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CHAPTER 41

Covering Spaces2

Oh! marvellous, O stupendous Necessity—by thy laws thou dost compel every
effect to be the direct result of its cause, by the shortest path. These [indeed]
are miracles...

— Leonardo da Vinci, Codex Atlanticus (c. 1500)
translated by Jean Paul Richter (1883)

Those who cannot remember the past are condemned to repeat it.

— George Santayana, Reason in Common Sense (1905)

A straight line may be the shortest distance between two points,
but it is by no means the most interesting.

— The Doctor [Jon Pertwee], The Time Warrior (1973)
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Motivation, problem statement. Merge into previous chapter?
The important observation is missing: Polygons with holes look like graphs. The

universal cover of a graph is the infinite tree that algorithms search when they forget
to mark nodes as visited. So any algorithm to find X in a tree/polygon automatically
finds “homotopic X” in any graph/holey polygon, as long as you forget to remember
(or remember to forget) where you’re going.

−·•�• ·−

4.1 Definitions4

A covering map is a continuous surjection p : bX � X such that any point x ∈ X has an5

open neighborhood U whose preimage p−1(U) can be written as the union of disjoint6
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4. COVERING SPACES

sheets
hat X
covering space
simply connected
universal cover
tilde X

open sets
⊔

i∈I Ui , and the restriction of p to each open set Ui is a homeomorphism to U .7

The open sets Ui are sometimes called sheets over U . If there is a covering map from a8

space bX to another space X , we call bX a covering space of X . By convention, we require9

covering spaces to be connected. As a trivial example, every space is a covering space of10

itself, with the identity function (or any other homeomorphism) as the covering map.11

The local behavior of every covering map.

As an elementary example, suppose X is the “figure eight” graph with one vertex12

x and two edges r and b. Every covering space bX of X is a connected graph in which13

every vertex has degree 4. There are an infinite number of such graphs, some finite and14

others infinite. Suppose we arbitrarily orient the edges r and b, color edge r red, and15

color edge b blue. Then we can visualize any covering map from bX to X by orienting16

and coloring the edges of bX so that each vertex is incident to one incoming red edge,17

one incoming blue edge, one outgoing red edge, and one outgoing blue edge.18

In fact, every connected graph where every vertex has degree 4 is a covering space19

of X .20

Proof: Orient the edges of bX by following an arbitrary closed Euler tour. Color each21

oriented edge red if it is the first dart in the Euler tour leaving its tail and blue otherwise.22

Now every vertex in bX is incident to one incoming red edge, one incoming blue edge,23

one outgoing red edge, and one outgoing blue edge, as required. �24

Universal Cover25

Recall that a space is simply connected if every closed curve is contractible. A simply-26

connected covering space of X is called a universal cover of X . In fact, up to homeo-27

morphism, every connected space X has a unique universal cover, denoted eX . The name28

“univeral” is motivated by the fact that eX is also a covering space (in fact, the universal29

cover) of every connected covering space of X .30
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4.1. Definitions

basepoint
lift of a point
projection
lift of a point
lift of a homotopy

The universal covering space eX can be described more directly as the set of all31

homotopy classes of paths from a fixed basepoint x ∈ X :32

eX x := {[π] | π: [0,1]→ X and π(0) = x} .33

The associated covering map ep : eX x → X simply maps any homotopy class to its final34

endpoint: ep([π]) = π(1).1 For any path α in X , the function φα : eXα(0)→ eXα(1) defined35

by φα([π]) = [α ·π] is a homeomorphism. Thus, we can omit the basepoint from our36

notation with no loss of precision.37

For example, the plane is its own universal covering space, as is the sphere. The38

universal cover of the closed annulus {(x , y) | 1≤ x2+ y2 ≤ 2} is the infinite strip39

{(θ , r) | 1≤ r2 ≤ 2} (where r and θ are not polar coordinates).40

The infinite strip is the universal cover of the annulus.

