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1 Introduction

Both planar graphs and flows and cuts of transportation networks are classical areas in algorithms research.
Recently, many results were extended from planar graphs to their natural generalization, higher genus
surfaces. We are particularly interested in studying the minimum cut problem of graphs embedded on
surfaces.

2 Grpahs and Surfaces

In this section we introduce the very basic concepts of graph embedding on surfaces. For more comprehensive
treatments, see Mohar and Thomassen [1].

2.1 Surfaces and Curves

A surface Σ is a compact connected Hausdorff topological space that is locally homeomorphic to either
the plane R2 or to the closed halfplane {(x, y) ∈ R2 | x ≥ 0}. Formally, the surfaces are also known as
2-manifolds. A surface is said to be with boundary if there exist points which have an open neighborhood
homeomorphic to the closed halfplane. The set of such points forms the boundary of the surface. A surface
is said to be orientable if one can consistently choose a normal vector for all points, and non-orientable
otherwise. Equivalently, a surface is non-orientable if it contains a subset homeomorphic to the Mobius
band.

A path p in a surface Σ is a continuous mapping from the closed interval [0, 1] into Σ. A loop l is a
path which maps the endpoints of the interval into the same point, called the basepoint of the loop. A cycle
γ in Σ is a continuous mapping from the unit circle S1 into Σ. An arc is path for which the image of the
endpoints is on the boundary of Σ. Paths, loops, cycles, and arcs are refered as curves. The genus of a
surface Σ is given by the maximum number of simple disjoint closed curves that one can draw on Σ without
separating it.

2.2 Graph Embeddings

An embedding of an undirected graph G = (V, E) on the surface Σ is: (i) a mapping of all vertices v ∈ V into
distinct points in Σ; and (ii) a mapping of all edges (u, v) ∈ E into simple paths in Σ that only intersect at
common endpoints. An embedding of a directed graph is an embedding mapping edges into oriented paths.
The faces F of the embedding are the connected components of Σ \G. An embedding is said to be cellular
(or 2-cell) if all faces are homoemorphic to open disks. Let Σ be a surface of genus g with b boundaries.
Then |V | − |E|+ |F | = χ(Σ), where χ(Σ) = 2− 2g − b if Σ is orientable and χ(Σ) = 2− g − b otherwise.
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3 Minimum Cuts

The minimum cut problem and its dual, the maximum flow problem are classical problems in analyzing
transportation networks. Formally, a (s, t) − cut C of a graph G = (V, E) is a set of edges in E such
that the vertex s and the vertex t are in different connected components in (V, E \ C). A minimum cut
(s, t)− cut C is a (s, t)− cut of minimum total weight. For planar graphs, there are algorithms computing
the minimum cut that run in O(nlogn) time both for undirected graphs and directed graphs [2], [3]. As a
consequence of the Euler’s formula, for any fixed surface Σ and any cellular embedded graph G = (V, E),
we have that E = O(V ). For arbitrary sparse graphs, the fastest known algorithm achieves a O(n2logn)

complexity [4], [5]. For integer capacities bounded by a constant U , the best result known is O(n
3
2 lognlogU)

[6]. Recent work by Chambers et al. allow the computation of the minimum cut of a graph embedded on
an orientable surface of genus g in gO(g)nlogn time [7].

4 Proposed Work

To our knowledge, the problem of finding the minimum cut of an undirected weighted graph embedded on
an orientable surface in near-liniar time is still open. We propose to develop an efficient solution.
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