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CHAPTER 51

Generic and Regular Curves2

Turning and turning in the widening gyre
The falcon cannot hear the falconer;
Things fall apart; the centre cannot hold;
Mere anarchy is loosed upon the world

— William Butler Yeats, “The Second Coming” (1921)

3

In this chapter we study two numerical invariants of closed curves in the plane,4

called the winding number (with respect to a point) and the rotation number. Informally,5

the winding number of a closed curve is the number of times the curve winds around a6

point, and the rotation number is the number of rotations made by the tangent vector7

during one traversal of the curve. The formal definitions of these invariants for arbitrary8

curves are subtle, but for reasonably tame curves, they are intuitive and can be computed9

quickly by elementary algorithms.10

Winding and rotation numbers have been known at least informally since 1770,11

when they were discussed in a seminal paper of Meister [22].1 Especially in complex12

analysis, the winding number is also known as the index of a curve with respect a13

point [28, 33]. The rotation number has been given many other names, including14

numerum complicationum [22], Amplitudo [11], l’espèce du polygone [31], die Art des15

Vielecks [49], curvatura integra [6], der Grad von f [16], angular order [26,27], tangent16

winding number [8, 14, 42], curliness [17], Whitney degree [18], Whitney index [33],17

total signed curvature [12], (unfortunately) index [3,4], and (even more unfortunately)18

winding number [21,33,37,46].19

To avoid difficulties with pathological cases, we explicitly consider only closed20

curves that have a finite number of of self-intersection points, each of which is a pairwise21
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5. GENERIC AND REGULAR CURVES

generic closed curve
normal closed curve
stable closed curve
vertices
edges
loop
compactness argument
winding number
wind alpha q
tame

A curve with winding number 1 around a point; the same curve has turning number 0.

crossing; we call such curves generic. (Whitney called generic curves normal [47]; 1

other authors call them stable [30].) Any curve can be made generic by an arbitrarily 2

small perturbation. A generic closed curve with at least one self-intersection point can 3

be represented combinatorially by a planar embedding of a planar graph in which every 4

vertex has degree 4. For this reason, we consistently refer to the self-intersection points 5

of a generic curve as its vertices and the subpaths between successive vertices as its edges. 6

Conversely, any 4-regular plane graph describes a finite set of generic closed curves that 7

intersect transversely at a finite number of points. 8

Stick to loops, or talk about cycles everywhere instead? We need the basepoint to
talk about signed vertices, but not for anything else.

−·•�• ·−

5.1 Winding Numbers 9

Recall that a loop in the plane is a continuous function γ: [0,1] → R2 such that 10

γ(0) = γ(1). For any loop γ and any point q = (a, b) that is not in the image of γ, there 11

are continuous functions ρ : [0,1]→ R+ and θ : [0, 1]→ R such that 12

γ(t) =
�

a+ρ(t) cos(2πθ(t)), b+ρ(t) sin(2πθ(t))
�

. 13

The function ρ is uniquely given by ρ(t) = ‖γ(t)− q‖. Proving that an appropriate 14

angle function θ exists for arbitrary loops requires a compactness argument similar to 15

Lemma ??; the function θ is unique up to addition of an arbitrary integer. The winding 16

number of γ around q, denoted wind(γ, q), is the quantity wind(γ, q) := θ(1)− θ(0). 17

Intuitively, wind(γ, q) is the number of times that γ winds counterclockwise around q. 18

The fact that γ is a loop immediately implies that wind(γ, q) is an integer. 19

Signed Crossings 20

If the loop γ is reasonably tame, the winding number wind(γ, q) can be computed 21

as follows. Let ρ be an arbitrary infinite ray based at q that crosses the loop γ a 22

finite number of times. (The existence of such a ray can be taken as the definition 23

2



5.1. Winding Numbers

positive crossing
negative crossing
exercise for the reader
Umlaufsatz

of “reasonably tame”!) Call a crossing positive if γ crosses ρ from right to left, and1

negative otherwise. Results from previous chapters imply that the winding number2

wind(γ, q) is equal to the number of positive crossings minus the number of negative3

crossings; we leave the details of the proof as an exercise for the reader.4

Two positive crossings and a negative crossing.

This characterization immediately implies a linear-time algorithm to compute wind-5

ing numbers of polygonal loops that is only slightly more complex than the POINTINPOLY-6

GON algorithm from Chapter ??. The subroutine CROSSSIGN returns +1 for each positive7

crossing and −1 if for each negative crossing. (The final return statement correctly8

handles the case where q lies on the loop, even when the loop is not generic; see below.)9

WINDINGNUMBER(P[0 .. n− 1], q):
wind← 0
P[n]← P[0]
for i← 0 to n− 1

wind← wind+CROSSSIGN(q, P[i], P[i+ 1])
return wind

CROSSSIGN(q, r, s):
if r.x < s.x

sign←−1
swap r↔ s

else
sign←+1

if (q.x < s.x) or (q.x ≥ r.x)
return 0

else if ∆(q, r, s)< 0
return 0

else if ∆(q, r, s)> 0
return sign

else
return sign/2

Computing the winding number of a polygon around a point.

