra pointer
complexity� We store this splitting index with �uvw in U��
Now� consider the dual graph of U��the triangles of the universal cover that intersect the lift of ��as

a tree rooted at and directed toward the base triangle� When the path � encounters a triangulation edge�
� is heading either away from or toward the base triangle� If � is heading away� then we perform a Split��
indicated by the index stored in the current triangle and Add�� the new triangle vertex to obtain the next
funnel� If � is heading toward the base� then we Undo�� the last two operations� usually a split�add pair�
but an add�add when � is returning to the base triangle� Lemma ��� establishes that this on�line algorithm
and the previous section�s o��line algorithm compute the same funnel�

Lemma ��� For a curve � from p to q in a BTMM � the on�line algorithm computes the funnel corresponding
to the sleeve of the path from p to q in the universal cover of M �

Proof � We prove this lemma by induction on the number of triangulation edges that � crosses� The
induction hypothesis is that the pairs of operations that have been placed on the history stack are exactly
those that would be performed by the o��line algorithm� This is trivially true if � is entirely contained
in the base triangle�
Suppose the invariant holds for all paths crossing k triangulation edges� and let � be the concatenation

of ��� which crosses k triangulation edges� and ���� which crosses one edge� If ��� traverses an edge away
from the base triangle� then the sleeve of � is the sleeve of �� with one new triangle added to the end�
The split�add �or add�add� performed and put on the history stack establishes the hypothesis for ��
Otherwise� ��� traverses an edge towards the base triangle� Since the sleeve of � is the sleeve of �� minus
the last triangle� undoing the last two operations performed and removing them from the history stack
does the right thing�

Except for �nding the splitting index�which one does once for each triangle of the universal cover U��
one does a constant amount of work when visiting a triangle� The analysis of Guibas et al� ���� can be
applied here to show that the time to �nd the splitting indices is linear in ��� In brief� the time to compute
splitting indices for the triangles of U� is bounded by T ���� where

T �n� � max
i

�
T �i�  T �n � i�  logminfi� n� ig

�
�

Thus� we have established the following theorem�

Theorem ��� One can trace a path � through the universal cover of a BTM and maintain the funnel in
O�C�  ��� time and space�

If P is a triangulated simple polygon and � is the path from a vertex p around the boundary of P and
back to p� then the algorithm computes the edges of the shortest paths from p to each of the vertices of the
polygon�that is� the shortest path tree of P �

� The link metric

In this section we show how to compute the minimum�link path� ��� homotopic to a given path � in time
proportional to C�  ��  ���� the complexity of the path � plus the number of triangles intersected by
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both paths� Our approach is inspired by Ghosh�s ���� observations about the relationship between minimum
Euclidean and link paths in simple polygons� We compute the Euclidean shortest path and then use a greedy
approach to minimize the number of line segments� Our algorithm is output�sensitive and is simpler than
that of Ghosh in the simple polygon case� it avoids his middle step of computing a visibility polygon�
First� some de�nitions� Since we have enough time� O�C� ���� to compute the Euclidean shortest path

in the homotopy class of �� we may assume that � is the shortest path from p to q� �The shortest path has
complexity at most ��� � so we perform all remaining complexity analysis in terms of ����� As before� U is
the universal covering space and U� consists of the triangles of U that intersect ��
Traversing � from p to q� we can label each

p

q

a t v
bu

s

Figure 
� Extension ext�tu� separates U

vertex as a left or right turn� We call an edge
tu of � an in�ection edge if the labels of t and
u di�er� edges incident to p and to q can also
be called in�ection edges� �Ghosh calls such
edges eaves�� The extension of a line segment
tu in U � denoted ext�tu�� is the line segment�
ray� or in�nite line formed by extending tu un�
til it hits boundary points of U � In a sim�
ple polygon� Ghosh observed that there is al�
ways a minimum�link path including one line
segment from the extension of each in�ection
edge� This is also true in the universal cover�

Lemma ��� If tu is an in�ection edge of a
Euclidean shortest path �� then a minimum�
link path homotopic to � can be assumed to
use a subsegment of ext �tu��

Proof � Let s and v be the endpoints of the extension ext�tu� so that these points appear in order s� t�
u� v� Each of the segments st� tu� and uv separates p from q in the universal covering space U � so any
path from p to q must cross all three segments� as shown in �gure 
� If a path �� from p to q intersects
st at a and uv at b� we can shortcut �� with the segment ab � ext�tu�� Since some line segment of ��

intersected tu� this shortcut does not increase the number of segments on the path�

