
One-Dimensional Computational Topology Planar Curves

Wir erhalten so den Satz: Dann und nur dann, wenn das Schema des Graphen I) durch
die angegebene Umschaltungsoperation U eine BZ-Reihe liefert, II) durch die Umkehrung-
soperation wieder aus der BZ-Reihe entsteht, stellt das Schema einen auf der Kugelflhäche
realisierbaren Graphen dar. Damit ist dan Gaussische Problem für den allgemeinsten Graphen
vierter Ordnung gelöst.

[Thus we have the following theorem: A graph schema represents a planar graph if and
only if I) applying the switching operation U to the schema produces a tree-onion code, and
II) applying the inversion operation to the tree-onion code recovers the original schema.
Thus, Gauss’s problem is solved for 4-regular graphs.]

— Max Dehn, “Über Combinatorishe Topologie” (1936)

2 Planar Curves

2.1 Definitions and Representations

Recall that a closed curve in the plane is a continuous function γ: S1 → R2. Previously we
considered simple closed curves, where the function γ is injective; for this lecture we remove this
restriction.
〈〈paths, concatenation, reversal〉〉ÂÂÂÂÂ

Arbitrary closed curves are nasty horrible things that will eat your face off; if you thought
topologist’s sine curves and Peano and Hilbert curves were bad, just think of the shenanigans
you can get up to when the curve is allowed to self-intersect! Fortunately, though, this is a
computational topology class, which means we only need to consider curves that have some
finite representation that can be manipulated algorithmically. I’ll focus on three common
representations:

2.1.1 Polygons

Polygons are the simplest (and oldest) model for planar curves. Recall that a polygon is a
piecewise-linear closed curve. Any polygon is naturally represented by a finite sequence of
points p0, p1, . . . , pn−1 called its vertices; the polygon itself is composed of the line segments
pi pi+1 mod n for each index i, called its edges. We can usually (but not always!) assume without
loss of generality that the polygon is in general position, meaning that all vertices are distinct, no
vertex lies in the interior of an edge, and at most two edges intersect at any point.

2.1.2 Walks in graphs

Closed curves can also be represented as closed walks in some underlying plane graph G. The
planar embedding of G may be specified either purely combinatorially (as a rotation system) or
piecewise-linearly (by specifying coordinates for each vertex). Here we usually cannot make any
general positions assumptions; in particular, the same walk may revisit the same vertex multiple
times, or traverse the same edge multiple times in either direction. The edges of the underlying
graph G may have weights; the length of a walk is the sum of the weights of its edges, counted
with appropriate multiplicity.

A variant of this representation considers any curve to lie arbitrarily close to G rather than
in G itself. Replace each vertex of of G with a small disk and each edge of G with a ribbon
between the disks of its endpoints. Within this “ribbon graph”, we can perturb any curve γ into
general position, so that γ intersects only within the vertex disks, and only transversely. Thus,

© Copyright 2017 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/topology17/ for the most recent revision.

1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/topology17/

One-Dimensional Computational Topology Planar Curves

the intersection of the curve with any edge ribbon consists of disjoint parallel paths. We often
don’t care how the curve behaves inside the vertex disks, but if necessary, we can assume without
loss of generality that any two curve segments inside a vertex disk intersect once transversely or
not at all. The actual representation stores the walk in G, together with a left-to-right ordering
of the curve segments within each edge ribbon.

Equivalently, we can specify a curve by its intersections with the edges of the dual map G∗;
Éric Colin de Veridère and I named this the cross-metric model. We assume that the represented
curve γ avoids the vertices of G∗, that each edge of G∗ intersects γ transversely at distinct points,
and (typically) that any two segments of γ within the same face intersect at most once. The
overlay of G∗ and γ has a vertex for each intersection of γ with edges of G∗, and an edge for
every segment of γ or G∗ between the overlay vertices. Then γ itself is represented as a simple
walk in this overlay graph. The length of a curve γ in the cross-metric model is the sum of the
weights of the edges of G∗ that γ crosses, counted with appropriate multiplicity.