An argument similar to the proof of Lemma ?? implies that any two points in the10

same component of R2 \ imγ define the same winding number—as we continuously11

translate the ray from one basepoint to the other, crossings may appear and disappear,12

but always in matched pairs, one positive and one negative. In particular, if p is in the13

unbounded component, then wind(γ, p) = 0. If γ is a simple loop, the Jordan curve14

theorem implies that the winding number with respect to every interior point is either−115

or 1, depending on whether the curve turns clockwise or counterclockwise; Hopf [16]16

called this observation the Umlaufsatz (“Circulation Theorem”). More generally, winding17

3



5. GENERIC AND REGULAR CURVES

uncrossing moves
Seifert decomposition
exercise for the reader
free homotopy

numbers within adjacent components of R2 \ imγ differ by exactly 1, with the larger 1

winding number on the left side of the curve. 2

Alexander [1] used this characterization of the winding number as its definition; in 3

fact, it is already implicit in the work of Meister [22] and Möbius [24]. 4

2
1

0
–1

1
0

Alexander numbering: Winding numbers of points in each region.

The definition of winding number can be extended to points that lie on the curve. 5

For any point γ(t) that is not a vertex, we define wind(γ,γ(t)) to be the average of the 6

winding numbers on either side of γ(t). For any vertex x , we define wind(γ, x) to be the 7

average of the four regions incident to x; if two of these incident regions are identical, 8

that region is counted twice in the average. (These cases are properly handled by the 9

last return statement in the subroutine WHICHSIDE.) 10

Cycle Decomposition 11

We can also characterize winding numbers by decomposing the loop into simple loops 12

using uncrossing moves. An uncrossing move modifies the curve only in a small 13

neighborhood of an intersection point, by replacing two intersecting subpaths with two 14

new non-crossing paths. Because the curves are directed, the choice of new paths is 15

unique, as shown below. Uncrossing a self-intersection point of a loop splits it into two 16

smaller loops; uncrossing an intersection point of two loops merges them into one larger 17

loop. Uncrossing every self-intersection decomposes γ into a collection of non-crossing 18

simple loops, called the Seifert decomposition of γ [38]. 19

It is not hard to show that starting from any generic set of closed curves, uncrossing 20

moves do not change the sum of the winding numbers; we leave the proof as an exercise 21

for the reader. Thus, if we can decompose any loop γ into simple loops γ1, . . . ,γk by 22

uncrossing moves, then wind(γ, q) is the number of counterclockwise loops γi that 23

contain q minus the number of clockwise loops γi that contain q. 24

Free Homotopy 25

If we continuously deform γ without touching the point q, the winding number 26

wind(γ, q) remains constant. Recall that a free homotopy between two loops γ and δ 27

in R2 \ {q} is a function h: [0, 1]2→ R2 \ {p} such that h(0, t) = γ(t) and h(1, t) = δ(t) 28

for all t, and h(s, 0) = h(s, 1) for all s. As long as γ remains reasonably tame during a 29

4



5.2. Rotation Numbers

compactness argument
One can mechanically

verify
regular curve
regular closed curvew

w+1

w

w−1

w

w+1

w

w−1

An uncrossing move. The curve does not change outside the dotted circle.

2
1

0
–1

1
0

2
1

0
–1

1
0

2
1

0
–1

1
0

Winding numbers are preserved by uncrossing.

free homotopy, crossings with the fixed ray r appear and disappear in positive-negative1

pairs. Proving that arbitrary free homotopies preserve the winding number requires2

another compactness argument, first provided by Hopf [16].3

Hopf also proved that any two loops with the same winding number around a fixed4

point are freely homotopic, using the following direct construction. Let ζ: [0,1]→ S1
5

denote the loop ζ(t) = (cos2πt, sin2πt) that winds once counterclockwise around6

the unit circle at constant speed. For any integer k, let ζk(t) = ζ(kt) = ζ(kt mod 1);7

the loop ζk clearly has winding number k around the origin. Fix a loop γ: [0,1] →8

R2 \ 0. Following the definition of the winding number, choose continuous functions9

r : [0, 1]→ R+ and θ : [0, 1]→ R such that γ(t) = r(t) ·ζ(θ (t)). One can mechanically10

verify that the function h: [0, 1]2→ R2 \ 0, defined by setting11

h(s, t) :=
�

s+ (1− s)r(t)
�

· ζ
�

s · t ·wind(γ, 0) + (1− s)θ(t)
�

,12

is a free homotopy from γ to ζwind(γ,0). We conclude that γ is freely homotopic to any13

loop δ such that wind(γ, 0) = wind(δ, 0).14

Theorem 5.1 (Hopf [16]). Two loops γ and δ are freely homotopic in R2 \ p if and only15

