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Maximum flows and minimum cuts are some of the most heavily studied areas in theoretical
computer science. Since the publication of Ford and Fulkerson’s paper [7] which introduced the
max-flow min-cut theorem, much work has been done to provide faster algorithms for computing
maximum flows on graphs. In particular, work has been done to find more efficient algorithms for
maximum flows and minimum cuts in planar undirected [8, 10, 12] and directed [1, 2, 6] graphs.
Until very recently, though, nothing was known about computing maximum flows and minimum
cuts in graphs embedded on more general surfaces that was not simply based on graph sparsity.
This changed when Chambers et al. showed an O(n log n) algorithm for computing a minimum
cost cut in an undirected planar graph embedded on a surface of fixed genus [4] as well as efficient
algorithms for computing maximum flow in a directed graph embedded on a surface of fixed
genus [3].

Despite this recent success, it appears that there is still work to be done before we can match the
running time of Borradaile and Klein for planar graphs [2]. For a graph of genus g, the algorithms
of [3] run in O(g7n log2 n log2 C) if we are given integer capacities summing to C and O(gO(g)n3/2)
if a combinatorial algorithm is required. Chambers et al. conjecture in the same paper that this
can be improved to O(gkn log n) for some small constant k, but it is still unclear how we might
accomplish this.

We formally define the problem as follows using notation given in [6]. We are given a directed
graph G = (V,E) embeddable on a surface Σ with designated source and sink vertices s, t ∈ V.
Assume that for every edge (u→ v) ∈ E, there also exists the reversal edge rev(u→ v) = (v→ u). An
(s, t)-flow is a function φ : E→ IR such that φ(e) = −φ(rev(e)) for every edge e and

∑
w φ(v→ w) = 0

for every vertex v except s and t. The value of the flow is
∑

w φ(s → w). If we are also given
non-negative edge capacities c : E → IR, then φ is considered feasible if φ(e) ≤ c(e) for every edge
e. We wish to find a feasible flow of maximum value.

Open Problem 1. Does there exist a combinatorial O(gkn log n) maximum flow algorithm for
graphs embeddable on a surface of genus g where k is some small constant? Baring that, does
there exist an O( f (g)n log n polylog C) algorithm for embeddable graphs with integer edge capaci-
ties where f is a function of the genus and C is the sum of the edge capacities?

One seemingly promising line of attack was explored by Erickson in his restating of Borradaile
and Klein’s solution to the planar maximum flow problem in an input graph G as a parametric
shortest path problem for the oriented dual graph G∗ [6]. Changes to the shortest path tree in
the dual graph can be effected in O(log n) time using a dynamic tree data structure such as a
self-adjusting top tree [13]. The tree only has to change O(n) times, so the total running time of the
algorithm is O(n log n). Unfortunately, the number of changes to the tree is no longer linear when
the graph is embedded on a surface of higher genus, supporting the idea that other tactics will be
necessary to solve the problem.

Another potential line of attack is to consider planar subgraphs of the input graph. In particular,
suppose our input graph is embedabble on a surface of genus g and the edges are given integer
capacities. It may be possible to find some planar subgraph P ⊆ G such that max f low(P) ≥
max f low(G)/ f (g) for some function f of the genus. By repeatedly finding augmenting flows
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through these planar subgraphs using an O(n log n) planar maximum flow algorithm, it should be
possible to compute a maximum flow for G in O( f (g)n log n log |F∗|) where |F∗| is the value of the
maximum flow in G. While this algorithm is not combinatorial due to the dependence on integer
edge weights, it would remove a log n factor from the running time of the current best known
algorithm for surfaces of bounded genus. Unfortunately, we do not know how to find these special
planar subgraphs or if they even exist.

It is also conceivable that we could use graph separators to solve the problem since any surface
graph of bounded genus has a small separator [5]. Separators are used for finding planar shortest
paths with non-negative edge lengths in linear time [11], so it seems likely that it could be used
for flows in higher genus graphs as well. It may also be possible to decompose the input graph
into a number of planar subgraphs so we may perform optimizations of flow traveling over and
between these subgraphs. Perhaps the push/relabel strategies of Goldberg and Tarjan could be
used while computing flows between the subgraphs [9].
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