Thus we can assume that any in�ection edges are included in the minimum�link path� We have reduced
our problem to one of �nding the minimal link path from uv� a segment extending one in�ection edge� to
u�v�� a segment extending another� where the shortest path from u to u� is concave� see �gure 
�
If the extension segments uv and u�v� intersect in U�� then no additional segments are needed� Otherwise�

consider the Euclidean shortest path � from v to v� in U�� the path from u to u� and � form what has been
called the hourglass of uv and u�v�� The path � helps �nd a segment of the minimum�link path�

Lemma ��� The minimum�link path joining uv and u�v� either has zero or one segments or it can be chosen
to include an in�ection edge of �� the shortest path from v to v��

Proof � If � is concave� then the concave chains can be separated by a line� one segment can join uv to
u�v��
Otherwise� � has an in�ection edge� Let bc be the in�ection edge closest to v as shown in �gure 
�

�We consider v to be labeled opposite u so that b may be v�� Because the paths from u to c and v to c
are both concave� the extension of bc intersects uv at some point a� Let cd be the extension of bc through
c in U�� Any path from uv to u�v� must intersect both bc and cd� If we shortcut the path by following
the subsegment of ad from a� through c� to the intersection of the path with cd� then we do not increase
the number of line segments on the path�

Finally� we discover the in�ection edge bc� if it exists� in time proportional to the number of triangles
that ac intersects by the procedure outlined in table � and described in the rest of this section�
Notice that ac is tangent to the concave chain� We �nd ac by moving the point a up the edge uv and

maintaining the point c tangent to the chain� We stop the motion when one of three cases occurs�
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Variables�
Points a� c� c��
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v

u

c c

e

H

b

Figure �� The hull H

a sweeps �upward� along segment uv�
ac is tangent to the concave chain at c�
Point c� follows c on the concave chain�

Edge e� the �rst �t�edge� hit by �av

Data structure�
�H� b��� the convex hull and the point

having a tangent of slope � ��gure 	�
Description�

Uses Graham scan 
��� to maintain the convex hull
of endpoints of triangulation edges �t�edges�

Operations�
Add�p� f or b�� Add points to front or back of H
ChangeSlope���� Change slope to � and recalculate b�

Initialize
a� u� c� next�a�� and c� � next�c�
e� the �rst t�edge hit by �av

for each t�edge crossing ac in order from a to c
if an endpoint p lies in � vac then Add�p�b�

b� � the last point Add��ed to H
repeat

ChangeSlope�slope of ac�
move a along uv� rotating ac around c until

case 
� if ac is part of u�v�

use ac as the last link in the path
exit program

case �� a reaches v�
use vc in the minimum�link path
exit loop

case �� Line segment ac hits b�
use ac in the minimum�link path
exit loop

case �� slope of ac points into H at b�
ChangeSlope�slope of ac�

case �� a hits e
if an endpoint p lies in � vac then Add�p� f�
e� �rst t�edge hit by �av

case �� a� c� and c� become collinear
For each t�edge that hits cc� in order from c to c�

if an endpoint p lies in � vac� then Add�p� b�
change pivot c� c�� c� � next�c��

loop
if c �� u�� repeat program using ext�ac� as uv

Table �� Computing the minimum�link path between in�ection edges uv and u�v�
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Figure 
� The path � has in�ection edge bc

�� The tangent �ac becomes a segment of u�v�� no extra segments are needed�

�� The moving point a reaches the polygon boundary� which implies a � v� the segment vc is the in�ection
edge of ��

�� The tangent �ac encounters a point b between a and c� the segment bc is the in�ection edge�

The third case is the most di�cult to detect� we use the following technical lemma�

Lemma ��� The point b �rst encountered by the sweeping tangent is the endpoint of a triangulation edge
that crosses the segment ua or the chain from u to c�

Proof � Because a triangulation has no re�ex an�

v

u

c

a

b

Figure �� The sweep stops at b

gles� the tangent segment ac must cross a triangula�
tion edge incident to b before it touches b� Since the
segments ua and ac and the concave chain from u to
c form a closed region� shown in �gure �� the lemma
holds�

Lemma ��� implies that we need look only at the con�
vex hull of the endpoints of triangulation edges that we
encounter during the sweep� These endpoints appear on
the hull above ac in the same order as their edges ap�
pear along ac� Points are added only at the ends of the
segment ac� so we can maintain the convex hull by a Gra�
ham scan ���� in a deque� Furthermore� the slope of ac
changes monotonically� so we can also maintain b�� the
point of the hull having a tangent with this slope� When
ac hits b�� then b�c is an in�ection edge that lemma ���
says can be used in a minimum�link path�
These arguments establish the correctness of the algorithm outlined in table �� To establish the running

time� notice that the amount of work required to �nd a segment of the minimum�link path is proportional to
the number of triangulation edges that intersect the region depicted in �gure �� Since this region is free of
points� these edges must intersect either ua or ac� Since these segments are part of the minimum�link path�
we can charge this work to the number of triangles crossed by the computed path and obtain theorem ����
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Theorem ��� A minimum�link path ��� homotopic to �� can be computed in space and time proportional
to O�C�  ��  �����

In a simply connected BTM� a minimum�link path can cross

Figure ��� The k�link minimum path
intersects "�kn� edges

any triangulation edge at most three times� any path that
crosses a triangulation edge e four or more times can be short�
cut by a portion of e� decreasing its length without changing its
homotopy class since all paths with the same starting and end�
ing point have the same homotopy class� Thus� the total time
to compute minimum�link paths in simple polygons is linear�
Among many obstacles� a minimum�link path with k segments
can intersect "�kn� triangulation edges� as shown in �gure ���

� Loops

The algorithms of the previous section can be used to �nd the
shortest and minimum�link closed path whose starting and end�
ing points coincide�that is� for a loop that is pinned to the
starting point� For completeness� we show how to use the uni�
versal cover to help �nd shortest and minimum�link loops of a given homotopy class that is not pinned to
pass through any given point� We compute Euclidean shortest loops in section 	�� by simply walking around
the loop at most four times� this can be applied to compute relative convex hulls ���� 	�� 	�� and minimum�
perimeter inpolygons ����� For minimum�link loops� section 	��� we have nothing new to add except the
obvious generalizations from nested polygons to BTMs�

��� Euclidean shortest loops

The funnel algorithm� outlined in section ���� computed a shortest path in a sleeve polygon�a triangulated
polygon whose dual was a path� For shortest loops� we de�ne a band analogously as a BTM whose dual is a
single cycle� In this section� we �rst reduce the problem of computing the shortest loop of a given homotopy
type to the problem of �nding the shortest loop around a band�
A band is orientable if and only if the boundaries of its triangles can be be traversed so that each internal

edge is traversed once in each direction� Orientable bands have two boundary cycles and non�orientable
bands have only one� Subsections 	���� and 	���� deal with the orientable and non�orientable cases of the
reduced problem�

Lemma ��� In a BTM M with a loop �� we can compute a band whose shortest loop is the lift of the
shortest loop homotopic to � in M � Computation time and space is O�����
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Proof � Choose any point p on � and �nd the sleeve

p

Figure ��� Constructing a band

of the path from p to p along �� An initial sequence of
triangles and triangulation edges of this sleeve will ap�
pear in reverse order at the end of the sleeve� as shown in
�gure ��� Remove all but the last of these common trian�
gles� and glue those together� The result is either a single
triangle� in which case � is homotopic to a point� or else
it is a ��manifold M � whose dual has a single cycle�M �

is a band� We must show that the band M � contains the
lift of the shortest loop homotopic to ��
We can begin with the band and perform the universal

cover construction to obtain a ��manifold of genus one
that contains the lift of �� Suppose we remove an edge
from this manifold� We either separate the manifold or� if the edge is an internal edge of the band� we
reduce the genus to zero� This proves that edges internal to the band must be crossed an odd number
of times and all other edges must be crossed an even number of time by any loop homotopic to �� But�
just as in lemma ���� this implies that the shortest path crosses internal edges once and no other edges�
Thus� the band contains the shortest loop homotopic to ��

Before we solve the problem of computing the shortest loop around a band� we de�ne the concepts of
turn angles and cut manifolds�
The turn angle ��gure ��� of an oriented piecewise�linear path with given

Figure ��� Turn angle

starting and ending points in a BTMM is measured by following the orientation
of the path and summing the angles of its turns� Each turn has an angle
�� � � � �� �locally� right turns are negative and left are positive� The turn
angle of a loop is the turn angle of the path around the loop starting and ending
at the orientation of some edge�which edge is chosen does not a�ect the angle�
If we cut a bandM along any non�boundary triangulation edge e� we obtain

a simply connected manifold Mcut whose boundary has two copies of e� The
shortest loop around M becomes a shortest path in Mcut between two copies
of a point p � e� �Czyzowicz et al� ���� show how to use shortest path maps to
compute the shortest path between the two copies of e in linear time�we will
use somewhat lighter artillery�� Around the boundary of Mcut� the copies of e
have the same or opposite orientations� depending on whether the band M was orientable or non�orientable�
We will handle these cases separately in the following two subsections�

����� Orientable bands

In this section� we show how to �nd the shortest loop around an orientable band� After de�ning the inner
boundary of the band� we state a procedure using the funnel algorithm ���� to compute the shortest loop by
walking around the inner boundary twice� We prove its correctness in the rest of the section�
The boundary of an orientable band M consists of two closed curves� 	R to the right and 	L to the left

ofM �s cycle� According to the next lemma� the turn angle of the shortest loop in an orientable band equals
the turn angle of the canonical loop or either boundary curve�

Lemma ��� In an orientable BTM� two simple �i�e�� non�self�intersecting	 oriented loops that are homotopic
have the same turn angle�

If the turn angle of M is negative� then we say that 	R is the inner boundary� otherwise 	L is the inner
boundary� In the �gures� the triangles are laid out �at in the plane� which would give turn angles of 	���
Manifolds that cannot be embedded in the plane give rise to other turn angles�
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The following procedure computes the shortest loop�

Figure ��� Around the inner boundary

�� Let uv be a line segment of the inner boundary�
�� Use the funnel algorithm to compute the shortest path
� from u to v that winds around the band twice� �See
�gure ����

�� Let p be a vertex that appears twice on the path� the
path from p to p is the shortest loop�
This algorithm is based on the fact that once we identify a

point p on a shortest loop� we can compute the loop by com�
puting the shortest path from p back around to p� Lemma 	��
says that there is a shortest loop touching a vertex of the inner
boundary�

Lemma ��� There is a shortest loop that touches a vertex of
the inner boundary�

Proof � If the turn angle of a band M is positive� then the
shortest loop must make a left turn� It can only do so by turning at a vertex of the left or inner boundary�
The case of a negative turn angle is symmetric�
If the turn angle of the band M is zero then any shortest loop turns as much to the right as to the

left� Thus� if it turns at all� it turns at vertices of both the inner and outer boundaries� If the shortest
loop does not turn� then cut the band M along a triangulation edge e�the two copies of e are parallel
and the shortest loop becomes a straight line segment 
 between corresponding points of the copies of e�
Without changing the length of the segment 
� one can translate 
 to the left until it touches a vertex of
the inner boundary�

With this lemma� we can prove correctness�

Theorem ��� Given an orientable band M composed of n triangles� the procedure above correctly computes
the shortest loop around M in linear time�

Proof � Let p be the vertex on the inner boundary of some shortest loop whose existence is proved by
lemma 	��� The shortest path � from u starts on or inside this shortest loop and reaches p before going
completely around the band� Similarly� the shortest path from v reaches p before going around the band
in the other direction� Thus� p is reached twice�
The path � can thus be decomposed into three pieces� the shortest path from u to p� denoted �u� the

shortest loop around the band� denoted �� and the shortest path from p to v� denoted �v� The vertices
of � are obviously the vertices of the shortest loop� Together �u and �v compose the shortest path from
u around to v�a vertex appears on this path only once� Thus� any vertex that appears twice on � is on
the shortest loop and can be used in place of p�

����� Non
orientable bands

One might think that computing the shortest loop in a non�orientable band would be more di�cult� In this
section� however� we show how to �nd the shortest loop that winds twice around the band by a reduction to
an orientable band� We then show how to obtain the shortest loop from this curve� The result is theorem 	�	�

Theorem ��� Given a non�orientable band M composed of n triangles� one can compute the shortest loop
around M in linear time�

We can conceptually take two copies ofMcut� reverse one left�to�right� and paste them into a single band
Mdouble� as shown in �gure ��� The band Mdouble is orientable and has turn angle zero� starting from
triangulation edge e� you travel through one copy of Mcut until you encounter the reversed copy� denoted
eR� Then you travel through the reversed copy of Mcut until you reach e again� The turn angles in each
copy of Mcut have opposite sign� We can use the procedure of the previous section to �nd the shortest loop
in Mdouble that touches the left boundary�call it �� Notice that � is the shortest loop that winds around
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M twice� so its length is at most double the length of the shortest loop in M � We shall see that the length
is exactly double�
Suppose � intersects e at a point p� Then the shortest loop touching the right boundary is the shortest

path starting and ending at the corresponding point pR � eR� In other words� the shortest loop in Mdouble
touching the right boundary is �R�the loop � viewed from the perspective of edge eR� This should not be
surprising as M has only one boundary�
We now consider two cases depicted in �gure ��� First� if
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Figure ��� Cases for the shortest loop in
Mdouble