if wind(γ, p) = wind(δ, p).16

5.2 Rotation Numbers17

Regular Curves18

Following Whitney [47], we call a loop γ in the plane regular if it has no sharp corners19

or cusps. More formally, a regular closed curve is a function γ: [0,1]→ R2 satisfying20

the following conditions:21

5



5. GENERIC AND REGULAR CURVES

rotation number
extreme point
happy point
sad point

• γ(0) = γ(1) ; 1

• γ has a well-defined, continuous derivative γ′ : [0,1]→ R2; 2

• γ′(0) = γ′(1); and 3

• γ′(t) 6= (0, 0) for all t. 4

More succinctly, a regular closed curve is a differentiable loop γ: [0,1]→ R2 whose 5

derivative γ′ is a loop that avoids the origin. 6

The rotation number of a regular closed curve γ is the winding number of its 7

derivative γ′ around the origin, or more intuitively, the total number of times that a 8

person walking once around the curve turns counterclockwise. 9

For reasonably tame regular curves, the rotation number can be more easily described 10

as follows. Call a point γ(t) extreme if the derivative vector γ′(t) points in some fixed 11

direction. An extreme point γ(t) is happy if γ lies locally to the left of the tangent 12

ray, and sad if γ is locally to the right of the tangent ray; for a generic direction, 13

every extreme point is either happy or sad. If the fixed direction is parallel to the 14

positive x-axis, happy points have neighborhoods that curve up^ and sad points have 15

neighborhoods that curve down _. Our earlier characterization of winding numbers by 16

positive and negative crossings implies that rot(γ) is the number of happy points minus 17

the number of sad points. This characterization of the rotation number was certainly 18

known to Gauss [11] but may have been known even earlier [22]. 19

Four sad points and one happy point. A figure from Meister [22]

Gauss [11] also observed that the rotation number of any loop γ is equal to the sum 20

of the rotation numbers of the simple loops in the Seifert decomposition of γ; see also 21

Kauffman [17]. Any simple loop has rotation number −1 or +1, depending on whether 22

it is oriented clockwise or counterclockwise; the rotation number is equal to the winding 23

number around any interior point. 24

Formally, to maintain a set of regular curves, we must smooth the curves slightly 25

near the former intersection point after the uncrossing move. The precise details of the 26

smoothing are surprisingly unimportant. Suppose we smooth by replacing the sharp 27

corners with tiny circular arcs. These smoothing arcs subtend approximately the same 28

6



5.2. Rotation Numbers

positive vertex
negative vertex
writhe

angle, so uncrossing and smoothing changes the total rotation number by an arbitrarily1

small amount. But the rotation number is an integer, so in fact there is no change at all!2

A Seifert decomposition into one negative and three positive cycles, from Gauss [11]

Signed Vertices3

Alternatively, we can compute the rotation number of a curve directly from its graph4

representation, without decomposing it into cycles. Without loss of generality, we5

assume that the basepoint γ(0) = γ(1) is not a vertex of γ. Let x = γ(u) = γ(v) be a6

vertex of γ, for some 0 < u < v < 1. We call x a positive vertex if the tangent vector7

γ′(u) is counterclockwise from γ′(v), and a negative vertex otherwise. Equivalently, a8

vertex x is positive if the winding number of γ with respect to a point moving just next9

to the curve increases the first time it passes by x , and negative otherwise.10

0

-1
-1

1
-1

-1

-1

-2
-3

-2
0

-1

-2

Five positive and six negative vertices; the white arrowhead on the far left is the basepoint.

For any vertex x , define sgn(x) = 1 if x is a positive vertex, and sgn(x) =−1 if x is11

a negative vertex. Following standard practice in knot theory, we define the writhe of γ12

7



5. GENERIC AND REGULAR CURVES

to be the number of positive vertices minus the number of negative vertices; that is, 1

writhe(γ) :=
∑

vertices x of γ

sgn(x). 2

The writhe depends on the basepoint used to express it as a loop; sliding the basepoint 3

over a vertex changes the sign of that vertex and thus changes the writhe by 2. To 4

simplify notation, let wind0(γ) = wind(γ,γ(0)) denote the average of the winding 5

numbers just to the left and right of γ(0). 6

The following theorem was first proved by Titus [41, Theorem 2], generalizing a 7

direct analytical argument of Whitney [47, Theorem 2] for the special case where γ(0) 8

is incident to the outer face, so wind0(γ) =±½. However, the result was actually known 9

to Gauss [11] about a century before Whitney. Quine [34] describes a generalization of 10

this theorem to non-generic curves. 11

Theorem 5.2. For any generic regular curve γ, we have rot(γ) = 2 wind0(γ) +writhe(γ). 12

Proof: We prove the theorem by induction on the number of vertices. As a base case, 13

first suppose γ is a simple loop. Trivially writhe(γ) = 0. If the interior of γ lies to the left 14

of γ, then rot(γ) = 1 and wind0(γ) =½; Otherwise, rot(γ) =−1 and wind0(γ) =−½. 15