Describe (universal) covering spaces of graphs, polygons with holes −·•�• ·−

Lifting Paths and Homotopies41

Any point bx ∈ bX is called a lift of its projection p(bx) ∈ X ; equivalently, the lifts of any42

point x ∈ X are the points in the preimage p−1(x). A lift of a path π: [0, 1]→ X is any43

path bπ: [0,1]→ bX such that bπ ◦ p = π. A lift of a path can be uniquely specified by44

choosing a list of one of its endpoints.45

Lemma 4.1. Let p : bX → X be a covering map. For any path π: [0, 1]→ X and any point46

bx ∈ p−1(π(0)), there is a unique path Π: [0,1]→ bX such that Π(0) = bx and Π ◦ p = π.47

Similarly, any homotopy bh: [0, 1]2→ bX is a lift of its projection bh ◦ p.48

Lemma 4.2. Let p : bX → X be a covering map. For any homotopy h: [0, 1]2→ X and any49

point bx ∈ p−1(h(0, 0)), there is a unique homotopy H : [0, 1]2→ bX such that H(0, 0) = bx50

and H ◦ p = h.51
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4. COVERING SPACES

shortest homotopic
path

metric space

This can be proved using crossing sequences for polygons with holes, or with a
standard compactness argument for arbitrary domains.

−·•�• ·−

Define lift of point, path, homotopy. Unique lift of paths and homotopies (or
any function from a simply-connected domain). Lift construction for canonical
paths/homotopies (and thus for crossing sequences) is straightforward by induc-
tion; construction for arbitrary paths/homotopies requires a standard compactness
argument.

Covering spaces of graphs.

−·•�• ·−

Lemma 4.3. Let p : bX → X be a covering map.52

• For any contractible loop b` in bX , the loop p ◦b` is contractible in X .53

• Let ` be a contractible loop in X . For any point bx ∈ bX such that p(bx) = `(0), there is54

a contractible loop b` in bX such that bx = b`(0) and p ◦b`= `.55

Why is universal cover unique? Prove simply-connected implies universal?−·•�• ·−

Corollary 4.4. A loop ` in any space X is contractible if and only if ` lifts to a loop in the56

universal cover eX .57

Metric Spaces58

Define metric, geodesic, isometry, complete, closure, metric completion. Canoni-
cal examples: The metric completion of an open polygon with holes is its closure.
However, the metric completion of the plane minus points is not its closure (the
plane).

Metrics lift to covering spaces. Any cover of the completion of X is the completion
of a cover of X . Universal cover eP of the plane minus points is homeomorphic to an
open disk, but not isometric to an open disk. Thus, the metric completion of eP is not a
closed disk!

But all this is practically moot. If you don’t think about it too hard, your algorithm
will do the right thing. Sigh.

−·•�• ·−

Corollary 4.5. The shortest path in X homotopic to a given path α is the projection of the59

shortest path in eX between the endpoints of any lift eα of α.60

4.2 Shortest (Homotopic) Paths in Polygons61

The shortest homotopic path problem can be described as follows: Given a path π in62

some topological metric space X , find a path π̄ of minimum length that is homotopic to63

π. In this chapter we consider an algorithm for a concrete special case of the shortest64
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4.2. Shortest (Homotopic) Paths in Polygons

sleevehomotopic path problem, where the space X is a polygon with holes and the path π is a65

polygonal chain. This algorithm was first sketched by Leiserson and Maley [?], applied66

to more complex VLSI routing problems by Maley [?,?] and Gao et al. [?], and more67

formally described and analyzed by Hershberger and Snoeyink [?].68

Strip redundant definitions from earlier chapters: polygons (with holes), triangulation,
homotopy, crossing sequences, etc. Define metric and geodesic!