Any polygon can be converted into a walk in its image graph; conversely, if the underlying
graph G is embedded piecewise-linearly (or in the cross-metric model, if every segment within a
face is a line segment), then every walk in G is a polygon.

2.1.3 Generic curves

Finally, we can represent sufficiently “nice” curves directly by ignoring their geometry entirely. A
self-intersection γ(s) = γ(t) of a curve γ is transverse if, for some ε > 0, the subpaths γ(s−ε, s+ε)
and γ(t − ε, t + ε) are homeomorphic to two orthogonal lines. A closed curve is generic if every
self-intersection is transverse; compactness implies that a generic immersion has a finite number
of self-intersection points. Generic curves are sometimes called immersions or regular curves, but
that term more commonly refers to closed curves with continuous non-zero derivatives [11]. In
fact, the most common word used to describe this class of curves is “curve”!

The term “generic” is justified by the observation that every closed curve is arbitrarily close to
a generic closed curve. More formally:

Lemma 2.1. For any closed curve γ: S1 → R2 and any ε > 0, there is a generic closed curve
γ′ : S1→ R2 such that ‖γ(t)− γ′(t)‖< ε for all t ∈ S1.

Proof: Fix a closed curve γ: S1 → R2 and a real number ε > 0. By choosing an arbitrary
basepoint on the circle, we can regard γ as a periodic function γ: Z→ R2 where γ(t) = γ(t + 1)
for all t. Compactness implies that we can cover γ with a finite number of balls b0, b1, b2, . . . , bn
of radius ε/4, where each ball is centered at some point γ(t), and in particular, b0 is centered at
γ(0) = γ(1). For any index i, let Bi denote the ball of radius ε/2 with the same center as bi .

We inductively define a finite sequence of real numbers t0 < t1 < · · · < tN and indices
j0, j1, j2, . . . , jN as follows. First, let t0 = 0 and j0 = 0. Then for any index i > 0, define

t i =min
�

1, min{t > t i−1 | γ(t) 6∈ B ji−1
}
	

If t i = 1, we set ji = 0; otherwise, let ji be any index such that γ(t i) ∈ b ji . Compactness implies
that γ is uniformly continuinuous: There is a real number δ > 0 such that for any t and t ′, if
‖γ(t)− γ(t ′)‖< ε/4, then |t − t ′|< δ. It follows that tN = 1 for some integer N ≤ 1/δ.

The points γ(t0),γ(t1), . . . ,γ(tN) define an n-vertex polygon γ̃, which we can parametrize so
that γ̃(t i) = γ(t i) for every index i. By construction, we have ‖γ(t)− γ̃(t)‖< ε/2 for all t ∈ S1.

This polygon is not necessarily generic; in particular, it may contain repeated vertices.
However, with probability 1 we can obtain a generic polygon γ′ by moving each vertex of γ̃ a

2

One-Dimensional Computational Topology Planar Curves

distance of ε/4 in a random direction (chosen uniformly from S1). Convexity of the Euclidean
norm implies that ‖γ′(t) − γ̃′(t)‖ < ε/2 for all t ∈ S1. Thus, the triangle inequality implies
‖γ(t)− γ′(t)‖< ‖γ(t)− γ̃(t)‖+ ‖γ̃(t)− γ′(t)‖< ε for all t ∈ S1. �

Any non-simple generic curve γ can be naturally represented by its image graph, which is a
connected 4-regular plane graph, whose vertices are the points of pairwise self-intersection.1
Any generic curve γ is a certain canonical Euler tour of its image graph; whenever the tour enters
a vertex through a dart d, it exits that vertex through the opposite dart rev(succ(succ(d))). Thus,
the graph can be represented by the image graph itself, with no additional information. As usual,
the image graph can be represented either combinatorially or geometrically.

