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ABSTRACT
We study the min st-cut and max st-flow problems in pla-
nar graphs, both in static and in dynamic settings. First,
we present an algorithm that given an undirected planar
graph and two vertices s and t computes a min st-cut in
O(n log log n) time. Second, we show how to achieve the
same bound for the problem of computing a max st-flow
in an undirected planar graph. These are the first algo-
rithms breaking the O(n log n) barrier for those two prob-
lems, which has been standing for more than 25 years. Third,
we present a fully dynamic algorithm maintaining the value
of the min st-cuts and the max st-flows in an undirected
plane graph (i.e., a planar graph with a fixed embedding):
our algorithm is able to insert and delete edges and answer
queries for min st-cut/max st-flow values between any pair

of vertices s and t in O(n2/3 log8/3 n) time per operation.
This result is based on a new dynamic shortest path algo-
rithm for planar graphs which may be of independent in-
terest. We remark that this is the first known non-trivial
dynamic algorithm for min st-cut and max st-flow.
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1. INTRODUCTION
The min cut and max flow problems have been at the heart

of algorithmic research on graphs for over 50 years. Classical
algorithms include Ford-Fulkerson, Edmonds-Karp, and the
push-relabel algorithms of Goldberg and Tarjan. The lat-
ter algorithm with dynamic trees runs in O(mn log(n2/m))
time, where m is the number of edges and n is the number
of vertices [13]. For sparse graphs, i.e., for m = O(n), this
is the fastest known algorithm for max flow.

Particular attention has been given to solving those prob-
lems on planar graphs, not only because they often admit
faster algorithms than general graphs but also since planar
graphs arise naturally in many applications. The pioneering
work of Ford and Fulkerson [8, 9], which introduced the max
flow/min cut theorem, also contained an elegant algorithm
for computing max st-flows in (s, t)-planar graphs (i.e., pla-
nar graphs where both the source s and the sink t lie on
the same face). The algorithm was implemented to work in
O(n log n) time by Itai and Shiloach [17]. Later, a simpler
algorithm for the same problem was given by Hassin [14],
who reduced the problem to a single-source shortest path
computation in the dual graph. Henzinger et al. [16] showed
that single-source shortest paths in planar graphs can be
found in O(n) time. As a result, a min st-cut and a max
st-flow can be found in O(n) time in (s, t)-planar graphs.

Itai and Shiloach [17] generalized the approach to the
case of general undirected planar (i.e., not only (s, t)-planar)
graphs, by observing that a min st-cut separating vertices s
and t in a planar graph G is related to the min weight cycle
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that separates faces fs and ft (corresponding to vertices s
and t) in the dual graph. The resulting algorithm makes
O(n) calls to a shortets path algorithm and thus runs in a
total of O(n2 log n) time. Reif [24] improved this bound by
finding the minimum weight separating cycle with a divide-
and-conquer approach using only O(log n) runs of the (s, t)-
planar algorithm: this yields an O(n log2 n) time algorithm
to compute a min st-cut for undirected planar graphs. Later,
Frederickson [12] improved the running time of Reif’s algo-
rithm to O(n log n). The same result can be obtained by
using the O(n) time shortest path algorithm in [16]. Has-
sin and Johnson [15] extended the min st-cut algorithm of
Reif to compute a max st-flow in O(n log n) time as well. In
summary, the best bound known for computing min st-cuts
and max st-flows in planar undirected graphs is O(n log n).
The first contribution of this paper improves the time

bound for computing min st-cuts in planar undirected graphs
to O(n log log n). In order to achieve this bound, we do not
depart from Reif’s approach [24]. Instead we speed it up
using a two-phase approach. The first phase runs a “coarse”
version of Reif’s algorithm which only determines a subset
of the min st-cut candidates found by the original algorithm.
We obtain a running time of O(n log log n) for this phase us-
ing the fast Dijkstra variant of Fakcharoenphol and Rao [7].
In the second phase, the remaining min st-cut candidates are
found exactly as in the algorithm by Reif but since the first
phase partitions the problem into simpler subproblems, we
can show that the second phase also runs in O(n log log n)
time.

As our second contribution, we show that a max st-flow in
undirected planar graphs can be computed within the same
O(n log log n) time bound. This is a consequence of our new
min st-cut algorithm together with the algorithm of Hassin
and Johnson [15]. The algorithms presented in this paper are
the first algorithms that break the O(n log n) long-standing
barrier for min st-cut and max st-flow problems in undi-
rected planar graphs. Computing min st-cuts in undirected
planar graphs is the bottleneck in algorithms for other prob-
lems, including global min cut in planar undirected graphs
and min st-cuts and shortest non-trivial cycles in undirected
graphs embedded on surfaces of bounded genus. Our result
thus improves the time bound for these problems as well.

As our third contribution, we present a fully dynamic
data structure for maintaining information about min st-
cuts and max st-flows in an undirected plane graph (i.e.,
a planar graph with a fixed embedding): our algorithm is
able to insert and delete edges and report the value of a
min st-cut/max st-flow for any pair of vertices s and t in

O(n2/3 log8/3 n) time per operation. This result is based on
our new techniques for the static min st-cut algorithm and
on a new dynamic shortest path algorithm for planar graphs
which may be of independent interest. We remark that this
is the first known non-trivial algorithm for the min st-cut
and max st-flow problems in a dynamic setting.

2. PRELIMINARIES
For a graph G = (V,E), define a piece P of G to be the

subgraph of G induced by a subset of E. In G, vertices of P
incident to vertices not in P are the boundary vertices of P
and we denote the set of them by ∂P . All other vertices of
P are interior vertices of P . We extend this notation and
use ∂H to denote the set of all boundary vertices of a known
division of G in a subgraph H.

We will identify an st-cut with the set of edges from the
s-side to the t-side of the cut.