the shortest loop � inMdouble makes any turns� then � makes
turns on vertices of both the right and left boundaries� Since
the shortest loop touching a given boundary is unique� both
loops � and �R are identical� Therefore� � passes through the
point pR � eR�that is� � winds around the shortest loop in
M twice�
Second� if the shortest loop � makes no turns� then by

cutting the manifold Mdouble along e� we see that the loops
touching the left and right boundaries� � and �R� form two
parallel lines� If the intersections with e are points p on the
left and q on the right� as shown in �gure ��b� then the in�
tersections with eR are the corresponding points qR on the
left and pR on the right� The line �� parallel to � and �R
and passing through the midpoint of the segment pq is also
a shortest loop in Mdouble� Moreover� �

� also passes through
the midpoint of qRpR� But these two midpoints are just the
corresponding points on two copies of e� As a result� �� winds
around the shortest loop in M twice�

��� Minimum
link loops

As in section 	��� if we know a vertex or edge of a minimum�link loop� we can use the path algorithm to
compute it� When a minimum�link loop is convex� however� it seems di�cult to �nd such a vertex or edge�
Because of the algorithm of section 	��� we can assume that our loop � is the minimum Euclidean curve

of its homotopy class� If � has an in�ection edge� then we can use the path algorithm of table � to �nd the
paths between in�ection edges�a fact that has also been noted by Ghosh and Maheshwari ����� Lemma ���
implies that the resulting loop is a minimum�link curve�
If � has no in�ection edges� then all minimum�link loops are convex� One can use the technique of

Aggarwal et al� ��� as extended by Wang �	�� and Ghosh ���� to �nd a minimum�link loop� Brie�y� one �nds
an initial loop �nding a minimum�link path from p around to p� the resulting path has at most one segment
more than the minimum� One then rotates this loop� keeping track of its points of contact with the inner
and outer chains� to see if one can shorten the loop� The algorithm �nds a minimum�link loop with k line
segments in O�n log k� time� It would be interesting to discover a matching lower bound�

� Paths with restricted orientations

For some applications� such as VLSI� the paths are restricted to c �xed directions� we call such paths c�
oriented� Rectilinear paths with the four orientations of north� south� east and west are the most common�
In this section� we show that the universal cover is also a good tool for �nding minimal c�oriented paths of
a given homotopy class�
First� in section 
��� we de�ne convex polygonal distance functions appropriate to a given set of orien�

tations� Then we show in section 
�� that the length� under a convex distance function� of the Euclidean
shortest path computed in section ��� equals the length of the shortest c�oriented path� Section 
�� shows
how to modify the minimum�link algorithm of section � to compute minimum�link c�oriented paths� Finally�
section 
�� shows that for paths restricted to three directions and for rectilinear paths� each homotopy class
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has a shortest path that is also a minimum�link path� Mark de Berg ���� has independently noted this fact
for rectilinear paths in simple polygons�
In each of the following sections� when we wish to construct paths restricted to c orientations explicitly�

then we also restrict the boundary of the obstacles to the same set of c orientations� With such a restriction�
there is always a path with at most O�n� segments that follows obstacle boundaries� Without such a
restriction� one can construct examples where any c�oriented path joining a given pair of points has in�nitely
many line segments�

��� Metrics versus distance functions

When paths are restricted� the link metric remains the number of line segment of a path� We can replace
the Euclidean metric� however� by a distance function that gives the length of the shortest restricted path
between two points� The Manhattan or L� metric� in which the length of a vector v is the sum of the lengths
of the projections of v on the horizontal and vertical axes� is an example of a distance function for rectilinear
paths�
More generally� we can use Minkowski�s convex distance functions �
�� Let A be a convex set whose

interior contains the origin� The length of a vector v with respect to A is the amount that A must be scaled
to include v� that is� kvk

A
� inff� 
 � � v � �Ag� The distance from point r to s is ks � rk

A
� The distance

function need not induce a metric because it need not be symmetric� kvk
A
may not equal k � vk

A
� It does�

however� satisfy the triangle inequality �
�� if u v � w then kuk
A
 kvk

A

 kwk

A
�

The points of the boundary of A are precisely the unit vectors of the distance function k � k
A
� Choosing

