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CHAPTER 71

Surface Classification2

Poincaré’s ignorance of the mathematical literature,
when he started his researches, is almost unbelievable.

— Jean Dieudonné (1975)
describing Poincaré’s early work on Riemannian surfaces

The main interest in Jordan’s attempt [to prove the classification of compact
orientable surfaces in R3] is in showing how the work of an outstanding mathe-
matician can appear nonsensical a century later.

— Morris Hirsch, Differential Topology (1976)
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Short paragraph describing the classification theorem −·•�• ·−

7.1 Handles4

A handle in a surface S is a non-separating annulus, that is, an annulus A whose5

complement S \ A is connected. The Jordan curve theorem implies that the sphere has6

no handles, but this theorem does not extend to other surfaces. To detach the handle,7

we delete it from S and glue disks to the two resulting boundary circles, as shown in the8

figure below.9

Now let Σ be a map on some surface S. Handles may appear in any map Σ as the10

union of faces, but to avoid special cases and boundary conditions, it is more convenient11

to consider the band decomposition Σ�. Recall that v�, e�, and f � denote the faces12

of Σ� corresponding to vertex v, edge e, and face f , respectively.13

A cycle of vertices and edges in Σ is separating if its complement is disconnected,14

and non-separating otherwise. A cycle is two-sided if it has a neighborhood homeo-15
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7. SURFACE CLASSIFICATION

attaching a handle

  attach

detach  

Left to right: Detaching a handle by deleting an isthmus.
Right to left: Attaching a handle by inserting an edge between corners of different faces.

morphic to an annulus; equivalently, if Σ is represented by a signed rotation system, a 1

cycle is two-sided if it has an even number of edges e with rsign(e) =−1. 2

Any non-separating two-sided cycle in Σ corresponds to a sequence of faces in Σ� 3

whose union is a handle in S. This handle can be detached by contracting the edges of 4

the cycle in arbitrary order. Each contraction except the last changes the map but leaves 5

the underlying surface S unchanged. The last edge e to be contracted is a non-separating 6

loop. If we ignore our earlier proscription against contracting loops, then contracting e 7

(as described by Equation ??) actually detaches the handle e� ∪ v�, as shown below; in 8

particular, the contraction splits v into two vertices. (If e were a separating loop, this 9

contraction would actually disconnect the surface.) 10

contract  

  expand

v▫

e▫

u▫

w▫

Detaching a handle by contracting an two-sided non-separating loop.

Symmetrically, any non-separating two-sided cycle in the dual map Σ∗ can be viewed 11

as a cyclic sequence of edges and faces in Σ; the union of the corresponding faces in 12

Σ� = (Σ∗)� is also a handle in S. This handle can be detached by deleting the edges 13

of the cocycle in arbitrary order, using the algorithm described by Equation ??. The 14

last edge e to be deleted is a non-bridge isthmus incident to some face f ; deleting e 15

(as described by Equation ??) actually detaches the handle e� ∪ f �. (Deleting a bridge 16

would actually disconnect the surface.) 17

The inverse operation—deleting two open disks and gluing an annulus onto the 18

resulting boundary circles—is called attaching a handle. There are two different ways 19

to attach a handle to an orientable surface S, depending on how the boundary circles 20

on the surface are oriented. Let’s assume that the boundary circles of the annulus are 21

oriented so that the actual surface is always to the left. If the boundary circles on S 22
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7.2. Twists

disorienting handle
twist
detach a twist

have the same orientation, as shown on the previous page, the resulting surface is still1

orientable. If they have opposite orientations, as shown below, the resulting surface is2

non-orientable; in this case, we say that the handle is disorienting. For non-orientable3

surfaces, there is no consistent way to define the orientation of the boundary circle, so4

“both” ways of attaching a handle are actually equivalent.5

attach  

  detach

Attaching or detaching a disorienting handle.

We can attach a handle to an surface map Σ either by inserting an edge between6

corners of two different faces of Σ or by “expanding” an edge between corners of two7

different vertices of Σ. In the first case, the new edge becomes a non-bridge isthmus; in8

the second case, the new edge becomes a non-separating loop. Both edge operations can9

be performed in two different ways, depending on which pairs of blades are connected.10

Specifically, when we insert an edge e, we must choose rsign(e); when we expand an11

edge e, we must choose fsign(e). If the surface map Σ is orientable, only one of these12

two choices preserves orientability. If Σ is non-orientable, the two choices still yield two13

different maps on the same non-orientable surface.14

7.2 Twists15

Recall that a 2-manifold S is non-orientable if and only if it has a subspace homeomorphic16

to the Möbius band; we call such a subspace a twist of S. Because a twist has only one17

boundary cycle, every twist is non-separating. To detach the twist, we delete it from S18

and then glue a disk onto the resulting boundary circle, as shown in the figure below.19

  attach

detach  

Detaching or attaching a twist.