2.1 r-Division
Frederickson [10] showed how to obtain, for any parame-

ter r ∈ (0, n), an r-division of a planar graph G, which is a
division of (the edges of) G into O(n/r) pieces each contain-
ing O(r) vertices and O(

√
r ) boundary vertices. He gave

an O(n log r + (n/
√
r ) log n) time algorithm to find such a

division. We will need a stronger result. More precisely,
assuming G is plane, define the holes of a piece P to be
bounded faces of P which are not faces of G. Then we have
the following result.

Theorem 1. For a plane n-vertex graph, an r-division in
which each piece has O(1) holes can be found in O(n log r+
(n/

√
r ) log n) time.

Proof. We will only give a sketch of the proof here. For
more details, see Appendix A and the original paper by Fred-
erickson [10].

The idea is to first find a spanning forest, in which each
tree has Θ(

√
r ) size, and to contract the graph on these

trees. Let G′ be the resulting graph. It has n′ = O(n/
√
r )

vertices. Now, find an r-division of G′ using a simple recur-
sive algorithm with O(n′ log n′) = O((n/

√
r ) log n) running

time. This r-division has O(n′/r) = O(n/r3/2) pieces each
of size r and there are O(n′/

√
r ) = O(n/r) boundary ver-

tices in total.
Expand G′ back to G. In G, there are now O(n/r) pieces

of size O(
√
r ) resulting from expanded boundary vertices

andO(n/r3/2) pieces of sizeO(r3/2) resulting from expanded
interior vertices of G′. Now, find an r-division inside each
piece of size O(r3/2). This takes O((n/r3/2)r3/2 log r) =
O(n log r) time. The result is an r-division of G and the
time to find it is O(n log r + (n/

√
r ) log n).

The above procedure of Frederickson does not ensure O(1)
holes in each piece. We modify the procedure as follows. For
the O(n log n) time recursive algorithm (see Lemmas 1 and
2 in [10]), we apply Miller’s cycle separator theorem [23] in-
stead of the separator theorem of Lipton and Tarjan [22]. At
each recursive step, we find a cycle that splits the current
piece P into two subpieces P1 and P ′

1. Let h be the number
of holes of P . One of the two subpieces, say P ′

1, may have
h+1 holes. We split P ′

1 in two using an idea of Fakcharoen-
phol and Rao [7]: contract all its holes into super-vertices
and apply Miller’s theorem but with vertex weights evenly
distributed on the super-vertices. In the resulting two sub-
pieces P2 and P3 of P ′

1, expand the holes back. Then as
shown in [7], P1, P2, and P3 each have at most h holes.

It follows easily that plugging this idea into Frederickson’s
r-division algorithm gives an r-division where each piece has
O(1) holes.

Throughout the paper, when we talk about an r-division,
we assume it has the form in Theorem 1.

2.2 Dense Distance Graphs
If G is edge-weighted, we define the dense distance graph

of a piece P to be the complete graph on ∂P where each
edge (u, v) has weight equal to the shortest path distance
(w.r.t. the edge weights) in P between u and v. In order to
compute dense distance graphs for all pieces we use Klein’s
algorithm [20] which for a plane graph H with p vertices
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and a fixed face f can report any shortest path distance
dH(u, v), where either u or v is on f , in O(log p) time af-
ter O(p log p) time for preprocessing1. Since a piece P has
O(

√
r ) boundary vertices and O(1) holes, applying Klein’s

algorithm to each face of P containing boundary vertices
gives the dense distance graph of P in O(r log r) time. Since
there are O(n/r) pieces, we get the following result.

Lemma 2. The dense distance graphs of all pieces in an
r-division can be computed in O(n log r) time.

2.3 Fast Dijkstra
The dense distance graphs can be used to speed up short-

est path computations using Dijkstra’s algorithm. It was
shown by Fakcharoenphol and Rao ([7], Section 3.2.2) that
a Dijkstra-like algorithm can be executed on a dense dis-
tance graph of a piece P in O(|∂P | log2 |P |) time. Having
constructed the dense distance graphs, we can run Dijkstra
in time almost proportional to the number of vertices (rather
than to the number of edges, as in standard Dijkstra). For
this, we require that the underlying planar graph has con-
stant degree which we can assume without loss of generality.

Lemma 3. Dijkstra’s algorithm can be run in O(b log2 n)
time on a graph composed of dense distance graphs with a
total of b boundary vertices (counted with multiplicity).

Proof. We use the data structure of Fakcharoenphol and
Rao [7] for each dense distance graph. Minimum distance
vertices from each of the O(b) dense distance graphs are kept
in a global heap.

3. REIF’S ALGORITHM
Let G∗ be a plane undirected connected graph, which we

refer to as the primal graph. We define a plane undirected
dual graph G = (V,E,w) as follows. Each face of G∗ corre-
sponds to a vertex in G and for each edge e∗ in G∗ there is
a dual edge e in G connecting the vertices corresponding to
the two faces of G∗ incident to e∗. In general, G is a multi-
graph. The weight of e in G is the same as the weight of e∗

in G∗. Throughout the paper we will refer to vertices of the
dual graph G interchangeably as (dual) vertices or faces.
Let s and t be any two vertices of G∗. We consider the

problem of finding a min st-cut in G∗. There is a well-know
duality between cuts in G∗ and cycles in G. For the two
faces s and t in G, an st-separating cycle in G is a simple
cycle containing one of the faces s and t in its interior and
the other in its exterior. The following lemma was proven
by Itai and Shiloach [17].

Lemma 4. A min st-separating cycle in G defines a min
st-cut in G∗.

Reif’s algorithm makes use of this duality. First, let us
make the simplifying assumption that G is simple. If not,
we can always subdivide edges by adding degree-two vertices
and this will not change the asymptotic complexity of the
problem. The algorithm starts by computing a shortest path
π = p1 → p2 → · · · → p|π| from an arbitrary vertex p1 on
face s to an arbitrary vertex p|π| on face t in G. Then an
incision in G along π is made as follows. Remove the set

1It is assumed in [20] that f is the external face but it can
be generalized to any face by reembedding H.