Alternatively, any non-simple generic curve can be represented by a Gauss code, defined by
Gauss as follows. Assign each self-intersection point of γ a unique label; the gauss code of γ is
the sequence of labels encountered by a point moving once around γ, starting at an arbitrary
basepoint. A signed Gauss code also records how the curve crosses itself at each vertex: positive
for right-to-left crossings and negative for left-to-right crossings.

ba

c

d

e

fg

h

i

j

k

Figure 2.1. A curve with signed Gauss code a+b+c−d−e−f+g+c+h−a−i+g−d+j−k+h+b−i−f−e+j+k−.

2.2 Gauss Code Planarity

Around 1830, Gauss [5] asked how to determine whether a given Gauss code represents a planar
curve, or more succinctly, whether a given Gauss code is planar. Francis described the first
algorithmic solution for signed Gauss codes, which consisted of just twelve instructions [4]; Carter
later described a much more natural and general (if somewhat less efficient) solution [1].2 Carter
observed that every signed Gauss code corresponds to a unique 4-regular graph with a unique
rotation system. Every 4-regular graph in the plane with n vertices has exactly n+ 2 faces, by
Euler’s formula. Thus, a signed Gauss code is planar if and only if the induced graph embedding
has exactly n+ 2 faces.3

Gauss actually asked a much more difficult question: Which unsigned codes correspond to
planar curves? This is arguably the very first nontrivial computational topology problem!Every
unsigned Gauss code also represents a unique 4-regular graph with a well-defined cyclic
order of edges around each vertex, but leaves unspecified which rotations are clockwise or
counterclockwise. Gauss’s question is to determine whether the cyclic orders can be oriented so
that the resulting map is planar.

1The image of a simple generic curve is obviously a simple cycle.
2It is possible that Francis’s algorithm is actually equivalent to Carter’s, but I haven’t succeeded in disassembling

Francis’s uncommented machine code.
3More generally, any Gauss code induces an embedding of a 4-regular graph onto some orientable surface, which

later authors call the Carter surface of the Gauss code.

3

One-Dimensional Computational Topology Planar Curves

2.2.1 Gauss’s Parity Condition

Gauss observed without proof that the Gauss code of every planar curve satisfies a simple parity
condition: Every substring that starts and ends with the same symbol has even length, or
equivalently, each symbol appears once at an even index and once at an odd index. This parity
condition was first proved necessary by Nagy [8], ultimately by reduction to the Jordan curve
theorem; an elementary proof was later given by Rademacher and Toeplitz [9]. Gauss also
observed that the sequences abcadcedbe and abcabdecde satisfy his parity condition but cannot
be realized by planar curves, so the parity condition is not sufficient.

In fact, Nagy [8] actually described a complete algorithm to reconstruct a planar curve from
its Gauss code, and thus to determine whether a Gauss code is planar. Nagy’s algorithm is very
different from the approach described below, and it’s unclear whether it can be implemented to
run as quickly, so I will defer a detailed description of Nagy’s approach to the homework.

2.2.2 Dehn’s Tree-Onion Condition

About 100 years after Gauss, Dehn [2] described das Gaussische Problem der Trakte and proposed
another algorithm to detect planar Gauss codes. Dehn first “uncrosses” the given Gauss code
by reversing every substring between identical letters, in arbitrary order. If the given Gauss
code is planar, each reversal corresponds to smoothing a vertex of the curve, reversing one of
the two subcurves that start and end at that vertex, so that the overall smoothed curve remains
connected.