Let Σ be a map on a non-orientable surface S. A cycle of vertices and edges in Σ is20
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7. SURFACE CLASSIFICATION

one-sided cycle
self-dual twist

one-sided if it has a neighborhood homeomorphic to a Möbius band, or equivalently, 1

if it is not two-sided. Any one-sided cycle in Σ corresponds to a sequence of faces in 2

the band decomposition Σ� whose union is a twist in S. This twist can be detached by 3

contracting the edges of the cycle in arbitrary order, again following Equation ??. The 4

last edge e to be contracted is a one-sided loop incident to some vertex v; contracting 5

this loop actually detaches the twist e�∪ v�, as shown below. Note that v is still a vertex 6

in the resulting map, but with the remaining incident darts in a different order. 7

▫v

e▫

contract  

  expand

v▫

v▫

Detaching a twist by contracting a one-sided loop.

Symmetrically, deleting the edges in Σ dual to a one-sided cycle in Σ∗ detaches 8

a twist from the underlying surface. The last edge to be deleted is a twisted isthmus 9

incident to some face f .1 After this edge is deleted, f is still a face in the resulting map, 10

but with its incident sides in different order. 11

It is possible for a single edge to be both a one-sided loop and a twisted isthmus; we 12

call such an edge a self-dual twist. The maps obtained by deleting and contracting a 13

self-dual twist are actually identical. 14

e▫

v▫

e▫

v▫f▫

A self-dual twist.

e▫delete  

  insert

contract  

  expand

e▫

Contracting or deleting a self-dual twist.
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7.3. The Classification Theorem

attaching a twist
Surface g 0
exercise for the reader
exercise for the reader
projective plane
Klein bottle

The inverse operation—deleting a disk and gluing an Möbius band onto the resulting1

boundary circle—is called attaching a twist. The resulting surface is always non-2

orientable. We can attach a twist to an surface map Σ either by inserting an edge e with3

fsign(e) = −1 between two corners of the same face, or by expanding an edge e with4

rsign(e) =−1 between two corners of the same vertex.5

7.3 The Classification Theorem6

For any non-negative integers g and h, let S(g , 0) denote the orientable surface obtained7

from the sphere by attaching g handles. For example, S(0, 0) is the sphere, and S(1, 0) is8

the torus. We leave the proof that these surfaces are well-defined up to homeomorphism9

as an exercise for the reader; it does not matter where or in what order the handles are10

attached, as long as none of the handles is disorienting.211

Lemma 7.1. Every orientable surface map lies on the surface S(g, 0) for some integer12

g ≥ 0.13

Proof: Fix an orientable surface map Σ. For any tree-cotree decomposition (T, L, C)14

of Σ, the map Σ / T \ C is a system of loops on the same underlying surface as Σ. Thus,15

without loss of generality, we can assume that Σ itself is a system of loops. Because Σ is16

orientable, every loop in Σ is two-sided.17

If Σ has no edges, it must be the trivial map on the sphere S(0,0). Otherwise,18

let ` be an arbitrary edge of Σ. Because Σ has only one vertex and one face, ` is a19

non-separating loop. Thus, we can detach a handle from |Σ| by contracting `. The20

induction hypothesis implies that |Σ/`| = S(g ′, 0) for some integer g ′ ≥ 0. We conclude21

that |Σ|= S(g ′+ 1, 0). �22

Similarly, for any integers g ≥ 0 and h> 0, let S(g, h) denote the surface obtained23

from the sphere by attaching g handle and h twists. It does not matter where or in what24

order the handles and twists are attached, or whether any of the handles is disorienting.25

Again, we leave the proof that S(g, h) is well-defined up to homeomorphism as an26

exercise for the reader. For example, S(0,1) is the projective plane, and S(0,2) is the27