−·•�• ·−

The input to our algorithm is a simple polygon P and a polygonal path π (which69

may not be simple). The Jordan-Schönflies theorem implies that the shortest path π̄70

homotopic to π is just the shortest path in P from π(0) to π(1). Nevertheless, we will71

approach this special case as though its topology were nontrivial, because it illustrates72

important concepts that are useful in more general settings.73

As in the previous chapter, we let n denote the number of edges of P, and let k74

denote the number of segments in the path π.75

Move following parity discussion to Chapter 3. −·•�• ·−
We can also characterize reduced crossing sequences in terms of parity. For any76

diagonal edge e, the Jordan Curve Theorem implies that P\e has exactly two components.77

If an edge label e occurs an odd number of times in X (π), then π(0) and π(1) lie in78

different components of P \ e; thus any path from π(0) to π(1) must cross e, and the79

shortest path must cross e exactly once. On the other hand, if an edge label e occurs an80

even number of times in X (π), then π(0) to π(1) are in the same component of P \ e,81

so that shortest path π̄ does not cross e at all. Thus, the reduced crossing sequence X̄82

contains precisely the edge labels that appear an odd number of times in X (π); moreover,83

these labels are sorted by their first (or last) occurrence in X (π).84

Algorithm starts where our earlier contractibility algorithm left off. Compute a frugal
triangulation of P in O(n log n) time. Compute the crossing sequence ofπ in O(k+x) =
O(nk) time. Reduce the crossing sequence in O(x) = O(nk) time. If the reduced
crossing sequence is empty, the shortest path is a line segment inside a single triangle.
Otherwise, build the sleeve and then compute the funnel.

−·•�• ·−

Sleeves and Funnels85

Let X̄ denote the reduced crossing sequence, and let x̄ denote its length; because X̄86

contains each diagonal at most once, we have x̄ ≤ n−3. With X̄ in hand, we can restrict87

our attention to a subset of the triangles. The reduced crossing sequence defines a88

sequence of x̄ + 1 triangles, starting with the triangle containing π(0) and ending with89

the triangle containing π(1). The sleeve of X̄ is constructed by gluing together copies of90

the triangles in this sequence along their common edges.91

Update figure; modify example from previous chapter. −·•�• ·−

5



4. COVERING SPACES

funnel
tail of a funnel
apex!of a funnel
fan!of a funnel
wedge

A
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The sleeve for the reduced crossing word DEFHMNVWX.

If x̄ = 0, the sleeve consists of a single triangle, and the shortest path from π(0)92

to π(1) is a simple line segment. So assume from now on that x̄ > 0. We can clearly93

construct the sleeve in O( x̄) time. Lemma ?? implies that π̄ is the shortest path within94

the sleeve from π(0) to π(1).95

Finally, we compute the shortest path through the sleeve using an algorithm inde-96

pendently discovered by Tompa [?], Chazelle [?], Lee and Preparata [?], and Leiserson97

and Maley [?]. The funnel of any diagonal e of the sleeve is the union of shortest paths98

from π(0) to all points on e. The funnel consists of a polygonal path, called the tail,99

from π(0) to a point a called the apex, plus a simple polygon called the fan. The tail100

may be empty, in which case π(0) is the apex. The fan is bounded by the edge e and two101

concave chains joining the apex to the endpoints of e. The shortest path from π(0) to102

either endpoint of e consists of the tail plus one of the concave chains bounding the fan.103

Extending the edges of the concave chains to infinite rays defines a series of wedges,104

which subdivide not only the fan but the triangle just beyond e.105

CMYK-ify the funnel figures.−·•�• ·−

tail
apex

fan
e

tailtailtail
apexapexapex

fanfanfan

Anatomy of a typical funnel.