Now suppose γ is not simple. Let x be the closest vertex of γ to the basepoint; that 16

is, let u be the smallest value such that γ(u) = γ(v) for some 0 < u < v < 1, and let 17

x = γ(u) = γ(v). An uncrossing move at x breaks γ into two closed curves α and β such 18

that rot(γ) = rot(α) + rot(β); without loss of generality, let α contain the old basepoint 19

γ(0). The inductive hypothesis immediately implies that 20

rot(γ) = 2 wind0(α) + 2 wind0(β) +writhe(α) +writhe(β). 21

Parametrize α and β as loops with basepoints as close as possible to the former vertex x . 22

α

β

w w w

w−1

w+1

w−1

w+1

β

α

w w w

w−1

w+1

w−1

w+1

Uncrossing positive and negative vertices; white arrowheads indicate basepoints.

Call a vertex of γ bichromatic if it is an intersection point of α and β . As we increase 23

the parameter t from 0 to 1, the winding number wind(α,β(t)) increases by 1 at each 24

positive bichromatic vertex and decreases by 1 at each negative bichromatic vertex. But 25

wind(α,β(0)) = wind(α,β(1)), so there must be exactly the same number of positive 26

and negative bichromatic vertices. Every vertex of α of β is a vertex of γ with the same 27

sign. The only vertex of γ that is neither bichromatic nor a vertex of α or β is the 28

removed vertex x . We conclude that writhe(γ) = writhe(α) +writhe(β) + sgn(x). 29

8



5.3. Regular Homotopy

regular homotopy
regularly homotopic
gamma homotopic

delta

Now consider the initial winding number terms. If x was a positive vertex and1

wind0(γ) = w−½, as illustrated above, then wind0(α) +wind0(β) = w. Similarly, if x2

was a positive vertex and wind0(γ) = w+½, then wind0(α) +wind0(β) = w. In either3

case, we have 2 wind0(γ) = 2 wind0(α) + 2 wind0(β)− sgn(x), and the theorem follows4

immediately. �5

We can now take Theorem 5.2 to be the definition of the rotation number for arbitrary6

generic curves, including pathological curves for which no definition based on curvature7

or angles is possible. The theorem has two immediate useful corollaries.8

Corollary 5.3 (Gauss [11]). Every generic closed curve with rotation number 0 has at9

least one vertex. For any integer r 6= 0, every generic closed curve with rotation number r10

has at least |r| − 1 vertices.11

Corollary 5.4. A generic curve has an even number of vertices if and only if its rotation12

number is odd.13

5.3 Regular Homotopy14

A regular homotopy is a function h: [0,1]2 → R2 such that for all s, the function15

t 7→ h(s, t) is a regular closed curve, and the partial derivative ∂ h/∂ t is a free homotopy16

between loops in R2 \ 0. Two regular closed curves γ and δ are regularly homotopic,17

denoted γ ' δ, if there is a regular homotopy h such that h(0, ·) = γ and h(1, ·) = δ.18

Some early sources [21], including Whitney’s original paper [47], omit the partial19

derivative condition form the definition of regular homotopy, but the following con-20

struction shows that it is necessary. Consider a closed curve that winds once around21

the unit circle and once around a smaller circle tangent at its lowest point. There is a22

free homotopy from this curve to the unit circle that shrinks the inner circle to its point23

of tangency. The deforming curve is always regular; however, at the instant when the24

inner circle vanishes, the tangent vector at the top point of the inner circle must either25

vanish or change discontinuously.26

A homotopy through regular closed curves, but not a regular homotopy.

It is not hard to see that regularly homotopic curves have equal rotation numbers;27

indeed, there is a two-line proof: For any regular homotopy h from γ to δ, the partial28

derivative ∂ h/∂ t is a (free) homotopy from γ′ to δ′ that avoids the origin. Thus, if γ29

9



5. GENERIC AND REGULAR CURVES

Whitney-Graustein
theorem and σ are regularly homotopic, their derivatives are homotopic in R2 \ 0, so γ and δ 1

have the same rotation number. 2

Surprisingly, the converse is true as well. The following result is commonly called 3

the Whitney-Graustein theorem, because it appears in a seminal paper of Whitney [47], 4

who attributes both the theorem and its proof to the geometer William C. Graustein. 5

However, the theorem was first proved more than 30 years earlier by Boy, in the same 6

PhD thesis where he describes the immersion of the projective plane now known as 7

Boy’s surface [5,6]. Moreover, the result may have been known, at least informally, as 8

early as Meister [22].2 9

The Whitney-Graustein Theorem. Two regular closed curves in R2 are regularly homo- 10

topic if and only if their rotation numbers are equal. 11

Proof (Graustein): Let γ and δ be regular closed curves with the same rotation number. 12