For example, given the Gauss code abcdefgchaigdjkhbifejk, Dehn might proceed as
follows, reversing the substrings in alphabetical order:

abcdefgchaigdjkhbifejk ahcgfedcbaigdjkhbifejk

ahcgfedcbaigdjkhbifejk ahcgfedcbhkjdgiabifejk

ahcgfedcbhkjdgiabifejk ahcdefgcbhkjdgiabifejk

ahcdefgcbhkjdgiabifejk ahcdjkhbcgfedgiabifejk

ahcdjkhbcgfedgiabifejk ahcdjkhbcgfefibaigdejk

ahcdjkhbcgfefibaigdejk ahcdjkhbcgfefibaigdejk

ahcdjkhbcgfefibaigdejk ahcdjkhbcgiabifefgdejk

ahcdjkhbcgiabifefgdejk ahkjdchbcgiabifefgdejk

ahkjdchbcgiabifefgdejk ahkjdchbcgibaifefgdejk

ahkjdchbcgibaifefgdejk ahkjedgfefiabigcbhcdjk

ahkjedgfefiabigcbhcdjk ahkjdchbcgibaifefgdejk

The resulting string encodes a weakly simple closed curve that touches itself tangentially at each
of the original vertices. Because we can reverse substrings in any order, the resulting touch code
(and the corresponding curve) is not unique. If we reverse the substrings one at a time by brute
force, the entire untangling process requires O(n2) time, but as we’ll see shortly, it is possible to
untangle any Gauss code in O(n) time.

The Gauss diagram of the touch code consists of a cycle of 2n vertices, labeled by the
symbols in the touch code in order, plus edges joining each pair of identical symbols. Dehn
proved that if a Gauss code is planar, then the Gauss diagram of the resulting touch code is a
planar graph; that is, we can embed some of the chords inside the circle and the rest of the
chords outside the circle so that no pair of chords intersects. Dehn referred to planar Gauss
diagrams as “Baum-Zweibel Figuren” [“tree-onion diagrams”] and their corresponding codes
as “Baum-Zweibel Reihen” [“tree-onion strings”], because they can also be used to describe
tree-cotree decompositions of arbtirary plane graphs.

4

One-Dimensional Computational Topology Planar Curves

ba

c

d

e

fg

h

i

j

k

Figure 2.2. Left: Smoothing a vertex of a planar curve, from Dehn [2]. Right: A smoothed curve with Gauss touch
code ahkjdchbcgibaifefgdejk.

ah
k

j

d

c

h

b

c
g

i b
a

i

f

e

f

g

e
jk

d

Figure 2.3. Left: A tree-onion figure, from Dehn [2]. Right: The planar Gauss diagram of ahkjdchbcgibaifefgdejk.

Dehn’s condition can expressed more efficiently in terms of a different graph, called the
interleave graph of the code. The interleave has n vertices, one for each distinct symbol in the
touch code, and any edge between any two symbols that interleave x . . . y . . . x . . . y in the code.
A Gauss diagram is planar if and only if its interleave graph is bipartite. The interleave graph has
O(n2) vertices and edges, and we can easily check bipartiteness in O(n2) time.

a b

cd

e

f g

h

i j k

Figure 2.4. The bipartite interleave graph of ahkjdchbcgibaifefgdejk.

To complete his algorithm, Dehn observed that we can transform any Gauss diagram into a
4-regular graph by replacing each chord with a pair of crossing chords with a crossing, as shown
in Figure 2.5. This recrossing process yields a single closed curve consistent with our original
Gauss code then, trivially, the original Gauss code is planar. Otherwise, the original Gauss code
is not planar.

Dehn observed that his tree-onion condition is necessary but not sufficient for planarity—
consider the Gauss code abab—and asked whether Gauss’s parity condition and Dehn’s tree-onion
condition are sufficient. In fact, these two conditions are sufficient, as proved by Dowker and
Thistlethwaite [3] almost 50 years later.

5

One-Dimensional Computational Topology Planar Curves

h

a

k

j

d

c

b

g

i f

e

Figure 2.5. Left: Building a closed curve from a tree-onion diagram, from Dehn [2]. Right: A planar curve consistent
with the original Gauss code abcdefgchaigdjkhbifejk, after Dehn [2] and Kaufmann [7].

