
Computational Topology (Jeff Erickson) Surfaces

There is nothing “below the surface,” my faithful friend—absolutely nothing.

— Letter 52, The Mahatma Letters to A. P. Sinnett (1882)

5 Surfaces

For the next several lectures, we will move from the Euclidean plane to a wider class of topological
spaces that locally resemble the plane. A topological space Σ is called a 2-manifold if for every point
x ∈ Σ, there is an open subset U ⊆ Σ such that x ∈ U and U is homeomorphic to R2. More succinctly, a
2-manifold is a space that is locally homeomorphic to the plane. 2-manifolds are also called surfaces.

In this lecture, I’ll describe a classical combinatorial description of 2-manifolds that is useful both for
abstract mathematical arguments and as the basis of concrete data structure. The same combinatorial
structure can be described in two equivalent ways:

• Polygonal schema: A collection of polygons with edges glued together in pairs.

• Cellular graph embedding: An embedding of a graph G on a surface Σ, such that every face of
the embedding is a topological disk;

5.1 Polygonal Schemata

A polygonal schema Π is a finite collection of polygons with oriented sides identified in pairs. More
explicitly, let f1, f2, . . . , fn denote a finite set of polygons in the plane, called faces, whose total number
of sides is even. (I will always refer to the vertices of these polygons as corners, and their edges as
segments.) Formally, an orientation of an edge e is a linear map from the unit interval [0,1] to e;
however, since there are only two such maps, we can think of an orientation of a side e as a permutation
of its endpoints, or a labeling of its endpoints as head(e) and tail(e). A polygonal schema assigns each
side an orientation and a label from some finite set, such that each label is assigned exactly twice. (The
standard choice of labels in illustrations are lower-case letters.)
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A polygonal schema Π with signature (abcadb)(cdee); arrows indicate edge orientations.

Each polygonal schema Π defines a topological space Σ(Π) by identifying pairs of sides with matching
labels and orientations. The labels indicate which sides should be identified; the orientations indicate
how the sides are to be identified. Each pair of identified sides becomes a single path in Σ(Π), which we
call an edge. The identification of sides in Π induces an identification of corners. Thus, several corners
may be mapped to the same point in Σ(Π), which we call a vertex. These vertices and edges define a
graph G(Π) embedded in Σ(Π).

We can encode any polygonal schema by listing the labels and orientations of sides in cyclic order
around each polygon. Whenever we traverse a side along its orientation, we record its label; when we
traverse an edge against its orientation, we record its label with a bar over it. Thus, in the example
schema on the previous page, traversing each polygon counterclockwise, starting from its bottom left
corner, we obtain the signature (abcadb)(cdee). Of course, this is not the only possible encoding of
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this polygonal schema—we could traverse the square first, or start at a different side of each polygon,
or reverse the traversal direction, or even permute the labels and/or reorient some sides. All such
encodings and schemata are considered equivalent.

Alternately, we can record only the sequence of edge labels, and then separately record whether
each edge is traversed in both directions or only in one direction. Thus, for the example schema can be
encoded by the double permutation (abcadb)(cdee) and the function 〈a,b,c,d,e〉 7→ 〈2,2,1,1,2〉. If
we regard every edge e as having two distinct shores, called for example left(e) and right(e), then the
double-permutation is actually a standard permutation of the shores. Let me emphasize that the names
‘left’ and ‘right’ have no geometric meaning whatsoever, at least for the moment.

The idea of studying surfaces by cutting them into simply connected pieces dates back at least to
Riemann [12]. Polygonal schemata and their higher-dimensional generalizations were developed by
Poincaré as a combinatorial representation of abstarct topological spaces. Polygonal schemata were also
used by Heffter [8] to encode cellular embeddings (see below) of the complete graph on orientable
surfaces, in one of the earliest attack on Heawood’s coloring conjecture [7]. In Dehn and Heegaard’s
seminal encyclopedia article [2], which established the formal foundations of combinatorial topology
for the first time, 2-manifolds are defined to be topological spaces that can be described by a polygonal
schema.

5.2 Cellular Graph Embeddings

A graph is a topological space: A collection of intervals with endpoints identified. In particular, we allow
loops and parallel edges.

An embedding of a graph G into a 2-manifold Σ is a continuous injective map from G to Σ. The
image of any graph embedding is homeomorphic to the graph itself. Thus, at the risk of confusing the
reader, we usually use the same symbol G to simultaneously represent the abstract graph, the embedding
map, and the image of the embedding. The components of Σ \ G are called the faces of the embedding.
An embedding is cellular (or 2-cell) if every face of G is homeomorphic to an open disk, and therefore
to the plane.