Without loss of generality, we assume that both γ and δ have arc-length 1, and that are 13

parametrized by arc length, that is, ‖γ′(t)‖= ‖δ′(t)‖= 1 for all t. (We can scale and 14

reparametrize each curve via regular homotopy if necessary.) 15

Because γ and δ have the same rotation number, their derivatives γ′ and δ′ have 16

the same winding number around the origin, and are therefore homotopic in the unit 17

circle S1 (not just in R2 \ 0). Let h′ : [0,1]2 → S1 be a homotopy from γ′ to δ′. If 18

necessary, perturb h′ so that every loop h′(s, ·) is non-constant; this perturbation is only 19

necessary if rot(γ) = 0. 20

A loop α: [0,1] → R2 \ 0 is the derivative of a regular closed curve if and only 21

if its center of mass is the origin:
∫ 1

0
α(t) d t = 0. The “center of mass” function 22

c : [0,1] → R2, defined by setting c(s) :=
∫ 1

0
h′(s, t) d t, is a loop whose basepoint 23

is the origin. For all s, the loop h′(s, ·) lies on S1 and is non-constant, so its center 24

of mass c(s) lies in the open interior of S1. In particular, h′(s, t) 6= c(s) for all s 25

and t. Thus, the function h∗ : [0,1]2→ R2 \ 0 defined by h∗(s, t) := h′(s, t)− c(s) is a 26

homotopy from γ to δ through derivatives of regular closed curves. We conclude that 27

the function h: [0,1]2→ R2 defined by h(s, t) :=
∫ t

0
h∗(s, u) du is a regular homotopy 28

from γ to δ. � 29

5.4 Combinatorial Homotopy 30

When reasoning about equivalence classes of generic curves in the plane, it is often 31

more convenient to use the following combinatorial framework, first employed (at least 32

implicitly) by Boy [5,6] and later developed by Titus and Francis [9,10,43]. A similar 33

framework developed independently by Alexander and Briggs [2] and Reidemeister 34

[35, 36] is now the standard definition of knot equivalence. More recent work of 35

Arnold [3,4] significantly extended this framework and revived interest in the study of 36

combinatorial invariants for immersed curves in the plane. 37
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Titus moves
monogon
bigon
triangle
compactness argument
canonical regular curve

Titus Moves1

Any sufficiently tame homotopy can be described combinatorially by a sequence of2

elementary local transformations of the 4-regular plane graph representing the evolving3

curve. In the absence of a standard name, I will call these local transformations Titus4

moves, following Francis [9,10].3 There are three different Titus moves:5

• Type I: create or destroy a monogon (a face with degree 1);6

• Type II: create or destroy a bigon (a face with degree 2);7

• Type III: invert a triangle (a face with degree 3).8

During each of these moves, the curve is unchanged outside a small neighborhood of9

the affected face. Continuous deformations of the curve that do not change its graph10

representation are simply ignored.11

Type I, type II, and type III Titus moves. The curve does not change outside the dotted circles.

It is not hard to see that any Titus move can be executed by a free homotopy.12

Moreover, any move of type II or III can be executed by a regular homotopy, but a type-I13

move cannot, because it changes the parity of the turning number. In fact, any free14

homotopy between generic curves is equivalent to a sequence of Titus moves, and any15

regular homotopy between generic curves is equivalent to a sequence of type-II and16

type-III Titus moves. It is possible to prove these equivalence claims using compactness17

arguments and careful case analysis [2,9,10,35,36].4 However, in light of Theorems18

5.1 and 5.3, we instead give a relatively simple algorithmic proof below.19

Canonical Curves20

To prove that any regular homotopy can be decomposed into Titus moves, we describe21

an algorithm that transforms any generic curve γ into a canonical regular curve with22

11



5. GENERIC AND REGULAR CURVES

canonical regular
curve!inner

canonical regular
curve!inner!outer

the same rotation number using Titus moves. To transform γ into a different curve δ 1

with the same rotation number, we can run the algorithm forward to transform γ into 2

the corresponding canonical curve, and then run the algorithm backward to transform 3

the canonical curve into δ. 4

We actually define two sequences of canonical curves, the inner canonical curves Ir 5

and the outer canonical curves Or . When r = 0, these curves coincide; I0 = O0 is a 6

figure-8 consisting of two loops, one clockwise and one counterclockwise. Otherwise, 7

each inner curve Ir consists of an oriented cycle with |r| − 1 disjoint, similarly oriented 8

loops inside, and each outer curve Or consists of an oriented cycle with |r|+ 1 disjoint 9

oppositely oriented loops outside. Corollary 5.3 implies that each inner curve Ir has the 10

minimum number of vertices for its rotation number. 11

–2 1 2 30–1

Inner and outer canonical curves for each rotation number.