Klein bottle.28

Lemma 7.2. Every non-orientable surface map lies on the surface S(g, h) for some integers29

g ≥ 0 and h≥ 1.30

Proof: Fix a non-orientable surface map Σ; as in the proof of Lemma 7.1, we can31

assume without loss of generality that Σ is a system of loops. Let ` be an arbitrary32

one-sided loop in Σ; such a loop must exist because Σ is non-orientable. We can detach33

a twist from |Σ| by contracting `. If the map Σ / ` is orientable, then |Σ / `| = S(g, 0)34

for some integer g ≥ 0 by Theorem ??; it follows that |Σ| = S(g, 1). Otherwise, the35
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7. SURFACE CLASSIFICATION

Dyck’s surface
genus

induction hypothesis implies that |Σ / `| = S(g, h′) for some integers g ≥ 0 and h≥ 1; it 1

follows that |Σ|= S(g, h′+ 1). In both cases, the proof is complete. � 2

The proofs of Lemmas 7.1 and 7.2 imply the following simple algorithm to classify 3

the underlying surface of a given surface map: 4

CLASSIFY(Σ):
(T, L, C)← any tree-cotree decomposition of Σ
Σ← Σ / T \ C
(g, h)← (0,0)
while Σ non-orientable

`← any one-sided loop in Σ
Σ← Σ / `
h← h+ 1

while Σ is non-trivial
`← any loop in Σ
Σ← Σ / `
e← any non-loop edge in Σ
Σ← Σ / e
g ← g + 1

return (g, h)

5

However, this algorithm may output different classifications for the same surface 6

map, depending on which edge is contracted in each iteration. Consider the following 7

example, called Dyck’s surface [11]. Let Σ be a system of three one-sided loops x , y, z 8

incident to the unique vertex in the order x , y, z, x , y, z. Contracting x gives us an 9

orientable system of loops on the torus S(1, 0), implying that |Σ| = S(1, 1). On the other 10

hand, contracting edge y yields a non-orientable system of loops on the Klein bottle 11

S(0,2), implying that |Σ|= S(0,3). We conclude that S(1,1) = S(0, 3). 12

A straightforward inductive argument now implies the following more general 13

equivalence, which in turn implies a simpler classification of non-orientable surfaces. 14

Lemma 7.3 (Dyck [11]). S(g, h) = S(0, h+ 2g) for all positive integers g and h. 15

Theorem 7.4 (Classification of Surface Maps). Every connected surface map lies on 16

either S(g, 0) or S(0, g), for some integer g ≥ 0. 17

The integer g is called the genus of both the surface map and the underlying surface. 18

The genus of a surface S can be equivalently defined as the maximum number of disjoint 19

simple cycles γ1,γ2, . . . ,γg in S such that the complement S \ (γ1 ∪ γ2 ∪ · · · ∪ γg) is still 20

connected. If S is orientable, these cycles are necessarily two-sided; if S is non-orientable, 21

the proof of the classification theorem implies that every cycle γi is one-sided. 22
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7.4. “Oilers’ Formula”

Euler characteristic
chi Sigma

z

y

y

zx

x

z

y

y

z

z

z

y

y

z

zx

x

z

zx

x

contract x  

contract y  

A band decomposition of Dyck’s surface S(1,1) = S(0,3).

7.4 “Oilers’ Formula”1

The Euler characteristic χ(Σ) of a surface map Σ = (V, E, F) is the number of vertices2

minus the number of edges plus the number of faces: χ(Σ) = |V | − |E|+ |F |. The3

following generalization of Euler’s formula for planar graphs implies that the Euler4

characteristic is actually an invariant of the underlying surface |Σ|.5

Theorem 7.5 (Euler’s formula for surface maps). Every map on the surface S(g, h)6

has Euler characteristic 2− 2g − h.7

Proof: Let Σ be any map on on the surface S(g, h). Contracting a non-loop edge in Σ8

decreases both the number of vertices and the number of edges by 1, leaving the Euler9

characteristic unchanged. Similarly, deleting a non-isthmus edge in Σ decreases both10

the number of edges and the number of faces by 1, leaving the Euler characteristic11

unchanged. Thus, without loss of generality, we can assume that Σ is a system of loops.12