(a) (b)

t
π′π

�

s

Figure 1: (a): In cut-open graph Gst, Reif ’s algo-
rithm computes a shortest path � from the midpoint
on π to the midpoint on π′ and recurses on the two
subgraphs generated. (b): The coarse version of
Reif ’s algorithm only computes shortest paths be-
tween boundary vertices on the cut-path. A refined
version is then applied to find the remaining shortest
paths. Only shortest paths from the coarse version
are shown. Dashed line segments show the bound-
aries of pieces in the r-division.

Er of edges emanating right of π in the direction from s to
t. Insert a copy π′ = p′1 → p′2 → · · · → p′|π| of π and for

each edge (pi, u) ∈ Er, add edge (p′i, u). We let Gst be the
resulting graph, see Figure 1(a).

Next, Reif’s algorithm computes a shortest path � in Gst

from the midpoint p�|π|/2� of π to the midpoint p′�|π|/2� of

π′. This splits Gst into two subgraphs and splits π and
π′ into two halves, one for each side of �. In each of the
two subgraphs, degree two-vertices are removed by merging
their incident edges. This is done to limit the size of the
subgraphs generated. The algorithm then recurses on the
two subgraphs and the two subpaths.

Let �i be the shortest path found by the algorithm and
let pi and p′i be the first and last vertex of �i, respectively.
Then the cycle in G obtained from �i by identifying pi with
p′i is a min st-separating cycle in G. By Lemma 4, this cycle
defines a min st-cut in G∗.

With Dijkstra’s shortest path algorithm, Reif’s algorithm
runs in O(n log2 n) time. This can be improved to O(n log n)
time with Frederickson’s algorithm [10] or by speeding up
Reif’s algorithm using the linear time shortest path algo-
rithm of Henzinger et al. [16]. In the next section, we will
further improve Reif’s algorithm to get O(n log log n) run-
ning time.

4. FASTER MIN st-CUT ALGORITHM
In this section, we present our min st-cut algorithm and

give the claimed O(n log log n) time bound. To ease the
presentation, we leave out some details of the algorithm and
return to them in Section 4.3. We start with the following
simple lemma.

Lemma 5. Let s and t be faces in a planar undirected n-
vertex graph G and let π be a given shortest path between a
vertex on s and a vertex on t. In an application of Reif ’s
algorithm to find a min st-separating cycle in G, a subprob-
lem defined by a subgraph H and a subpath of π of length
O(logc n) for a constant c can be solved in O(|H| log log n)
time.

Proof. Recursion depth for Reif’s algorithm in H is only
O(log(logc n)) = O(log log n) so the running time for the
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subproblem is O(|H| log log n) using the shortest path algo-
rithm in [16].

We essentially run Reif’s algorithm but speed part of it
up with the Dijkstra variant given in Lemma 3. Recall that
G denotes the dual of a plane embedding of the input graph.
We need to find a min st-separating cycle in G, where s and
t are faces.

Let π be a shortest path in G from an arbitrary vertex
on s to an arbitrary vertex on t. We can find this path
in linear time using the algorithm in [16]. We first run a
“coarse” version of Reif. This will identify in O(n log log n)
time a subset of all the st-separating cycles found by the
original algorithm. More precisely, the set of cycles found
will split G into subgraphs each of which contains a subpath
of π of length O(logc n) for some constant c. We then run
the “refined” Reif algorithm by applying Lemma 5 to each
subgraph and its associated subpath of π. This will find the
min st-separating cycle in G. By ensuring that the total
size of the subgraphs is O(n), the entire algorithm runs in
O(n log log n) time. Figure 1(b) illustrates the output of the
first phase of our algorithm.

4.1 First Phase
We will now describe the first phase of our algorithm

which is the coarse version of Reif’s algorithm.

r-Division.
We apply Theorem 1 to obtain an r-division of G for r =

log6 n. This takes O(n log r+(n/
√
r ) log n) = O(n log log n)

time.

Cutting Pieces Open.
We make an incision in G along the shortest path π as

in Reif’s algorithm. This induces incisions in those pieces
containing parts of π and we update the pieces accordingly.
If a boundary vertex of a piece belongs to π before the in-
cision, we define both of its two copies after the incision as
boundary vertices of that piece. Note that there will still
be only O(

√
r ) boundary vertices in each piece and these

boundary vertices will still be on a constant number of holes
after the incision. Hence, the resulting set of pieces forms
an r-division in the cut-open graph.

Dense Distance Graphs.
We find in O(n log r) = O(n log log n) time dense distance

graphs for the pieces in the r-division using Lemma 2. The
edge weights of each dense distance graph are represented
in a matrix with O(

√
r ) rows and columns.

The total number of boundary vertices of these pieces is
O(n/

√
r ) and it follows from Lemma 3 that a shortest path

between any two boundary vertices in the r-division can be
computed in O((n/

√
r ) log2 n) = O(n/ log n) time. Note

that this shortest path consists of edges from the dense dis-
tance graphs so it is an implicit representation of a shortest
path in the underlying cut-open graph.

Coarse Reif.
For the sequence of vertices of π, consider the (possibly

empty) subsequence of vertices that are boundary vertices
in pieces of the r-division. These vertices partition π into
subpaths each of which is contained in a piece. The coarse
version of Reif’s algorithm is the normal algorithm of Reif

restricted to this subsequence and using the O(n/ log n) time
shortest path algorithm for each vertex in this subsequence.
As in Reif’s algorithm, for each shortest path � computed,
the graph is split into two subgraphs along � and we recurse
on each of them.