The following algorithm appears to be folklore. Our presentation most closely follows 12

Nowik [29], but similar algorithms were described earlier by Francis [8], Mehlhorn and 13

Yap [20,21], and Vegter [46]. 14

Theorem 5.5. Any generic closed curve γ with n vertices can be transformed into the outer 15

canonical curve Orot(γ) by a sequence of O(n2) type-II and type-III Titus moves. 16

Proof: Let α be a simple subpath of γ that lies on the outer face and contains no 17

crossings, and let β be the other subpath of γ between the endpoints of α. In the 18

main part of the algorithm, we repeat the following steps until β is a simple path. For 19

purposes of analysis, suppose the path β has m vertices when the current iteration 20

begins. 21

First, we find a simple subloop of β as follows. Parametrize β as a function 22

β : [0, 1]→ R2, and let t be the smallest number in [0,1] such that β(s) = β(t) for 23

some 0 ≤ s < t. The restriction of β to the interval [s, t] is a simple loop; call it `. 24

Suppose there are i vertices in the interior of ` and 2b vertices on ` itself, not including 25

the basepoint β(s) = β(t). Note that i+ 2b ≤ m− 1. 26

Now we shrink the loop ` so that there are no vertices in its interior. We can move 27

any interior vertex that is adjacent to a vertex of ` outside ` using two Titus moves, as 28

shown below. Removing all i interior vertices requires a total of 2i moves and adds 2i 29

vertices to `. 30

12



5.4. Combinatorial Homotopy

Whitney trick

One iteration of the main algorithm:
Find a simple loop, make it empty, slide it into position, and cancel opposing loops.

II III

Moving an internal vertex outside `.

At this point, the interior of ` intersects β in exactly 2i+2b simple, disjoint subpaths,1

each represented by a single edge between two vertices of `. We move the interior2

subpaths outside ` one at a time, each with a type II move; removing all subpaths3

requires a total of i+ b moves.4

Next we slide ` along the curve into the subpath α. Consider the subpath π of β5

starting at the basepoint of ` and ending at some point of α. We translate ` past each6

vertex on π using three Titus moves, as shown below. Sliding ` up to α requires at most7

3(m− 1) Titus moves, one for each vertex along π.8

II III II

Sliding an empty loop across a vertex.

Finally, when the loop ` reaches α, if there is already another loop in α on the9

opposite side from `, we cancel these two loops using a sequence of four Titus moves10

often called the Whitney trick.511

II III II II

The Whitney trick.

Altogether, each iteration requires at most 3i+ b+ 3(m− 1) + 4≤ 6m− 2 moves.12

We have m= n at the beginning of the algorithm, and each iteration decreases m by at13

13
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strangeness least 1, so the total number of moves used so far is at most
∑n

m=1(6m− 2) = 3n2 + n = 1

O(n2). 2

When the main algorithm ends, the original curve γ has been transformed into 3

one of the two canonical curves Irot(γ) or Orot(γ). If the current curve is Orot(γ) (in 4

particular, if rot(γ) = 0), we are done. Otherwise, we transform Irot(γ) into Orot(γ) using 5

3|rot(γ)| − 2 ≤ 3n+ 1 moves as follows: First we perform a type-II move to create a 6

single outside loop; then we slide each of the |rot(γ)| − 1 inner loops to the outside 7

using the the same sequence of three moves described earlier. � 8

II+III+IIIII II+III+III

Outing an inner canonical curve.

Corollary 5.6. Two generic closed curves are regularly homotopic if and only if they are 9

connected by a sequence of type-II and type-III Titus moves. 10

Strangeness 11

More recently, Nowik [29] proved that the O(n2) upper bound from Theorem 5.5 is 12

tight in the worst case, using an invariant of generic curves called strangeness, first 13

introduced by Arnold [3,4]. Shumakovich [39] gave the following explicit formula for 14

strangeness, which we will take as its definition: 15

strange(γ) = wind+(γ) ·wind−(γ) +
∑

vertices x of γ

sgn(x) ·wind(γ, x) 16

Here, sgn(x) denotes the sign of vertex x: either +1 or −1, depending on whether x is 17

a positive or negative vertex, respectively. Recall that the winding number around any 18

vertex x is the average of the winding numbers in the four regions incident to x . 19

Although the definition of strangeness depends on the choice of basepoint, its value 20

does not. If we slide the basepoint over a positive vertex x with winding number w, 21

then x changes to a negative vertex, so sgn(x)·wind(γ, x) decreases by 2w, but wind+(γ) 22

increases from w to w+ 1, so wind+(γ) ·wind−(γ) increases by 2w. 23

Any Titus-II move either adds or deletes two vertices with the same winding number, 24

one positive and one negative, and therefore leaves strangeness unchanged. Similar case 25

analysis, illustrated below, implies that any Titus-III move either increases or decreases 26

strangeness by exactly 1. The dashed lines in the second figure indicate only the order 27

in which the three subpaths are traversed, not the actual topology of the overall curve. 28

Both figures omit cases that can be obtained by reflecting or reversing the curve or 29

moving the basepoint. 30

14
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Titus-III moves either increment or decrement strangeness;
white arrowheads indicate basepoints; dashed arcs indicate traversal order.