The trivial map clearly has Euler characteristic 2. Contracting a one-sided loop `113

yields a new system of loops with one less edge; thus, χ(Σ/`1) = χ(Σ)−1. Contracting14

a two-sided loop `2 reduces yields a new map with two vertices, one less edge than Σ,15

and one face; thus, χ(Σ / `2) = χ(Σ)− 2. The theorem now follows immediately by16

induction. �17

Corollary 7.6. Two connected surface maps lie on the same underlying 2-manifold if and18

only if (1) they are either both orientable or both non-orientable and (2) their Euler19

characteristics are equal.20

Corollary 7.7. For any tree-cotree decomposition (T, L, C) of any map on the surface21

S(g, h), we have |L|= 2g + h.22
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7. SURFACE CLASSIFICATION

evil path Corollary 7.8. Given a surface map Σ with m edges, we can determine the homeomor- 1

phism class of |Σ| in O(m) time. 2

7.5 All Compact 2-Manifolds Support Maps 3

Most early results in surface topology either implicitly assumed that every compact 4

2-manifold is the underlying surface of some map or explicitly defined surfaces to be the 5

spaces described by polygonal schemata. The existence of a map for any compact surface 6

was first proved independently by Kerékjártó [16] and Radó [24]; in fact, Kerékjártó 7

proved a more general result about non-compact surfaces. The following proof, which 8

loosely follows Thomassen [28], relies on two technical lemmas that are somewhat 9

easier to prove in isolation. 10

Lemma 7.9. Let A and B be disjoint closed subsets of a compact space X . Any path in X has 11

only a finite number of subpaths that start in A, end in B, and otherwise lie in X \ (A∪ B). 12

Proof: Fix a path π: [0, 1]→ X . Call a subpath of π evil if the subpath starts in A, ends 13

in B, and otherwise lies in X \ (A∪ B). Suppose to the contrary that π has an infinite 14

number of evil subpaths. Then there is an infinite increasing sequence of real values 15

0< s1 < t1 < s2 < t2 < · · ·< 1 such that π(si) ∈ A and π(t i) ∈ B for all i. Compactness 16

of X implies that there is a subsequence 0 < u1 < v1 < u2 < v2 < · · · < 1 of these 17

values with π(ui) ∈ A and π(vi) ∈ B for all i, such that the subsequence π(u1),π(u2), . . . 18

converges to a point in A and the subsequence π(v1),π(v2), . . . converges to a point in B. 19

But this is impossible, because both point sequences converge to the same point π(w), 20

where w = sup j u j = sup j v j . � 21

Lemma 7.10. Any disjoint simple closed curves α and β in the plane can be separated by 22

the boundary of a simple polygon. 23

Proof: Without loss of generality, assume that β lies in the unbounded component of 24

R2 \α. Fix a positive real number ε that is less than half the distance between α and β . 25

Let αε be the set of points at distance ε from α, and let α̃ε denote the boundary of 26

the unbounded component of R2 \αε. Compactness implies that the closed curve α̃ε 27

can be covered by a finite number of disks of radius ε/10, each centered on a point 28

of α̃ε. Sort the centers of those disks in cyclic order around α̃ε and connect them by 29

line segments to obtain a closed polygonal curve; the triangle inequality implies that P 30

does not intersect α or β . This polygon may not be simple, but it has a finite number 31

of self-intersection points. Removing all loops that do not enclose α yields a simple 32

polygon that separates α and β . � 33

Theorem 7.11 (Kerékjártó [16] and Radó [24]). Every compact, connected 2-manifold 34

is the underlying space of at least one surface map. 35
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7.5. All Compact 2-Manifolds Support Maps

bad path
truly evil
merely annoying

Proof: Fix a compact, connected 2-manifold S. For any point p ∈ S, let U◦(p) be an1

open subset of S that contains p and is homeomorphic to an open disk. Let Q(p) be2

a closed disk in the interior of U◦(p), such that p lies in the interior of Q(p). The3

compactness of S implies that there is a finite set of points {p1, p2, . . . , pn} such that the4

interiors of the disks Q(pi) cover S. To simplify notation, let Q i =Q(pi) and U◦i = U◦(pi)5

for each index i.6

We inductively construct a finite sequence of closed disks R1, R2, . . . , Rn satisfying7

the following conditions:8

• For each index i, the closed disk Q i lies in the interior of Ri . (Thus,
⋃

i Ri = S.)9

• For each index i, the closed disk Ri lies in the open disk U◦i .10

• For all i and j, the intersection ∂Ri ∩ ∂R j has a finite number of components.11