We need the subgraphs generated to have in totalO(n/
√
r )

boundary vertices and we do this by ensuring that they do
not share too many boundary vertices. We deal with this
in Section 4.3. Since recursion depth is O(log n), total time
for the first phase of our algorithm is O(n) in addition to
the O(n log log n) time to find the r-division and to set up
the dense distance graphs. The st-separating cycles found
in this phase partition G into subgraphs each containing a
subpath of π fully contained in a piece of the r-division.
Hence, the length of each such subpath is bounded by the
size O(r) = O(log6 n) of a piece.

Subgraphs for Recursive Calls.
When applying the coarse version of Reif’s algorithm, we

need to find the subgraphs for recursive calls. Consider a
subgraph H in some recursive call. We associate with H
the boundary vertices belonging to H and the cyclic order-
ings of these vertices on holes and external faces of pieces.
Whenever we need a distance dP∩H(u, v), where u and v
are boundary vertices of a piece P , we make a look-up in
the dense distance graph for P in G. It is easy to see that
this will give dP∩H(u, v) if u and v are connected in P ∩H.
Otherwise, dP∩H(u, v) is infinite. Before running the fast
Dijkstra variant for H we can partition in O(|∂P ∩H|) time
the set ∂P ∩H into groups induced by the connected com-
ponents in P ∩ H. With this information, we can report
dP∩H(u, v) in constant time for all u, v ∈ ∂P ∩H.

It follows that the total time to find a shortest path in H
is O(h log2 n), where h is the number of boundary vertices
in H. Over all such subgraphs, this will be O(n) time.

4.2 Second Phase
In order to run the second phase of our algorithm, we need

to convert the shortest paths consisting of edges from dense
distance graphs to the underlying shortest paths in G and
we need to find the subgraphs of G bounded by these paths.
In the next subsection we show how to do this in O(n) time
such that the total size of the subgraphs is O(n). Applying
Lemma 5 with constant c = 6 to each subgraph, we get
O(n log log n) time for the second phase of our algorithm.
Hence, the entire algorithm has O(n log log n) running time.

4.3 Overlapping Subgraphs
We need to ensure that the total number of boundary

vertices in the subgraphs generated by the coarse version
of Reif’s algorithm is O(n/

√
r ). The problem is that sub-

graphs overlap so a boundary vertex can belong to several
subgraphs. The original algorithm of Reif ensures linear
total size by deleting, in every subgraph generated, each
degree-two vertex by replacing the two edges e1 and e2 in-
cident to it by one whose weight is the sum of the weights
of e1 and e2.

First Phase.
In the first phase of our algorithm, we do something sim-

ilar. Let H be a subgraph in the coarse version of Reif’s
algorithm. We assume that H is bounded by two shortest
paths in the cut-open graph, π1 starting from a boundary
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vertex p1 on π and π2 starting from a boundary vertex p2 on
π; the case where H is bounded by only one shortest path
is handled similarly. Here we regard π1 and π2 as paths
consisting of edges in the dense distance graphs of pieces.

The algorithm partitions H into two subgraphs H1 and
H2 with a shortest path π3 in H from a boundary vertex
p3 between p1 and p2 on π. For i = 1, 2, assume that Hi

contains πi and let π′
i = πi ∩ π3. We may pick π3 such that

π′
i is a (possibly empty) path (this will always be the case if

ties in distances are broken consistently by the algorithm in
Lemma 3). Suppose π′

i contains at least three (boundary)
vertices and let qi and q′i be the endpoints of this path. Note
that in the underlying graph G, each interior vertex of π′

i

has degree 2 in Hi so for this subgraph, we do not include
π′
i but instead a super edge from qi to q′i of weight equal to

that of π′
i.

Clearly, the above strategy ensures that distances are pre-
served. To bound the size of subgraphs, note that all interior
vertices of π′

1 and π′
2 are in only one of the subgraphs H1

and H2 and all vertices of π3 \ (π′
1 ∪ π′

2) are in H1 and H2

and in no other subgraph. Furthermore, paths π′
1 and π′

2

together have at most four endpoints. It follows that the
total size of all the subgraphs generated by Reif is bounded
by a constant times the total number of boundary vertices
plus the number of times a subgraph is split. In the first
phase we apply Reif to O(n/

√
r ) vertices, so the graph is

split the same number of times. Hence, the total size of all
graphs created is O(n/

√
r ), as desired. We apply Lemma 3

and regard each super edge as an additional dense distance
graph with one edge. Since the total number of super edges
is bounded by the number of subgraphs, there are O(n/

√
r )

boundary vertices in total so the time to compute shortest
paths in the first phase is O((n/

√
r ) log3 n) = O(n).

Second Phase.
We also face the problem with overlapping subgraphs when

converting the shortest paths consisting of dense distance
graph edges to shortest paths in G for the second phase of
the algorithm. Since G has constant degree, Klein’s algo-
rithm [20] can report the underlying path in G correspond-
ing to a dense distance graph edge in time proportional to
the length of the path. Hence, after the first phase we can
obtain each of the shortest paths computed in time propor-
tional to their total size. However, this size can be super-
linear since the paths may share many vertices. We deal with
this problem in the following. We will show that an implicit
representation of the paths can be computed in O(n) time.

Implicit Representation of Paths.
Define pi1 , . . . , pik as the ordered sequence of vertices of π

from which the coarse Reif algorithm has computed shortest
paths πi1 , . . . , πik . Let p′i1 , . . . , p

′
ik

be the other endpoints
of these paths. We start by obtaining the shortest path �i1
in G from pi1 to p′i1 using Klein’s algorithm on each dense
distance graph edge of πi1 . This takes O(|�i1 |) time.

To find the shortest path �i2 in G from pi2 to p′i2 , we
similarly apply Klein’s algorithm on πi2 . If we encounter
no vertices already visited, we obtain the entire path and
move on to πi3 . Otherwise, let v1 be the first already visited
vertex and let �v1 be the path found. We stop the algorithm
when reaching v1 and instead start obtaining vertices of �i2
backwards from p′i2 until reaching an already visited vertex
v2. Let �v2 be the path found but ordered from v2 to p′i2 .