We now easily observe that each outer canonical curve Or has strangeness 0. On1

the other hand, for any r ≥ 1, let Sr denote the “spiral” curve consisting of r nested2

counterclockwise loops; this curve has r − 1 positive vertices, no negative vertices,3

rotation number r, and strangeness r(r + 1)/2. It follows that any sequence of Titus4

moves that transforms Sr into Or (or the reversal of Sr into O−r) must include at least5

r(r + 1)/2 = (n+ 1)(n+ 2)/2 = Ω(n2) Titus-III moves. In fact, Sn−1 is the curve of6

maximum strangeness with n vertices [3,32,39,50].7

1 2 3 4

Maximum-strangeness curves for each rotation number.
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exercise for the reader
generic arrangement of

curves
exercise for the reader
stereographic

projection
even curve on the

sphere
odd curve on the

sphere

Generalizations 1

A similar algorithmic argument implies that for any finite set P of points, two generic 2

curves, each with at most n crossings, that are freely homotopic in R2 \ P are connected 3

by a sequence of O(n2) Titus moves, each of which takes place in an open set disjoint 4

from P. In particular, any two curves with the same winding number around a point p 5

are connected by O(n2) Titus moves that avoid p; moreover, the O(n2) bound is tight in 6

the worst case. We leave the details as an exercise for the reader. 7

We can also easily extend the definitions of free and regular homotopy to multiple 8

curves. A generic arrangement of curves is a finite set of closed curves that intersect 9

(each other or themselves) in a finite number of points, always transversely. Any 4- 10

regular plane graph represents a generic arrangement of curves; conversely, any generic 11

arrangement where each connected component has at least one intersection point can 12

be represented by a 4-regular plane graph. We leave the following straightforward 13

extension of our earlier algorithm as an exercise for the reader. 14

Theorem 5.7. Let Γ = {γ1,γ2, . . . ,γm} and ∆ = {δ1,δ2, . . . ,δm} be two be two generic 15

arrangements of curves in the plane with a total of n intersection points, where for each i, 16

the curves γi and δi are regularly homotopic. There is a sequence of O(n2) type-II and 17

type-III Titus moves that transforms Γ into ∆. 18

5.5 Regular Curves on the Sphere 19

Regular closed curves on the sphere S2 = {(x , y, z) | x2 + y2 + z2 = 1} ⊂ R3 are defined 20

just as they are in the plane: A differentiable function γ: [0, 1]→ S2 is a regular closed 21

curve if and only if both γ and its derivative γ′ are loops, and γ′ avoids the origin. In 22

this case, however, γ′ is a loop in R3 \0, and it is not hard to show that any two loops in 23

R3 \ 0 are freely homotopic. Perhaps any two regular closed curves on the sphere are 24

regularly homotopic? 25

A different perspective should immediately convince you that the situation is not so 26

straightforward. Recall the stereographic projection map φ : S2 \ (0, 0, 1)→ R2, defined 27

as φ(x , y, z) = (x/(1− z), y/(1− z)). A closed curve γ on the sphere is regular if and 28

only if, after arbitrarily rotating the sphere so that γ avoids the north pole, the projection 29

φ(γ) is a regular closed curve in the plane. 30

Call a regular curve on the sphere even if its projection to the plane has even rotation 31

number and odd otherwise. We easily observe that the parity of a curve is invariant 32

under rotations of the sphere. Equivalently, by Corollary 5.4 a generic curve on the 33

sphere is even if and only if it has an odd number of vertices. 34

A regular homotopy between generic regular curves on the sphere can again be 35

described by a sequence of Titus moves on the sphere. Stereographically projecting the 36

resulting evolving curve onto the plane almost gives us a regular homotopy in the plane, 37

except at moments where the spherical curve passes over the point of projection. Each 38

16
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Whitney flipsuch event can be modeled in the plane by a flip, which takes the topmost arc of the1

curve and moves it ‘through infinity’ to an arc below the curve, or vice versa.2

A flip. Everything inside the circle is unchanged.

Each flip changes the rotation number of the planar curve by 2, by replacing a3

happy point with a sad point or vice versa. Any regular homotopy on the sphere can be4

modeled by a sequence of Titus moves and flips in the plane, and therefore two regularly5

homotopic curves on the sphere have the same parity. Conversely, we can increase or6

decrease the rotation number of any regular curve in the plane by any even number by7

a sequence of Titus moves and flips; thus, any two regular curves on the sphere with the8

same parity are regularly homotopic.9

Corollary 5.8. Two regular closed curves in S2 are regularly homotopic if and only if they10

are both even or both odd.11

Corollary 5.9. Let Γ = {γ1,γ2, . . . ,γm} be a generic arrangement of k even and m− k12

odd closed curves on the sphere, with a total of n intersection points. There is a sequence13

of O(n2) type-II and type-III Titus moves that transforms Γ into a collection of m disjoint14

non-nested curves, of which k are circles and m− k are figure-8s. The O(n2) bound is tight15

in the worst case.16

Notes17

1. (page 1) Although many earlier authors studied both irregular convex polygons18

and regular star polygons, starting perhaps with Thomas of Bradwardine in the early19