2.2.3 Modern Proof

Rather than repeating Dowker and Thistlethwaite’s argument, I’ll give a simple self-contained
characterization of planar Gauss codes with a complete proof. This characterization is ultimately
based on the conditions of Gauss and Dehn, but uses more modern algorithmic tools described by
Rosensteihl and Tarjan [10]. (Rosensteihl and Tarjan [10] describe an efficient implementation
of Dehn’s algorithm, including the second untangling phase, without exploiting Gauss’s parity
condition.)

We start with a simple consequence of the Jordan curve theorem.

Lemma 2.2. Every pair of generic closed curves that intersect only transversely intersect at an
even number of points.

Proof: Let α and β be a generic pair of closed curves. Recall the parity test for deciding whether
a point is in the interior of a simple closed curve or not. The same parity test allows us to color
the faces of β alternately black and white, so that any two faces that share an edge have opposite
colors.

Now imagine a point moving around α; each time this point crosses β , it moves from a
white face to a black face or vice versa. The moving point starts and ends in the same face, and
therefore must change color an even number of times. �

Now let X be a string of length 2n, in which each of the n unique symbols appears twice.

Lemma 2.3. If X is the Gauss code of a planar curve, then every substring of X that starts and
ends with the same symbol has even length.

Proof: Let γ be a planar closed curve. Smoothing γ at any vertex produces two subcurves α
and β . Up to a cyclic shift (reflecting a change of basepoint), the Gauss code for γ can be
written as axay , where string x encodes the vertices along α and string y encodes the vertices
along β . Each self-intersection point of α is encoded in x twice, and the other symbols of x
encode the intersections between α and β . We conclude that x has even length, which completes
the proof. �

The string X defines a 4-regular graph G(X) whose vertices are the n distinct symbols in X ,
and whose edges correspond to (cyclic) substrings of length 2. Moreover, X defines a particular
Euler tour of G(X); the edges of this tour are alternately directed forward and backward. Said

6

One-Dimensional Computational Topology Planar Curves

differently, G(X) is a directed graph with edges x i�x i+1 and x i�x i−1 mod 2n for every even index i.
For example, if X = abcdefgchaigdjkhbifejk, the graph G(X) consists of the following edges:

a�b�c�d�e�f�g�c�h�a�i�g�d�j�k�h�b�i�f�e�j�k�a

See Figure 2.6.

ba

c

d

e

fg

h

i

j

k

Figure 2.6. A curve with alternately oriented segments.

Theorem 2.4. X is a planar Gauss code if and only if G(X) has a planar embedding that contains
a weakly simple Euler tour.

Proof: First, suppose X is the Gauss code of a planar curve γ. Except for the edge orientations,
G(X) is the image graph of γ. Lemma 2.3 implies that every vertex of G(X) has in-degree 2 and
out-degree 2, so G(X) has an Euler tour. Moreover, the edges incident to each vertex of G(X)
alternate in, out, in, out. It follows that every Euler tour of G(X) is weakly simple.

Conversely, suppose G(X) has a planar embedding that contains a weakly simple Euler tour T .
Winding number arguments imply that the edges incident to each vertex of G(X) alternate in,
out, in, out. The original string X defines an undirected Euler tour U of G(X), which traverses
edges alternately forward and backward. U crosses itself at every vertex of G(X). It follows
immediately that U is a closed curve with Gauss code X . �

2.3 The Pile of Twin Stacks

Theorem 2.4 gives a complete characterization of planar Gauss codes, but it leaves open the
question of how to decide planarity algorithmically. Most of the algorithm is straightforward;
we can build the directed graph G(X) and compute an Euler tour T in O(n) time, and once we
have a planar embedding of G(X) that makes T weakly simple, we can extract the curve U in
O(n) time. The hard part is deciding whether T is a planar touch curve, or equivalently, whether
the interlace graph of T is bipartite. We’ve already seen how to answer this question in O(n2)
time. In the remainder of this node, I’ll describe an algorithm of Rosenstiehl and Tarjan [10] that
solves this planarity problem in O(n) time.⁴