If v2 is on �i1 , a simple property of shortest paths allows
us to choose �i2 as the concatenation of �v1 , the subpath of
�i1 from v1 to v2, and �v2 , in that order. This gives us an
implicit representation of �i2 in O(|�i2 \ �i1 |) time.

Let (u, v) be a super edge or an edge in a dense distance
graph. This edge need not represent the same underlying
shortest path as the edge (v, u) since shortest paths need
not be unique. Hence, it may happen that v2 is on �v1 and
not on �i1 . If so, we can redefine �i2 to be the subpath
of �v1 from pi2 to v2 followed by �v2 . Letting �v2,v1 be
the subpath of �v1 from v2 to v1, total time to find �i2 is
O(|�i2 | + |�v2,v1 |) = O(|�i2 \ �i1 | + |�v2,v1 |). Since none of
the vertices on �v2,v1 , excluding v2, will be visited again, we
can afford to spend time O(|�v2,v1 |).

Repeating this process for the remaining shortest paths
πi3 , . . . , πik gives an implicit representation of the corre-
sponding shortest paths in G and it follows from the above
analysis that running time is O(n). In linear time it is
then easy to obtain from this representation the desired sub-
graphs needed in the second phase of our algorithm and to
ensure that they have total linear size.

4.4 Global Min Cuts and Min Cuts on Sur-
faces

Computing a min st-cut in a planar graph is the bottle-
neck in algorithms for some other problems. Our algorithm
improves the best known time bound for such problems.

Chalermoosk et al. [3] showed a simple algorithm for find-
ing a global min cut in an undirected planar graph, i.e., a
min st-cut of smallest weight over all distinct pairs of ver-
tices s and t. Their algorithm actually finds the girth, i.e.,
a shortest cycle, in the dual graph. The algorithm works in
a divide-and-conquer fashion, where in each step the graph
is divided into two subgraphs, and a single min st-cut is
computed. Using our algorithm we improve the time bound
of [3].

Theorem 6. The global min cut and girth of an undi-
rected planar graph can be computed in O(n log n log log n)
time.

For the unweighted case, Weimann and Yuster [25] pre-
sented an O(n log n) time algorithm for these problems.

We show that our algorithm improves also a result of
Kutz [21] which is the basis of some algorithms for graphs
embedded on a surface of bounded genus. We refer the
reader to [21] for more details and for the relevant defi-
nitions. Consider a graph embedded in a plane with two
boundaries. We can use Reif’s algorithm to find a shortest
cycle that separates the two boundaries. We simply make
one of the boundaries the face s and the other the face t.
Kutz [21] used this tool as a building block for a solution
of the following problem: Given a graph G embedded on an
orientable surface of bounded genus g and a shortest system
of loops, find a shortest cycle which crosses the set of loops
k times in a specified order (the same loop can be crossed
multiple times). The idea of the solution for this problem
is to take k copies of the fundamental domain defined by
the system of loops, glue them according to the sequence
of loop crossings, and identify the first and the last copy.
The result of the gluing process is a planar graph with two
boundaries, in which we find the shortest cycle that sep-
arates the two boundaries using Reif’s algorithm – this is
the required shortest cycle. Using our algorithm, we can
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find a shortest cycle with a given sequence of crossings in
O(kn log log kn) time, where O(kn) is the size of k copies of
the graph G.

Kutz [21] showed how to use this procedureO(gO(g)) times,
with crossing sequences of length O(g), to find a shortest
non-contractible cycle and a shortest non-separating cycle
in G. Chambers el al. [4] used this procedure in a similar
way to find a min st-cut in G. If g = O(n1−ε) we can find
a shortest system of loops in O(n) time by using the algo-
rithm of Henzinger et al. [16] instead of Dijkstra’s algorithm
in the greedy algorithm of Erickson and Whittlesey [6]. Our
improvement of Reif’s algorithm therefore leads to the fol-
lowing improvements in the algorithms of [21] and [4]:

Theorem 7. For an undirected graph embedded on an
orientable surface of genus g, a shortest non-contractible
cycle and a shortest non-separating cycle can be found in
O(gO(g)n log log n) time.

Theorem 8. For an undirected graph embedded on an
orientable surface of genus g, a min st-cut can be found in
O(gO(g)n log log n) time.

Our results improve the time bounds for these problems
for small genus g. For larger g, the O(g3n log n) time algo-
rithm of Cabello and Chambers [2] for non-contractible and

non-separating shortest cycles, and the O(2O(g)n log n) time
algorithm of Erickson and Nayyeri [5] for min st-cuts have
better time bounds.

5. FASTER MAX st-FLOW ALGORITHM
Hassin and Johnson [15] extend Reif’s algorithm and show

how to find a max st-flow using the value of a min st-cut and
the shortest paths �1 . . . �|π| between the vertices p1, . . . , p|π|
and p′1, . . . , p

′
|π| of the two copies of the path π, which Reif’s

algorithm has found. The running time that Hassin and
Johnson state in [15, Theorem 2] for their max st-flow algo-
rithm is O(n log n) using Dijkstra’s algorithm or O(n

√
log n)

using Frederickson’s shortest path algorithm [12]. With the
more recent shortest path algorithm of Henzinger et al. [16]
the running time of the algorithm becomes O(n).