A to be the unit circle gives the Euclidean metric� choosing A to be the diamond de�ned by the four unit
vectors in the axial directions gives the L� metric� For a c�oriented path� which is a path restricted to
follow the orientations of c unit�length basis vectors u�� u�� � � � � uc� we choose A to be the convex hull of
f��� u�� � � � � ucg� We assume that the ui appear on A in the order listed�
As an aside� if the origin �� is on the boundary of A then vectors that are not contained in the angle

formed by the boundary of A at �� have in�nite length� They cannot be reached by a c�oriented path because
they cannot be expressed as a positive linear combination of the basis vectors�
A path that follows c chosen orientations has the same length under the Euclidean metric and under

the associated convex distance function� More importantly� a vector v measured under a convex distance
function has the length of the shortest c�oriented path from the origin to v�we show this in the next lemma�

Lemma ��� Let A be the convex hull of fu�� u�� � � � � ucg� a circularly�ordered set of basis vectors and let v be
a vector in the wedge de�ned by adjacent basis vectores ui and ui��� Vector v � aui bui�� i
 kvk

A
� a b�

Proof � This is true for the unit vectors of the distance function kvk
A
� �� which are on segments�

�ui  �� � ��ui�� for � � � � �� that join adjacent basis vectors on the boundary of the convex hull�
Since length scales with the vector� it remains true for arbitrary vectors v�

��� Shortest paths under a convex distance function

We use lemma 
�� to �nd the length of the shortest path of a given homotopy type under a convex distance
function� As before� we �rst compute the Euclidean shortest path � from p to q and use it as the representative
of the homotopy class� This takes O�C�  ��� time�
The proofs leading to theorem ��� use only the triangle inequality to show that the path computed in

section ��� is minimum under the Euclidean metric� But this implies that

Theorem ��� The Euclidean shortest path computed in section ��� is a shortest path under any convex
distance function�

Lemma 
�� implies that if we replace each segment of the Euclidean shortest path by a �zig�zag� or
�staircase� made from the two adjacent basis vectors� then we will have a c�oriented path of the same
�minimum� length� By cutting the Euclidean shortest path at all points with tangent vectors that are
among the c basis vectors and computing c�oriented �staircases� for the resulting pieces we will �nd a
shortest c�oriented path that has the fewest possible links�
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Lemma ��� Let t be a point of the Euclidean shortest path � having a basis vector u as a tangent vector�
Any minimum length path under the convex distance function goes through t�

Proof � Slice the universal cover into three pieces by a line segment through t and parallel to u� Any
path from p to q �rst crosses this segment at or before t and last crosses it at or after t� By applying
lemma 
�� to the wedge containing u alone� we see that the shortest path under the convex distance
function is inside this segment from the �rst to last crossing and therefore passes through t�

We can perform this cutting by simply traversing the Euclidean path�think of driving a car along the
path� as in Guibas� Ramshaw� and Stol��s kinetic framework for computational geometry �����and cutting
it whenever the direction of travel is one of the c basis vectors� �If c is not considered a constant� then we
can use binary search to �nd the wedges that contain the slopes of edges� The time complexity becomes
O�C� log c���
The slopes on each resulting path lie in a wedge de�ned by two adjacent basis vectors� Thus� by lemma
���

each path should be replaced by a path using only those two orientations� If we are unconcerned about the
number of links then� using the two orientations� we can remain within an arbitrarily small neighborhood of
the Euclidean shortest path� More likely� however� one would want to construct a shortest c�oriented path
using the smallest number of links� The next section develops an algorithm for the more general problem of
computing minimum�link c�oriented paths� Section 
�� mentions how this algorithm can be simpli�ed when
there are only two directions of interest and also discusses when a minimum link path can also be a shortest
path under the convex distance function�

��� Minimum
link c
oriented paths

This section develops a greedy algorithm to compute a minimum�link c�oriented path homotopic to a path �
from p to q� Each link �line segment� reaches as far as possible towards q� guided by the Euclidean shortest
path� De�ne the i�link region of p� denoted Ri�p�� to be the set of all points of the universal cover that
can be reached by a c�oriented path of i links from p� If q is not in Ri�p� then we shall �nd two c�oriented
segments on the boundary 
�Ri�p�� with adjacent orientations that separate p from q in the universal cover�
We compute the two segments of 
�Ri���p�� that separate p from q from the two segments of 
�Ri�p���
Section � used essentially this greedy approach to compute an unrestricted minimum�link path� In that

case� however� the boundary of the i�link region is a single line segment and one can compute the links of
the path in time proportional to the number of triangles that the path crosses� In this section we will have
to explore two possible ways to reach the goal q� This di�culty arises already in rectilinear paths� where
one must decide whether to begin with a horizontal or a vertical step� �It is interesting that� even with more
allowed orientations� no more than two paths need be considered at any time�� The time required by our
algorithm will therefore be proportional to the number of triangles explored� which may be greater than the
number of triangles intersected by the �nal path� The worst�case bounds are similar to those of section ��
If c is a constant� O�nk� time is su�cient to construct a k link path of a given homotopy class and O�n k�
time is su�cient in a simple polygon� If c is not a constant but the basis vector directions are initially sorted�
then the algorithm can be implemented to run in O�nk log c� and O�n k log c� time� respectively�

Lemma ��� Let � be a Euclidean shortest path from p to q in a BTM M � and let U be the universal covering
space of M � Suppose Q is the connected component of U �Ri�p� that contains q� Then 
�Q��
�U � consists
of at most two segments from a point r that have adjacent orientations u and v�

Proof �We prove this by induction� The ��link regionR��p� consists of maximal length segments radiating
out from p in the permitted orientations� If we cut the universal cover U along these segments and look
at the component Q that contains q� we �nd that 
�Q� contains a portion of one of these segments in
degenerate cases or two adjacent segments meeting at p in non�degenerate cases�
Now� assume that the i�link region has boundary segments ru and rv that come from the point r in

directions u and v� as depicted in �gure �	� Without loss of generality� we can assume that u is clockwise
of v and that the Euclidean path � turns to the right� Any minimum�link c�oriented path � that is
homotopic to � must cross one of the segments ru or rv� by cutting the path � at this crossing point and
replacing the initial portion with an i link path� we can assume that � uses part of ru or rv as its ith
link�
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There are two cases to consider when extending the path � by one link� depending on whether there
is some c�oriented segment from ru or rv that is tangent to the Euclidean shortest path � or not�
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Figure �	� Computing part of 
�Ri���p�� from 
�Ri�p��� shaded

Suppose� �rst� that there is no such tangent� as in �gure �	a� Imagine drawing maximal length
segments in Q from rv in direction u� there will be some segment s that that is the last one crossed by
� en route to q� Similarly� draw the segment t from ru in direction v that is last crossed by ��
We notice that segments s and t intersect� If � hits s after t� as in �gure �	a� then ru� rv� s and �

bound a simply connected region in U that t enters by crossing �� Since t cannot cross ru or rv or recross
�� t must cross s� Let r� � s � t� The �i  ���link region is bounded by the portions of s and t in the
directions of u and v from r� because they are the extremal segments in the directions of u and v and
segments in other orientations cannot reach from ru or rv to the segments from r�� This establishes the
lemma for the �rst case�
Second� suppose that there is a c�oriented tangent to � from rv� Let t be the c�oriented tangent

furthest clockwise from v� as shown in �gure �	b� Tangent t � U has an end on rv� is tangent to �
at b� and has maximal length� Now� draw segments from rv in the next orientation clockwise from the
orientation of t and let s be the last segment crossed by �� Let r� � s � t� If r� lies between rv and b
on t� then the �i ���link region is bounded by the segment of t following b� Otherwise� r� follows b on t
and the �i  ���link region is bounded by the two segments from r� in the directions of s and t�

This lemma and its proof indicate a way to start from p and obtain a sequence of points� each of which a
minimum�link c�oriented path can pass through in one of two adjacent directions� If we can compute these
points and directions� then we can construct the minimum�link path as follows� Begin at r � p with the at
most two candidate paths whose initial orientations delimit the smallest wedge containing the orientation of
the �rst segment of the Euclidean shortest path �� Obtain the next point r� and the pair of directions� which
come from non�tangents in the �rst case of lemma 
�� and from a tangent and a non�tangent in the second
case� In the �rst case� both candidate paths are extended by one link� In the second� the candidate path
that cannot be extended by a tangent is discarded and the path up through r is �xed� Then new candidate
paths are begun that pass through r� in two directions and the process continues� The algorithm stops with
a minimum�link c�oriented path when one of the candidate paths reaches q�a fact that can be detected by
the tangent��nding algorithm�
To compute the sequence of points and directions we need to �nd extreme c�oriented tangents to �� if

they exist� and �nd extreme segments of �xed orientations that connect the old link region boundary to ��
Both of these tasks can be performed by a modi�cation of the minimum�link path algorithm presented in
table �� Since this algorithm �nds the extreme tangent by sweeping a tangent segment and recording in a
convex hull the endpoints of triangulation edges that cross the sweep� there is little modi�cation required to
�nd an extreme c�oriented tangent� In �gure �	a� the sweep would begin at the intersection of � and ru and
maintain a tangent segment to � as the other endpoint moved up to r and then along rv� When the extreme
tangent is found� the extreme c�oriented tangent� if any� can be reported by searching the list of orientations�
The same idea�sweeping a segment and maintaining the endpoints of triangulation edges that cross the
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sweep�applies to �nd the extreme segment with a given orientation� Since the orientation is �xed� one does
not need to record the convex hull of the endpoints ahead of the sweep� Storing the �rst endpoint that will
be encountered is su�cient�
The extra exploring means that we do not have output�sensitive bounds for c�oriented paths�

Theorem ��� One can construct a minimum�link c�oriented path homotopic to � in time and space pro�
portional to the number of triangles that contain candidate segments for the minimum�link path�

If the c allowed orientations are initially sorted� then the worst�case time bound to compute a k�link path
in a BTM with n triangles is O�nk log c�� This analysis can be sharpened for a simply connected BTM if
there are two opposite basis vectors� If we use the algorithm of Fournier and Montuno ��
� to change the
triangulation to a trapezoidation with sides parallel to these basis vectors� then c�oriented paths can follow
the edges of the trapezoids� Any trapezoid edge that intersected more than three edges of a path could be
used to shorten the path� Thus� each trapezoid is explored a constant number of times� The running time
of the algorithm in this case is O�n k log c��

��� Simultaneous minimization of length and links

In the c�oriented case� as in the unrestricted case� a minimum�link path is usually not the shortest path
and vice versa� A �long� straight detour can generally save several turns� In this section we remark that a
simpli�ed version of the minimum�link path algorithm can compute the path with fewest links of all shortest
c�oriented paths� For rectilinear paths and paths restricted to three directions� we prove that this path is
also a minimum�link path�that length and links are minimized simultaneously�
Section 
�� showed that the shortest c�oriented path under a convex distance function can be obtained

by breaking the Euclidean shortest path at all vertices with basis vector tangents and approximating each
piece by a path that follows two adjacent orientations� But this breaking implies that only the �rst case
for extending a path can arise in lemma 
��� Therefore� we can compute such paths entirely by sweeping
segments with �xed orientations�we need not maintain convex hulls to determine where the sweep ends�
We do need to try both candidate paths� however� and merge collinear segments from separate pieces to
compute the shortest c�oriented path with the fewest links�
To determine when this path is also a minimum�link path� we make the following de�nition� A member u

of a set of basis vectors B satis�es the halfplane condition if there is a halfplane that contains all of B except
u� Now� consider driving along the Euclidean shortest path� moving and turning in accordance to Guibas�
Ramshaw� and Stol��s kinetic framework for computational geometry ����� and noting in which basis vector
orientations you face during a turn about a vertex� If the basis vector tangent at a vertex has the halfplane
condition� then shortest and minimum�link paths can both pass through that vertex in the direction of the
basis vector�

Lemma ��� If a tangent basis vector� u� of a point t on the Euclidean shortest path � satis�es the halfplane
condition� then a minimum�link c�oriented path homotopic to � has an edge passing through t in direction u�

Figure �
� The halfplane condition
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Proof � Cut the universal cover through t along a line that de�nes a halfplane containing all the basis
vectors except u� as illustrated in �gure �
� If any c�oriented path crosses this cut at t� then it must do
so in direction u by the halfplane condition and the fact that u is a tangent basis vector�
If the crossing is not at t� then we can move it to t without increasing the number of links as follows�

Because of the halfplane condition� a c�oriented path must cross the cut using an edge e that is parallel
to u� Separate the universal cover into three pieces by a line segment through t and parallel to u� We
can shorten the path by a portion of this line segment� the number of links does not increase because
edge e is cut o� the path�

For rectilinear paths and any convex distance function de�ned by three vectors� all vectors satisfy the
halfplane condition and lemma 
�
 implies that a minimum�link path goes through all the points with
tangents that are basis vectors� To compute the minimum�link c�oriented path� we could cut the Euclidean
shortest path at all these points and compute the path greedily� This� however� is precisely the computation
of the shortest path with fewest links�the path computed is minimum with respect to the convex distance
function and the link metric simultaneously�

� Conclusions

We have shown that the universal covering space of a triangulated region gives a useful framework for
optimizing paths in the region under the Euclidean and link metrics� We have given simple� direct algorithms
for Euclidean shortest path trees and minimum�link paths that use arrays in place of �nger search trees� We
have also given new algorithms for computing minimum length and minimum link c�oriented paths�
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