Beginning with a single triangle joining π(0) to the first edge in X̄ , we extend the106

funnel through the entire sleeve one diagonal at a time. Each diagonal shares one107

endpoint with the previous diagonal; suppose we are extending the funnel from edge108

uv to edge vw. There are two cases to consider.109

Let t be the predecessor of u on the shortest path from π(0) to u. If the points v110

and w lie on opposite sides of the ray−→ut, then the new endpoint w does not lie inside any111
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4.2. Shortest (Homotopic) Paths in Polygons

wedge of the current fan. We can detect this case in O(1) time with a single orientation112

test, and then extend the tunnel in O(1) time by inserting w as a new fan vertex.113

u

v

w

t

Extending and widening the funnel.

Otherwise, we contract the funnel, intuitively by moving u continuously along the114

boundary edge uw. Each time the point crosses the boundary of a wedge, we remove115

a vertex from the fan. If the removed vertex is the apex, its successor on the shortest116

path from π(0) to v becomes the new apex, and the tail grows by an edge. We can117

detect whether the moving point will cross any wedge boundary in O(1) time using our118

standard orientation test. Thus, the total time in this case is O(d + 1), where d is the119

number of vertices deleted from the fan. However, the total number of deleted vertices120

cannot exceed the total number of previously inserted vertices, so the amortized time to121

process this case is also O(1).122

Summing Up123

When the funnel has reached the last edge in X̄ , we compute the shortest path from124

π(0) to π(1) in the sleeve by treating π(1) as a triangle vertex and extending the funnel125

one last time. Thus, assuming the polygon is already triangulated, the overall time to126

compute the shortest path is O(x + x̄) = O(x) = O(nk).127

In an actual implementation, it is not necessary to separate the algorithm into128

separate crossing sequence, reduction, sleeve, and funnel phases. Instead, it is possible129

to compute the tree of shortest paths from π(0) to every vertex of every triangle crossed130

by the input path π in O(x) time using single traversal of π, after which the shortest131

path to π(1) can be extracted in O( x̄) time.132
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4. COVERING SPACES

Extending and narrowing the funnel; the apex moves in the fourth step.

4.3 Polygons with Holes133

Hershberger and Snoeyink [?] actually solve the shortest homotopic path problem for134

polygons with holes. Surprisingly, the algorithm we just described can be applied to135

polygons with holes with no significant modifications! As before, let n denote the136

number of edges in P, and let K denote the number of segments in π.137

• In the preprocessing stage, compute a frugal triangulation of P in O(n log n) time.138

• Compute the crossing sequence X (π) in O(x) time, where x = O(kn) is the139

number of crossings.140
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4.3. Polygons with Holes

• Reduce the crossing sequence in O(x) time. We emphasize that the reduced141

crossing sequence X̄ may contain the same edge label more than once, just not142

twice in succession.143

• Compute the sleeve of X̄ in O( x̄) time, where x̄ is the length of X̄ . Each time144

a path following X̄ enters a triangle, we add a new copy of that triangle to the145

evolving sleeve. Thus, if a reduced path enters the same triangle five times, the146

resulting sleeve contains five different copies of that triangle. The sleeve is no147

longer a triangulated simple polygon; however, it is still homeomorphic to a disk.148

Moreover, if we represent the sleeve as a linked list of triangles, any self-overlaps149

are simply irrelevant.150

A

B

C

D

E

F G H

I

J

K
L

M

N
O

P

Q

R
S

T
U

V
W

X

YZ12

3
4

A reduced path in a polygon with two holes, with and the resulting non-simple sleeve.
The crossing sequence of the path is UTS21ZYWVTSRQPJIHGFCBDEKLMNOJ.