We use the algorithm of Hassin and Johnson [15] without
a change. We have already found the value of a min st-
cut but we also need to implicitly represent all the shortest
paths �i. In Section 4.3, we found an implicit representation
of the shortest paths that we computed in the coarse Reif
phase. For the second phase, we replace the use of Reif’s
algorithm in Section 4.2 with the implementation of Hassin
and Johnson [15, Section 3], which we apply to each sub-
graph. The only difference between Reif’s algorithm and
the one of Hassin and Johnson is that the latter keeps an
implicit representation of O(n) size of all the shortest paths
that it finds, so the running time of our algorithm which
is obtained by Lemma 5 remains O(n log log n). The algo-
rithm of Hassin and Johnson keeps a representation of the
shortest paths �i using super edges similar to the way we
do in Section 4.3. The size of this representation is linear in
the size of the input graph, and since the total size of all the
subgraphs that we have in the second phase is O(n), we get
the desired representation in O(n) space.

The running time of our min st-cut algorithm remains
O(n log log n) and we run the algorithm of [15] on its output.
The latter algorithm takes O(n) time using the shortest path
algorithm of [16] and we have shown the following.

Theorem 9. A max st-flow in an undirected planar graph
can be computed in O(n log log n) time.

6. DYNAMIC MAX st-FLOW VALUES
In this section, we consider the problem of computing

shortest path distances and min st-cut/max st-flow values
in a dynamic environment. Most of the ideas presented here
are not entirely new but combined they give a new algo-
rithm for this problem that is simpler and improves on pre-
viously known approaches. We first show how to maintain
a planar graph G with positive edge weights under an inter-
mixed sequence of the following operations: insert(x, y, c)
add to G an edge of weight c between vertex x and ver-
tex y, provided that the embedding of G does not change;
delete(x, y) delete from G the edge between vertex x and
vertex y; distance(x, y) return the distance in G from vertex
x to vertex y.

Klein [20] gave a similar data structure which does not
allow edge insertion or deletion but which supports weight
updates, with O(n2/3 log5/3 n) update and query time. We
extend this data structure to include the operations insert
and delete.

In our dynamic algorithm we maintain an r-division of
G together with dense distance graphs of all its pieces (we
specify r below). This information will be recomputed ev-
ery order

√
r operations. We now show how to handle the

different operations. To insert resp. delete an edge (x, y)
when x and y are in a single piece P , we add resp. delete
the edge from P , and recompute the dense distance graph
of this piece. This can be carried out in O(r log r) time as
shown in Section 2.2. When we insert an edge (x, y) such
that x and y are not in a common piece, then either x is a
boundary vertex of every piece that contains it, or x is in
a single piece Px. In the latter case, the vertex x is not a
boundary vertex of Px, but it is adjacent to some face to
which y is also adjacent. Hence, adding an edge between x
and y will make x a boundary vertex of Px without increas-
ing the number of holes. After we have made x a boundary
vertex, we recompute the dense distance graph of Px. This
also requires O(r log r) time. If y is not a boundary ver-
tex, we process the single piece that contains it similarly.
We treat the edge (x, y) as a new piece containing only this
edge. Since an r-division is recomputed every order

√
r op-

erations, this will guarantee that throughout the sequence
of operations each piece will always have at most O(r) edges
and O(

√
r ) boundary vertices. Amortizing the initialization

over order
√
r operations yields O(

n log r+ n√
r

logn
√
r

+ r log r)

time per update.
To answer the query distance(x, y), where x is in a piece

Px and y is in a piece Py, we compute shortest paths from
x to the boundary vertices of Px inside Px, then continue
with the fast Dijkstra variant on the boundary vertices, and
finally compute shortest paths from the boundary vertices of
Py to y inside Py. This gives us a shortest path from x to y
if they are in different pieces. If Px = Py then, in addition to
the above, we also compute a shortest path between x and
y inside the piece, and take this path if it is shorter than
the previous one. By Lemma 3, we can compute a shortest
path in the entire graph between two boundary vertices in
O((n/

√
r ) log2 n) time. Computing shortest paths inside a

piece takes O(r) time using the algorithm of Henzinger et
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al. [16]. We conclude that we can answer a distance query
in O(r + (n/

√
r ) log2 n) time.

Setting r = n2/3/ log2/3 n gives the following lemma.

Lemma 10. Given a planar graph G with positive edge
weights, we can insert edges, delete edges and report the dis-
tance between any pair of vertices in O(n2/3 log5/3 n) amor-
tized time per operation. 2

6.1 Maintaining the Dual
Before turning our attention to the dynamic min st-cut

problem, we need to show how to dynamically maintain the
dual graph when the primal graph is updated. Given a pla-
nar graph G∗ = (V ∗, E∗) we wish to perform an intermixed
sequence of the following operations: insert(x, y, c) add to
G∗ an edge of weight c between vertex x and vertex y, pro-
vided that the embedding of G∗ does not change; delete(x, y)
delete from G∗ the edge between vertex x and vertex y;
distance(fs, fs) return a distance from face fs to face ft in
G.

Things are now more involved as a single edge change in
the primal graph G∗ may cause more complicated changes
in the dual graph G. In particular, inserting a new edge into
the primal graph G∗ results in splitting into two a vertex in
the dual graph G, whereas deleting an edge in the primal
graph G∗ implies joining two vertices of G into one. As
edges are inserted into or deleted from the primal graph,
vertices in the dual graph are split or joined according to the
embedding of their edges. To handle such splits and joins
efficiently, we do as follows. Let f be a vertex of degree d
in the dual graph: we maintain vertex f as a cycle Cf of d
edges, each of cost 0. The actual edges originally incident to
f , are made incident to one of the vertices in Cf in the exact
order given by the embedding. It is now easy to see that in
order to join two vertices f1 and f2, we need to cut their
cycles Cf1 and Cf2 , and join them accordingly. This can be
implemented in a constant number of edge insertions and
deletions. Similarly, we can support vertex splitting with
a constant number of edge insertions and deletions. Hence,
the above set of operations can be supported within the same
time bound as in Lemma 10.