In the neighborhood of any vertex v, any embedding cyclically orders the edges incident to v.
Conversely, any cellular embedding is encoded by these cyclic permutations. A signed rotation system
is a double-permutation of the edges, obtained by recording the labels of edges around each vertex in
some order, together with a function ι : E→ {1, 2} indicating whether the cyclic orders at each end of an
edge cross that edge in the same direction (�——� or �——�) or in opposite directions (�——� or �——�).
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The signed rotation system induced by the example polygonal schema. Colors indicate faces of the embedding.

The study of graph embeddings on 2-manifolds was instigated by Heawood [7], who asked for the
minimum number of colors required to properly color the vertices of a graph embedded on a surface (in
the same paper where he pointed out a bug in Kempe’s proof of the Four-Color Theorem). (Unsigned)
rotation systems were first proposed by Edmonds [4] in 1960 to encode cellular embeddings of simple
graphs, that is, without loops or parallel edges, on orientable surfaces; see also Youngs [14]. Youngs [15]
added ‘signs’, thereby extending rotation systems to embeddings of simple graphs on non-orientable
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surfaces. Gross and Alpert [6] refined rotation systems further to support arbitrary multigraphs (with
loops and parallel edges); they called the embedding induced by a rotation system the Heffter-Edmonds
imbedding.

5.3 Barycentric Subdivision

The resemblance between signed rotation systems and polygonal schema encodings is not a coincidence;
the two structures are in fact dual to each other. To my knowledge, Gross and Alpert [6] were the first
to recognize this equivalence in print, almost fifteen years after Edmonds proposed rotation systems for
the first time.

The barycentric subdivision of a polygonal schema Π, historically but inexplicably denoted Sd(Π),
is obtained by subdividing each of the faces into triangles, which I will call flags. The vertices of each
flag are the centroid of a face f , the midpoint of a side e of that face, and an endpoint v of that side.
Thus, any face with k sides is subdivided into 2k flags. Altogether, the barycentric subdivision of a
polygonal schema with m edges (that is, 2m sides) contains 4m flags.

We call each vertex of Sd(Π) an a-vertex (apex) if it is a vertex of Π, a b-vertex (boundary) if it is a
midpoint of an edge of Π, and a c-vertex if it is the centroid of a face of Π. Similarly, we call an edge of
Sd(Π) an a-edge, b-edge, or c-edge depending on the type of the opposing vertex in either of the flags
that contain it. Finally, for any flag F , we define a(F) to be the other flag sharing the same a-edge as F ,
and define b(F) and c(F) similarly. We can view the functions a, b, and c either as permutations on the
set of all flags in Sd(Π), or as the edges of a 3-regular graph whose vertices are the flags, as convenient.
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The barycentric subdivision Sd(Π) of the example polygonal schema Π.
Colored arrows indicate the three matchings: red = a, blue = b, green = c.

Also, by cutting the faces into their constituent flags, we can also view the barycentric subdivision of
any polygonal schema as a finer polygonal schema for the same space. In particular, the vertices, edge
midpoints, and face centroids in Π are all vertices in Sd(Π).

Barycentric subdivisions are examples of (pure two-dimensional) simplicial complexes, which we will
consider in much greater generality later in the course; roughly speaking, a simplicial complex is a set
of simplices (points, segments, triangles, tetrahedra, etc.) glue together along common faces (of any
dimension, and not necessarily in pairs).
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5.4 Dual Schemata

We can recover the original polygonal schema Π from its barycentric subdivision Sd(Π) by gluing every
flag f to the flags a( f ) and b( f ) along their common edges. The a and b links partition the set of flags
into cycles; each cycle has a common centroid, and gluing the flags in that cycle recovers the face. The
Jordan-Schönflies theorem implies that each face is a disk; the boundary of each face is covered with
c-edges.

If instead we glue every flag f in Sd(Π) to the flags a( f ) and c( f ) along their common edges, we
obtain the dual schema Π∗. Again, the a and c links partition the set of flags into several cycles, each
with a common vertex. Gluing the flags in each cycle creates a disk with the vertex v in its interior (up to
homeomorphism, at its center). This disk is the dual face v∗. Note that a dual face may have only one
or two sides; treating any such monogon or bigon as a geometric disk causes no problems. The centroid
of each face f of Π becomes a dual vertex f ∗ in Π∗. For each edge e of Π, there is a corresponding dual
edge e∗ in Π∗ with the same midpoint. The orientations of the sides of the dual faces can be determined
by the b-matching between flags.
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The dual schema Π∗; colors indicate faces of Π.