1300s [7], Meister was the first author to define polygons as sequences of arbitrary20

points connected by line segments. Meister’s contributions were almost completely21

forgotten; many modern sources give credit for the formalization of arbitrary polygons22

to Poinsot [31], who was apparently unaware of Meister’s then forty-year-old work (and23

whose definition of polygon strangely forbade repeated vertices). As Grünbaum [13]24

eloquently puts it, “Although Meister’s paper is mentioned quite often in very compli-25

mentary ways, it seems that few—if any—of the writers even just looked at the paper.”26

Remarkably, Grünbaum focuses entirely on Meister’s definition of regular polygons,27

completely missing his discussion of “complications” and sums of angles, as well as the28

point of Poinsot’s corresponding discussion of “species” of polygons.29

17
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Muphry’s Law A modern translation of Meister’s work on polygons [22] and polyhedra [23] is 1

sorely overdue. (In accordance with Muphry’s Law, I fully expect some future author to 2

notice yet another gem hidden in Meister’s paper and complain that I didn’t notice it.) 3

2. (page 10) Section V of Meister’s seminal paper “De angulis figurarum” [22] discusses 4

how the sum of the internal angles of a (not necessarily simple) polygon changes as its 5

vertices move, where each internal angle is defined as the counterclockwise angle (in 6

modern terms, always between 0 and 2π) between two successive edges. In particular, 7

he observes that when an angle collapses to zero, that angle should be immediately 8

replaced by a full circle, which implies that the sum of the angles depends on more than 9

just the number of edges. The last paragraph of the section includes a weak, informal 10

version of Whitney-Graustein theorem: 11

For brevity’s sake, we distinguish between these later positive complications 12

of the perimeter and the former, which we call negative; we do not consider the 13

figures themselves, but their circumscribing curves. And first it is evident that a 14

positively complicated perimeter, for any number of complications, can be reduced 15

to the general forms in Figures 20 and 21; negatively complicated perimeters 16

to the form in Figure 22 with the same number of complications, which differs 17

from Figure 20 only as respective angles are external or internal. Then it is clear 18

that positive complications remove an equal number of negative ones; that if the 19

number of both in the figure are equal, it will return to a simple figure, where the 20

sum of the angles is determined by the number of edges in the usual manner. I also 21

add this: If the sine of the sum is sought from the sines of the individual angles of a 22

figure, it would be the same for all figures with an equal number of sides, whether 23

the perimeter is made more or less complicated. 24

Figures 20–23 of Meister [22].

When Meister describes how positive complications "remove" negative complications, 25

he is referring to the effect of positive and negative loops on the sum of internal angles, 26

not an actual cancellation like the Whitney trick. I believe the last sentence merely 27

asserts that the sum of internal angles is always a multiple of π (so its sine is always 0). 28

3. (page 11) Francis [9,10] named a homotopy composed of these elementary moves 29

a Titus homotopy in honor of his PhD advisor; Titus appears to have used the moves 30

himself only later [43]. Titus moves have also been called shadow moves [44, 45], 31

18
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compactness argument
triangle moves

perestroikas [3,4], Reidemeister-type moves [33], and basic moves [29]; however, most 32

authors do not give bother to give them a collective name at all.1

4. (page 11) Specifically, a compactness argument similar to our proof of Lemma ??2

implies that any generic curve can be approximated by a homotopic generic polygon, and3

that any two homotopic generic polygons are connected by a piecewise-linear homotopy.4

Alexander and Briggs [2] and Reidemeister [35, 36] independently proved that any5

piecewise-linear homotopy can be decomposed into a sequence of triangle moves,6

which replace a single edge pr with a pair of edges pq, qr or vice versa. Any triangle7

move can be decomposed into smaller triangle moves where the triangle pqr either8

contains one vertex, contains one self-intersection point, intersects the interior of one9

edge, or is disjoint from the rest of the polygon. Straightforward case analysis implies10

that each of these primitive triangle moves is equivalent to zero or one Titus moves. A11

similar proof was later given by Francis [9,10]. Mehlhorn and Yap [20,21] proved that12

any two generic polygons with the same rotation number are connected by a sequence of13

O(n2) triangle moves; Vegter [46] later improved this bound to O(n) using a different14

normal form and considerably more detailed case analysis.15

5. (page 13) The name “Whitney trick” seems to originate with Kauffman [17,18,19],16

who cites Whitney’s seminal paper on regular curves [47]; however, this paper does not17

actually describe the Whitney trick! The trick was actually first used by Boy [5,6] in18

the construction of his minimal smooth immersion of the projective plane. Hass and19

Hughes [15] later used the same trick to construct an immersion of the disk with a20

single triple point, which they called the “kinky disk”; in hindsight, the kinky disk is21

just Boy’s surface with a disk removed. Confusingly, the phrase “Whitney trick” more22

commonly refers to a generalization of a type-II Titus move to smooth immersions of23

higher-dimensional manifolds, proposed by Whitney [48].24
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