6.2 Max st-Flow Queries
Given a planar graph G∗ = (V ∗, E∗) we wish to per-

form an intermixed sequence of the following operations:
insert(x, y, c) add to G∗ an edge of weight c between ver-
tex x and vertex y, provided that the embedding of G∗ does
not change; delete(x, y) delete from G∗ the edge between
vertex x and vertex y; max-flow(s, t) return the max-flow
value from s to t in G∗.
Here, we need the following observation. This result is

implied by [19].

Corollary 11. Let π be a any path from an arbitrary
vertex on face s to an arbitrary vertex on face t in G. Then
Reif ’s divide-and-conquer algorithm can be executed on π.

First, the modified algorithm computes for the middle ver-
tex pi of the path π in Corollary 11 a min st-separating cycle
�i that passes through pi. Next, it recurses on both sides
of the cycle �i. The only difference is the way the cycle �i

2The same worst-case time bounds can be obtained using a
global rebuilding technique.

is computed. Instead of finding a shortest pi − p′i path in
Gst it looks for a shortest pi − p′i path in G2

st, where G2
st is

obtained by gluing together path π with π′ and vice versa
in two copies of Gst.
In order to simplify the presentation of our idea, we as-

sume that pieces in the r-division do not contain holes.
Hence, each piece has all its boundary vertices cyclically
ordered on the external face. In Appendix B, we deal with
the general case.

We define a skeleton graph GS = (∂G,ES) to be a graph
over the set of boundary vertices in the r-division of G. The
edge set ES is composed of infinite weight edges connecting
consecutive (in the order on the hole) boundary vertices on
each hole and the external face of each piece. By our holeless
assumption, all boundary vertices in each piece lie on the
external face of the piece, so the graph GS is connected. We
define a patched graph to be G = G ∪ GS . Note that this
graph is still planar and the shortest distances do not change
after adding infinite weight edges.

In the algorithm we maintain dynamically information
about the distances in the dual graph G using the ideas from
the previous section. In order to answer max-flow queries we
use Corollary 11 and define path π as follows. Let bs and bt
be any boundary vertices in pieces Ps and Pt respectively.
Then π is the concatenation of a simple path from fs to bs
in Ps, a simple path from bs to bt in GS , and a simple path
from bt to ft in Pt.

Let us consider all edges inside Ps and Pt as individual
pieces. There are only O(r) of them. By our construction,
all vertices on π are boundary vertices so our coarse ver-
sion of Reif’s algorithm in Section 4.1 will actually find the
min st-cut and there is no need to run the second refined
Reif algorithm. The execution time of the coarse algorithm
for r = n2/3/ log2/3 n is O(n2/3 log8/3 n), as it essentially
amounts to running the shortest path algorithm from the
previous section order log n times. This finishes the details
of the algorithm in the case where pieces have no holes. The
modifications needed to prove the algorithm in the general
case are given in Appendix B.

Lemma 12. Given a planar graph G with positive edge
weights, each operation insert, delete and max-flow can be
implemented in O(n2/3 log8/3 n) amortized time. 3
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APPENDIX

A. PROOF OF THEOREM 1
In this section, we prove Theorem 1, i.e., we show that an

r-division can be found in O(n log r + (n/
√
r ) log n) time.

We use an approach similar to that of Frederickson [10]: con-
tract G, find an r-division of this smaller graph, expand the
graph back to G, and split some of the resulting pieces fur-
ther to get the desired r-division of the whole graph. First,
however, we shall give a simple O(n log n) time algorithm.
In Appendix A.3, this algorithm will be used to find an r-
division of the contracted graph.

A.1 Weak r-Division
To obtain an r-division of G in O(n log n) time, we follow

Frederickson’s approach. First we find a weak r-division
which is a division of G into O(n/r) pieces each of size O(r)
and with a constant number of holes, such that the total
number of boundary vertices over all pieces is O(n/

√
r ). In

Appendix A.2, we will then split pieces further to get the
desired r-division in O(n log n) time.

Consider the following recursive algorithm to find a weak
r-division: regard G as a piece with no boundary vertices,
split it recursively into two subpieces with the cycle sepa-
rator theorem of Miller [23] and recurse on them. The re-
cursion stops when a piece has size at most r. As shown by
Frederickson [10], this gives a weak r-division. However, it
does not ensure a constant bound on the number of holes in
each piece which we need in our application.

To deal with this, we use ideas of Fakcharoenphol and
Rao [7] to keep the number of holes bounded by some con-
stant h. The initial piece is the whole graph and thus con-
tains no holes. Now, consider the general recursive step
and let P = (VP , EP ) be the current piece. Assume it
has at most h holes. Apply the cycle separator theorem
to P with all vertices assigned weight 1/|VP |. This splits
P into two subpieces P1 = (VP1 , EP1) and P ′

1 = (VP ′
1
, EP ′

1
),

where |VP1 | = α|VP |+O(
√|VP |) and |VP ′

1
| = (1− α)|VP |+

O(
√|VP |) for some 1

3
≤ α ≤ 2

3
. Assume w.l.o.g. that P1

belongs to the interior of the separator cycle. Then this
subpiece has at most h holes. However, since the separator
cycle may have introduced a new hole in P ′

1, this subpiece
may have h+ 1 holes.

Contract the holes of P ′
1 into super vertices and apply

the cycle separator theorem with vertex weights distributed
evenly on super vertices. Expand them back to holes and
let P2 and P3 be the resulting two pieces. As shown in [7],
the number of holes in each of the two subpieces will be a
constant factor smaller than h+1 so if we pick h sufficiently
large, P2 and P3 each have at most h holes. Now, we recurse
on P1, P2, and P3 until all pieces contain at most r vertices.

Lemma 13. The above procedure gives, for any parameter
r ∈ (0, n), a weak r-division of G where each piece has a
constant number of holes. Running time is O(n log(n/r)).

The proof is similar to that of Lemma 1 in [10]; it will be
given in the full version of this paper.
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A.2 r-Division in O(n log n) Time
To obtain an r-division in O(n log n) time, we first find

a weak r-division with Lemma 13. Each piece has O(r)
vertices and a constant number of holes but there may be
more than order

√
r boundary vertices in a single piece.