Finally, if instead we glue every flag f in Sd(Π) to the flags b( f ) and c( f ) along their common edges,
we obtain the diamond schema Π�. The b and c links partition the flags into cycles, one for each edge e
of Π. Gluing the flags in each cycle creates a quadrilateral with the midpoint of e in its interior (up to
homeomorphism, at its center). This disk is a face of Π∗, denoted e�. Each vertex v of Π is also a vertex
of Π�, as is each dual vertex f ∗ of Π∗. (Note that each side of a diamond face is a single flag edge, not
two flag edges as in Π and Π∗.)

0 1

4 3 85

961 2

0

2 3

7 8

4 5

6 7 9
c da b e

The diamond schema Π�; colors indicate faces of Π.

The barycentric subdivisions of any schema Π and its dual Π∗ are combinatorially isomorphic, except
for exchanging b’s and c’s. Thus, the dual schema of Π∗ is combinatorially isomorphic to the original
schema Π. The spaces Σ(Π), Σ(Π∗), and Σ(Π�) are all clearly homeomorphic to Σ(Sd(Π)), and therefore
homeomorphic to each other.

The relationship between primal and dual schemata also reveals the duality between schemata and
rotation systems: Any polygonal schema Π is combinatorially isomorphic to the rotation system of the
dual graph G(Π∗). Specifically, the cyclic order of directed edges around any face f of Π is the cyclic
order of sided edges around the dual vertex f ∗.

5.5 Polygonal Schemas = 2-Manifolds

Now we can finally verify that polygonal schemata really describe the spaces we care about.
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Lemma 5.1. For any polygonal schema Π, the space Σ(Π) is a compact 2-manifold.

Proof: The star of any vertex x of Sd(Π) is the set of all open faces of Sd(Π) for which x is a vertex.
The complex Sd(Π) has three types of vertices. The star of the centroid of face f is the interior of f .
The star of the midpoint of edge e is the interior of the diamond face e�, which contains the interior
of e. Finally, the star of any vertex v of Π is the interior of the dual face v∗, which obviously contains the
point v. Each of these subsets of Sd(Π) is homeomorphic to an open disk, and therefore to the plane.

Consider an arbitrary point p in Σ; this point lies either in the interior of a face f of Π, in the interior
of an edge e of Π, or at a vertex v of Π. Thus, p lies either in the interior of a face f , in the interior
of a diamond face e�, or the interior of a dual face v∗. In each case, p lies in an open subset of Σ
homeomorphic to the plane.

Finally, compactness of Σ(Π) follows from the compactness of each face of Π. �
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Neighborhoods of three points in the example schema.

The converse of this lemma is quite a bit harder to prove. Until the early 20th century, it was simply
assumed that any 2-manifold could be triangulated, that is, described by a simplicial complex.1 The
following lemma was first proved independently by Kerékjártó [9] and Radó [11] in the early 1920s.
For shorter, more modern treatments, see Doyle and Moran [3] or Thomassen [13]. Here I will only
give a brief sketch of a proof, with a huge chunk of the work unashamedly brushed under the rug.

Lemma 5.2 (Kerékjártó-Radó). Any compact, connected 2-manifold can be described by a polygonal
schema.

Proof (sketch): Let Σ be a compact, connected 2-manifold. Because Σ is compact, it can be covered by
a finite number of closed sets D1, D2, . . . , Dn, each homeomorphic to a disk. We can assume without loss
of generality that this collection of disks is minimal—no disk lies in the union of any other. With lots of
grind,2 we can assume that for any i and j, the intersection ∂Di ∩ ∂D j consists of a finite number of
points. It follows that Σ \

⋃n
i=1 ∂Di has a finite number of components. Each of these components is

homeomorphic to a disk; otherwise, some points on Σ would not be covered. These components are the
faces of a polygonal schema. The intersection points between boundary curves ∂Di are the vertices, and
arcs of boundary curves between vertices are the edges. �

1In fact, it was assumed that every topological space can be triangulated. This assumption was proved true for 3-manifolds
by Moise [10] and Bing [1] in the 1950s, but proved false(!) for 4-manifolds (and higher) by Freedman [5] in the 1980s.

2This is not the traditional meaning of ‘WLOG’, but it is often more accurate.
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5.6 Orientability

Theorem 5.3. Let Π be a polygonal schema of complexity n. We can determine in O(n) time whether
Σ(Π) is orientable.
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