Fix an index m and suppose we have already constructed disks R1, . . . , Rm−1. For any12

index i < m, we call each component of ∂Ri ∩ U◦m a bad path. A bad path is truly evil13

if it intersects the disk Qm, and merely annoying otherwise. Lemma 7.9 (with A=Qm14

and B = S \ U◦m) directly implies that only a finite number of bad paths are truly evil,15

although there may be infinitely many merely annoying paths.16

Let Sm be a closed disk in U◦m that avoids every merely annoying path and con-17

tains Qm in its interior. 〈〈Also, the boundary of Sm intersects each truly evil ⇐=©18

path a finite number of times. Why does such a disk exist?〉〉 By the inductive19

hypothesis, each pair of evil paths intersects only a finite number of times. Thus, the20

union of the boundary of Sm and the truly evil paths is a topological plane graph Γm21

embedded in U◦m. Theorem ?? implies that there is an isomorphic piecewise-linear plane22

graph Γ′m in U◦m whose outer face is the complement of S. The Jordan-Schönflies theorem23

implies that the homeomorphism from Γm to Γ′m can be extended to a homeomorphism24

hm : Sm→ Sm such that hm(pm) = pm. Lemma 7.10 implies that U◦m contains a simple25

polygon R′m whose boundary separates the closed curves hm(∂Qm) and ∂Sm. Finally, let26

Rm = h−1
m (R

′
m). It is easy to check that ∂Rm ∩ ∂Ri has a finite number of components,27

for any index i < m. This completes the construction of the disks R1, R2, . . . , Rn.28

Figure? −·•�• ·−
Now the union of the boundary curves ∂R1,∂R2, . . . ,∂Rn is topological graph G29

embedded in S. For all indices i and j, each component of ∂Ri ∩ ∂R j is a common30

subpath (which may be a single point). The vertices of G are the endpoints of all such31

common subpaths; the edges of G are subpaths of the curves ∂Ri between successive32

vertices. By construction, G has a finite number of vertices and edges. Every face of G33

lies inside some neighborhood U◦i and thus is homeomorphic to a polygon with holes. If34

necessary, we can add edges to G to ensure that every face is a disk. �35

Corollary 7.12 (Surface Classification). Every compact, connected surface is homoeo-36

morphic to either S(g, 0) or S(0, g), for some integer g ≥ 0.37
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7. SURFACE CLASSIFICATION

Corollary 7.13. Two compact connected 2-manifolds are homeomorphic if and only if 1

(1) they are either both orientable or both non-orientable and (2) their Euler characteristics 2

are equal. 3

7.6 Surfaces with Boundary 4

Every compact connected surface with boundary is homeomorphic to a compact
connected surface without boundary minus a finite set of disjoint open disks.

−·•�• ·−

7.7 History 5

The classification of orientable surfaces began with l’Huillier’s investigations of “excep- 6

tions” to Euler’s formula V − E + F = 2 [18,19]. Specifically, l’Huillier (whose name 7

means “the oiler”) proved Theorem 7.5 for the special case of polyhedra with disjoint 8

prismatic tunnels, essentially by inclusion-excusion; in hindsight, l’Huillier’s formulation 9

and techniques are remarkably ad hoc. (L’Huillier’s original paper [18] considered only 10

polyhedra with one tunnel; the easy generalization to multiple tunnels may be due to 11

Gergonne [19].) 12

The more general notion of genus originates with Abel’s seminal study of com- 13

plex algebraic curves [1, 2], although with a less geometrically intuitive definition. 14

Riemann [25] correctly observed that orientable surfaces can be classified by their 15

“connectivity”, but he did not give a complete proof. The classification of orientable 16

polyhedral surfaces by their Euler characteristics follows from Listing’s systematic study 17

of spatial complexes [20], later informally summarized by Cayley [7], but neither 18

Listing nor Cayley made this connection. The actual term “genus” (“das Geschlecht”) 19

was coined by Clebsch [8]. 20

The first self-contained classification of arbirtary orientable surfaces was given by 21

Möbius [21] using an early version of Morse theory. Specifically, Möbius defined the 22

“nth basic form” (“Grundform der nten Klasse”) as a sphere with n disks removed. He 23

then argued that any surface in R3 can be decomposed into a finite collection of basic 24

forms by cutting along generic level sets of a function h from the surface to the reals. 25