• Compute the shortest path in the sleeve using the funnel algorithm in O( x̄) time.151

Even in this more general setting, the fan is always a simple polygon, so each152

extension step can be carried out exactly as described. The tail may intersect itself153

or the fan any number of times, but the algorithm won’t notice.154

• The overall running time of the algorithm is O(n log n+ x + x̄) = O(n log n+ nk).155

Another useful way to think about the behavior of the algorithm is that it cannot156

distinguish between the original polygon with holes P and its universal cover eP. The157

correspondence between homotopy classes of paths and reduced crossing sequences158

implies the following description of eP in terms of the triangulation of P. We describe an159

infinite triangulation of eP by listing its constituent triangles and then declaring which160

pairs of edges should be identified.161
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4. COVERING SPACES

basepoint
legal
equivalent!characters

in crossing
sequences

d-regular graph
bouquet of circles

Fix an arbitrary basepoint p ∈ P. Call a string X of edge labels legal if it is the162

reduced crossing sequence of a path πX with πX (0) = p. For each legal string X , let ∆X163

denote a unique copy of the triangle containing πX (1). Thus, each triangle ∆ lifts to164

an infinite number of triangles ∆X , one for each reduced crossing sequence X ending165

in ∆. If X and Y are legal strings with Y = X e, the triangles ∆X and ∆Y each contain a166

copy of edge e on their boundary; call these copies eX and eY .167

The universal cover eP is obtained from the disjoint union of all triangles ∆X168

by identifying all pairs of edges eX and eY such that X = Ye for some edge e.169

The choice of basepoint is unimportant; different basepoints induce different legal170

crossing sequences and therefore differently labeled triangles, but the resulting infinite171

triangulations are isomorphic.172

That last sentence deserves a proof. Exercise?−·•�• ·−
The resulting triangulation of eP is infinite. However, our shortest (homotopic) path173

algorithm only examines the finite set of triangles that intersect the path eπ.174

We can also describe the transformation from P to eP strictly in terms of crossing175

sequences. In any crossing sequence X , call two edge labels X [i] and X [ j] equiv-176

alent if the substring X [i .. j] can be reduced to the empty string. For example, in177

the crossing sequence ABCCCBCABCCBACBBC, we can indicate equivalent labels with178

subscripts: A1B1C1C1C1B2C2A2B3C3C3B3A2C2B2B2C2. Then the reduced crossing sequence179

is simply the subsequence of distinct labels that occur an odd number of times, in180

order by their first occurrence, exactly as in the simply polygon case. For example,181

the crossing sequence A1B1C1C1C1B2C2A2B3C3C3B3A2C2B2B2C2 reduces to A1B1C1B2C2 =182

ABCBC. Nonequivalent occurrences of the same edge actually refer to two different lifts183

of that edge in the universal cover.184

4.4 Closed Obstacles185

Common practice to discuss shortest (homotopic) paths in the plane minus points,
or minus line segments. Formal definition in terms of metric completion is a bit of a
mess, but algorithmic extension is straightforward.

−·•�• ·−

4.5 Exercises186

1. A graph G is d-regular if every vertex of G has degree d. A bouquet of k circles187

is the unique graph with one vertex and k edges. Prove that for every positive188

integer k, every connected 2k-regular graph is a covering space of the bouquet of189

k circles.190

2. Prove that the graph of the cube is a covering space of the graph of the tetrahedron.191

3. Prove that the underlying graph of any band decomposition Σ� is a covering space192

of the bipartite graph with two vertices and three edges.193
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4.5. Exercises

All spaces are nice!Notes194

1. (page ??) Formally, we must also define the topology of the space eX . Let U be a basis195

of simply connected open sets for X . (All spaces are nice!) For any set U ∈ U and any196

path π: [0,1]→ X with π(1) ∈ U , define197

U[π] =
¦

[π ·η]
�

� η: [0, 1]→ U such that η(0) = π(1)
©

.198

Then the set eU := {U[π] | π(1) ∈ U ∈ U} is a basis for a topology on eX . For any two199

homotopic paths π and σ from x to a point in U , we have U[π] = U[σ]; on the other200

hand, if π and σ are not homotopic, then the sets U[π] and U[σ] are disjoint. The201

restriction of ep to any set U[π] is a homeomorphism to the base neighborhood U; it202

follows that ep : eX → X is a covering map. Detailed proofs of these claims are given by203

Lee [?].204
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