First we adopt a variant notation proposed independently by Dowker and Thistlethwaite [3].
We encode the Gauss code in an array t[0 .. 2n− 1] that encodes for each index i the index of
the other occurrence of symbol T[i]. Thus, for each index i, we have T[t[i]] = T[i] but t[i] 6= i.
For example, the Gauss code ahkjdchbcgibaifefgdejk defines the array

[12,6, 21,20, 18,8, 1,11, 5,17, 13,7, 0,10, 16,19, 14,9, 4,15, 3,2]

⁴This is not the first algorithm to solve this planarity problem in linear time. About ten years earlier, Hopcroft
and Tarjan [6] described the first linear-time algorithm to decide if an arbitrary graph is planar. At a very high level,
Hopcroft and Tarjan’s algorithm resembles Nagy’s 1927 algorithm for checking curve planarity.

7

One-Dimensional Computational Topology Planar Curves

For the sake of illustration, we orient this index array vertically, and we process the indices in the
array from the top down.

Each distinct symbol in the code represents a chord in the Gauss diagram. We want to classify
these chords into two classes—“left” and “right”—which can be respectively embedded inside
and outside the main circle of the Gauss diagram without intersecting. If we knew the left-right
classification in advance, we could verify that no two chords intersect in O(n) time using two
stacks, as follows. Here we assume the chord symbols are the integers 1 through n, and the
boolean array IsLeft indicates which symbols correspond to “left” chords.

VerifyLR(T[0 .. 2n− 1], t[0 .. 2n− 1], IsLeft[1 .. n]):
L← new stack
R← new stack
for i← 0 to 2n− 1

if t[i]> i 〈〈first endpoint〉〉
if IsLeft[T[i]]

Push(L, T[i])
else

Push(R, T[i])
else 〈〈second endpoint〉〉

if IsLeft[T[i]]
x ← Pop(L)

else
x ← Pop(R)

if x 6= T[i]
return False

return True

Of course we don’t know the left-right classification in advance; that’s what we need to
compute! Rosenstiehl and Tarjan’s algorithm builds this classification using a stack of pairs of
stacks; to help avoid confusion, the outer stack is called a “pile”. Each pair of stacks on the pile
consists of a left stack Li and a right stack Ri .

At the end of the jth iteration of the inner loop, the pile of stacks contains all values t[i]
such that i < j and t[i]≥ j. In particular, at the start and end of the algorithm, the pile is empty.
Each iteration of the algorithm maintains the following data structure invariants:

• For each level i, either Li or Ri is non-empty.

• For each level i, all chords in Li ∪ Ri lie in the same component of the interleave graph.

• For all level i 6= j, no chord in Li ∪ Ri is interleaved with any chord in L j ∪ R j .

• For each level i, the stacks Li or Ri are each sorted in increasing order (that is, indices are
pushed in decreasing order).

• The pile itself is also sorted in increasing order: For each level i, all indices in Li ∪ Ri are
smaller than all indices in Li+1 ∪ Ri+1.

Intuitively, the stacks Li and Ri in each pair contain chords of the Gauss diagram, represented
by their higher-numbered endpoints, thatmust lie on opposite sides of themain circle. Equivalently,
the interleave graph contains edges between every index in Li and every index in Ri . Moreover, the
chords in each stack are properly nested. However, the chords at each level can be independently
embedded on either side, either with Li on the left and Ri on the right, or Li on the right and Ri

8

One-Dimensional Computational Topology Planar Curves

on the left. Thus, if the pile contains k levels, there are (at least) 2k consistent embeddings of
the chords in the pile.