Using a sequence of basic combinatorial moves, Möbius showed that the surface can 26

be decomposed into exactly two basic forms, which meet along their boundary cycles; 27

the genus of the surface is one less than the number of boundary cycles of these forms. 28

Finally, Möbius argues that two surfaces are homeomorphic if and only if they have the 29

same genus. 30

By modern standards, Möbius’ proof is incomplete for several reasons. First, the 31

concept of homeomorphism was unknown at the time, and indeed was not completely 32

formalized until well into the 20th century [23]. Instead, Möbius defines an “elemen- 33

tary relationship” (“elementar Verwandschaft”) between two surfaces as an adjacency- 34

preserving correspondence between “infinitesimal elements” on the two surfaces. Sec- 35

10



7.7. History

Splitting a surface into basic forms along level sets [21].

ond, Möbius’ argument requires a function from the surface to the reals with only a1

finite number of critical values. For the algebraic surfaces that Möbius was considering,2

finding such a function is straightforward. The existence of such a function for arbitrary3

2-manifolds is equivalent to the Kerékjártó-Radó theorem; a suitable function can be4

derived from any map on the surface, and vice versa. Finally, the entire argument rest5

implicitly on the Jordan curve theorem. Modern formulations of Möbius’ proof appear6

in several differential topology textbooks; see, for example, Hirsch [13].7

• Other arguments for classifying surfaces were given by Jordan [15] (surfaces
with boundary and massive hand-waving), Clifford [9] (“canonical form and
dissection”), and Klein [17] (“normal form”).

• Euler’s formula with genus: Becker [4,5] and Hoppe [14]
• Non-orientable surfaces: first considered by Möbius [22], developed further by

Klein [17], classified by Dyck [11]
• More classification: Dehn and Heegaard [10], Alexander [3], Brahana [6] (who

credits the normalization algorithm to Veblen).

−·•�• ·−

The Veblen-Brahana proof appears in most topology textbooks, thanks to its appear-8

ance in an early textbook of Siefert and Threlfall [26, 27]. Several other proofs are9

known; see especially Thomassen’s completely self-contained proof (which includes a10

proof of the Jordan-Schönflies theorem) [28] and Conway’s ‘zero irrelevancy’ proof [12].11

11



7. SURFACE CLASSIFICATION

Notes 1

1. (page 4) Twisted Isthmus is the name of my next band. 2

2. (page 5) 3

Handles don’t mean what you think they mean. A tubular neighborhood of the graph
of the cube has genus 5, but there is no feature that occurs five times. Figure!

−·•�• ·−

Bibliography 4

[1] Niels Henrik Abel. Démonstration d’une propriété générale d’une certaine classe 5

de fonctions transcendantes. J. Reine Angew. Math. 4:200–201, 1829. Oeuvres 6

Complètes 1:515–517. (10) 7

[2] Niels Henrik Abel. Mémoire sur une propriété générale d’une classe très étendue de 8

fonctions transcendantes. Mémoires des l’Academie des Science de Paris 7:176–264, 9

1841. Submitted October 20, 1826. Oeuvres Complétes 1:145–211. (10) 10

[3] James W. Alexander, II. Normal forms for one- and two-sided surfaces. Ann. Math. 11

16(1/4):158–161, 1914–1915. (11) 12

[4] Johann Karl Becker. Nachtrag zu dem Aufsatze über Polyeder. Z. Math. Phys. 13

14(4):337–343, 1869. (11) 14

[5] Johann Karl Becker. Über Polyeder. Z. Math. Phys. 14(1):65–76, 1869. (11) 15

[6] Henry R. Brahana. Systems of circuits on two-dlmensional manifolds. Ann. Math. 16

23(2):144–168, 1922. (11) 17

[7] Arthur Cayley. On Listing’s theorem. Messenger of Mathematics 2:81–89, 1873. 18

Reprinted in Collected Mathematical Papers VIII, 540–547, Cambridge Univ. Press, 19

1895. (10) 20

[8] Alfred Clebsch. Über die Anwendung der Abelschen Functionen in der Geometrie. 21

J. Reine Angew. Math. 63(3):189–243, 1864. (10) 22

[9] William K. Clifford. On the canonical form and dissection of a riemann’s surface. 23