ÆÆÆ Still need to actually describe the algorithm.

i T[i] t[i] Pile of twin stacks Operations Interleaves found

0 a 12 [12 | •] new pair, push left

1 h 6 [6 | •] , [12 | •] new pair, push left

2 k 21 [6, 12 | 21] meld, push right ka,kh

3 j 20 [6, 12 | 20,21] push right jh

4 d 18 [6, 12 | 18,20, 21] push right dh

5 c 8 [6, 12 | 8,18, 20,21] push right ch

6 h 1 [12 | 8, 18,20, 21] pop left

7 b 11 [11, 12 | 8,18, 20,21] push left bc

8 c 5 [11, 12 | 18,20, 21] pop right

9 g 17 [11, 12 | 17,18, 20,21] push right gb

10 i 13 [11, 12 | 13,17, 18,20, 21] push right ib

11 b 7 [12 | 13, 17,18, 20,21] pop left

12 a 0 [• | 13, 17, 18,20, 21] pop left

13 i 10 [• | 17,18, 20,21] pop right

14 f 16 [16 | •] , [• | 17,18, 20,21] new pair, push left

15 e 19 [19 | 16, 17,18, 20,21] swap top pair, meld, push right ef,eg

16 f 14 [19 | 17, 18,20, 21] pop right

17 g 9 [19 | 18, 20,21] pop right

18 d 4 [19 | 20, 21] pop right

19 e 15 [• | 20,21] pop left

20 j 3 [• | 21] pop right

21 k 2 ∅ pop right, pop empty pair

Figure 2.7. Rosenstiehl and Tarjan’s pile of twin stacks algorithm running on the string ahkjdchbcgibaifefgdejk

9

One-Dimensional Computational Topology Planar Curves

References

[1] J. Scott Carter. Classifying immersed curves. Proc. Amer. Math. Soc. 111(1):281–287, 1991.

[2] Max Dehn. Über kombinatorishe Topologie. Acta Math. 67:123–168, 1936.

[3] Clifford H. Dowker and Morwen B. Thistlethwaite. Classification of knot projections.
Topology Appl. 16(1):19–31, 1983.

[4] George K. Francis. Null genus realizability criterion for abstract intersection sequences. J.
Comb. Theory 7(4):331–341, 1969.

[5] Carl Friedrich Gauß. Nachlass. I. Zur Geometria situs. Werke, vol. 8, 271–281, 1900. Teubner.
Originally written between 1823 and 1840.

[6] John Hopcroft and Robert E. Tarjan. Efficient planarity testing. J. Assoc. Comput. Mach.
21(4):549–569, 1974.

[7] Louis H. Kauffman. Virtual knot theory. Europ. J. Combin. 20(7):663–691, 1999.
arXiv:math/9811028.

[8] Julius v. Sz. Nagy. Über ein topologisches Problem von Gauß. Math. Z. 26(1):579–592, 1927.

[9] Hans Rademacher and Otto Toeplitz. On closed self-intersecting curves. The Enjoyment of
Mathematics: Selections from Mathematics for the Amateur, chapter 10, 61–66, 1990. Dover
Publ. Originally published by Princeton Univ. Press, 1957.

[10] Pierre Rosenstiehl and Robert E. Tarjan. Gauss codes, planar Hamiltonian graphs, and
stack-sortable permutations. J. Algorithms 5(3):375–390, 1984.

[11] Hassler Whitney. On regular closed curves in the plane. Compositio Math. 4:276–284, 1937.

© Copyright 2017 Jeff Erickson.
This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).

Free distribution is strongly encouraged; commercial distribution is expressly forbidden.
See http://jeffe.cs.illinois.edu/teaching/topology17/ for the most recent revision.

10

http://arxiv.org/abs/math/9811028
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/topology17/

	Planar Curves
	Definitions and Representations
	Polygons
	Walks in graphs
	Generic curves

	Gauss Code Planarity
	Gauss’s Parity Condition
	Dehn’s Tree-Onion Condition
	Modern Proof

	The Pile of Twin Stacks