Proc. London Math. Soc. 8(122):294–304, 1877. (11) 24

[10] Max Dehn and Poul Heegaard. Analysis situs. Enzyklopädie der mathe- 25

matischen Wissenschaften mit Einschluß ihrer Anwendungen III.AB(3):153– 26

220, 1907. 〈http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN= 27

PPN360609635&DMDID=dmdlog75〉. (11) 28

[11] Walther Dyck. Beiträge zur Analysis situs I. Aufsatz. Ein- und zweidimensionale 29

Mannigfaltigkeiten. Math. Ann. 32(4):457–512, 1888. (6, 11) 30

12

http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN360609635&DMDID=dmdlog75
http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN360609635&DMDID=dmdlog75
http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN360609635&DMDID=dmdlog75


7.7. History

[12] George Francis and Jeff Weeks. Conway’s ZIP proof. Amer. Math. Monthly1

106(5):393–399, 1999. (11)2

[13] Morris W. Hirsch. Differential Topology. Graduate Texts in Mathematics 33.3

Springer-Verlag, 1976. (11)4

[14] Reinhold Hoppe. Ergänzung des eulerschen satzes von den polyedern. Archiv5

Math. Phys. 63:100–103, 1879. (11)6

[15] Camille Jordan. Sur la déformation des surfaces. J. Math. Pures Appl. (Série 2)7

11:105–109, 1866. (11)8

[16] Bela von Kerékjártó. Vorlesung über Topologie I. Springer-Verlag, 1923. (8)9

[17] Felix Klein. Über Riemann’s Theorie der algebraischen Funktionen und ihrer Integrale.10

Teubner, Leipzig, 1882. (11)11

[18] Simon Antoine Jean l’Huillier. Démonstration immédiate d’un théorème fonda-12

mental d’Euler sur les polyhèdres, et exception dont ce théorème est susceptible.13

Mémoires de l’Académie Impériale des Sciences de Saint-Petersbourg 4:271–301,14

1811. (10)15

[19] Simon Antoine Jean l’Huillier. Mémoire sur la polyédrométrie contenant une16

démonstration directe du théorème d’Euler sur les polyédres, et un examen des17

diverses exceptions auxquelles ce théorème est assujetti. Annales de Mathématiques18

Pures et Appliquées [Annales de Gergonne] 3:169–189, 1813. Summarized by19

Joseph Diaz Gergonne. (10)20

[20] Johann Benedict Listing. Der Census räumlicher Complexe, oder Verallge-21

meinerung des Euler’schen Satzes von den Polyedern. Abh. König. Ges. Wiss.22

Göttingen 10:97–182, 1861. Presented December 1861. (10)23

[21] August F. Möbius. Theorie der elementaren Verwandtschaften. Ber. Sächs. Akad.24

Wiss. Leipzig, Math.-Phys. Kl. 17:18–57, 1863. Gesammelte Werke 2:433–471,25

Liepzig, 1886. (10, 11)26

[22] August F. Möbius. Über der Bestimmung des Inhaltes eines Polyëders. Ber. Sächs.27

Akad. Wiss. Leipzig, Math.-Phys. Kl. 17:31–68, 1865. Gesammelte Werke 2:473–512,28

Liepzig, 1886. (11)29

[23] Gregory H. Moore. The evolution of the concept of homeomorphism. Historia30

Math. 34(3):333–343, 2007. (10)31

[24] Timor Radó. Über den Begriff der Riemannschen Fläche. Acta Univ. Szeged32

2:101–121, 1924–1926. Published in 1925. (8)33

[25] Bernhard Riemann. Theorie der Abel’schen Functionen. J. Reine Angew. Math.34

54:115–155, 1857. (10)35

13



7. SURFACE CLASSIFICATION

[26] Herbert Seifert and William Threlfall. Lehrbook der Topologie. Teubner, Leipzig, 1

1934. Reprinted by AMS Chelsea, 2003. English translation in [27]. (11, 14) 2

[27] Herbert Seifert and William Threlfall. A Textbook of Topology. Pure and Applied 3

Mathematics 89. Academic Press, New York, 1980. Edited by Joan S. Birman and 4

Julian Eisner. Translated from [26] by Michael A. Goldman. (11, 14) 5

[28] Carsten Thomassen. The Jordan-Schönflies theorem and the classification of 6

surfaces. Amer. Math. Monthly 99(2):116–131, 1992. (8, 11) 7

14


	Surface Classification
	Handles
	Twists
	The Classification Theorem
	“Oilers’ Formula”
	All Compact 2-Manifolds Support Maps
	Surfaces with Boundary
	History