We continue to follow Frederickson’s approach while en-
suring a constant number of holes in each piece. If there
is a piece P containing more than c

√
r boundary vertices

for some constant c, apply the cycle separator theorem as in
the weak r-division procedure to obtain subpieces P1 and P ′

1.
However, instead of distributing the vertex weights evenly
on all vertices of P when applying the theorem, we now dis-
tribute weights evenly on boundary vertices only. We then
infer subpieces P2 and P3 of P ′

1 as before by distributing ver-
tex weights evenly on super vertices defined by contracted
holes of P ′

1. This is repeated until each piece has at most
c
√
r boundary vertices.

Lemma 14. The above procedure gives, for any parameter
r ∈ (0, n), an r-division of G in O(n log n) time.

The proof is similar to that of Lemma 2 in [10] and it will
be given in the full version of the paper.

A.3 A Faster Algorithm
We now show how to get the desired running time of

O(n log r + (n/
√
r ) log n) in Theorem 1. We start by com-

puting a spanning tree T of G (here, we assume that G
is connected; we can always add infinite-weight edges to
achieve this) and partitioning it into Θ(n/

√
r ) subtrees each

of size Θ(
√
r ); the subtrees cover all vertices and are pair-

wise vertex-disjoint. This takes O(n) time with the algo-
rithm in [11].

Let G′ be a plane multigraph obtained from G by con-
tracting each subtree to a single vertex (G′ inherits the em-
bedding of G). This graph contains O(n/

√
r ) vertices. To

obtain the same asymptotic bound on the number of edges,
we will turn G′ into a so called thin graph. In a plane multi-
graph, a bigon is a face defined by two vertices and edges. A
plane multigraph is thin if it contains no bigons. The follow-
ing result from [1] shows that thin multigraphs are sparse.

Lemma 15. A thin n-vertex multigraph has O(n) edges.

Let G′′ be the thin multigraph obtained from G′ by identi-
fying the two edges of a bigon with one edge and repeating
this process until no bigons exist. We turn the graph G′′

into a simple graph G′′′ by subdividing each edge (u, v) into
two edges (u,w) and (w, v). Note that (u, v) corresponds to
O(

√
r ) edges in G′ and in G; we subdivide each of them sim-

ilarly such that the sum of weights of each edge pair equals
the weight of the edge they subdivide. Now, G′ is a simple
graph and we color black those vertices of G′ that corre-
spond to contracted trees in G. All other vertices of G′ are
colored white.

By Lemma 15, G′′′ is a simple plane graph of sizeO(n/
√
r )

so we can find an r-division of it in O((n/
√
r ) log n) time

with Lemma 14. This r-division consists of O(n/r3/2) pieces
each of size O(r). We get an induced division of G′ into

pieces each consisting of O(r) black vertices and O(r3/2)
white vertices. Furthermore, each piece in this division has
O(

√
r ) black boundary vertices and O(r) white boundary

vertices.

(a) (b)

u4

expanded v

P ′
u2u2

u4v
u3

P

u1

u3

u1

Figure 2: (a): A piece P ′ in the r-division of G′

with a black boundary vertex v on the external face.
(b): After expanding v to a tree when forming a
corresponding piece P ∈ P2, new boundary vertices
will also be on the external face. The same is true
for holes. Only solid edges are part of the pieces.

Let P1 be the set of subtrees of G defined by the expanded
black boundary vertices of pieces in the division of G′. Note
that |P1| = O(n/r) and each subgraph in P1 has size O(

√
r ).

For each piece P in the division of G′, let P ′ be the piece
in G defined by the union of edges in P and subtrees from
expanded black interior vertices of P . Let P2 denote the
set of these pieces P ′. Note that |P2| = Θ(n/r3/2) and each

piece P ′ in P2 has size O(r3/2). Furthermore, since there are
O(r) white boundary vertices in P ′ and each of the O(

√
r )

black boundary vertices of the corresponding piece in G′

contributes with at most O(
√
r ) boundary vertices to P ′

when expanded, P ′ has O(r) boundary vertices.
The pieces in P1 ∪ P2 cover all edges in G and each edge

is contained in exactly one piece. We will transform these
pieces into an r-division of G.

First consider pieces P ∈ P1. The number of boundary
vertices of P is bounded by the size O(

√
r ) of P . Since

P is a tree, all its boundary vertices are on the external
face. Hence, P has no holes and we include it as part of the
r-division of G.

Now, consider pieces P ∈ P2. The piece P
′ in the division

of G′ corresponding to P has a constant number of holes.
We claim that the same holds for P . To show this, consider
some black boundary vertex v in P ′ and let Tv be the tree
in G obtained by expanding v. In P , v gets expanded into
O(

√
r ) boundary vertices all belonging to Tv. Since none of

the edges of Tv belong to P by definition, these boundary
vertices must all be on the same face of P ; see Figure 2.
Repeating this argument for all black boundary vertices of
P ′, it follows that P has a constant number of holes.

Since P has size O(r3/2) and O(r) boundary vertices,

we can find an r-division of it in O(r3/2 log r) time using
Lemma 14 with a small modification: when finding a weak
r-division of P , the boundary vertices and the holes of P
will be regarded as boundary vertices and holes in the initial
graph. The result will still be a weak r-division of P since the
total number of boundary vertices will be O(|P |/√r + r) =
O(r) = O(|P |/√r ).

Total time to find r-divisions over all P ∈ P2 is O(n log r).
Taking the union of the pieces in all these r-divisions to-
gether with the pieces in P1, we obtain the r-division of G
in O(n log r+ (n/

√
r ) log n) time. This proves Theorem 1.
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B. PROOF OF LEMMA 12
When holes are present in the r-division the skeleton graph

GS may not be connected. Hence, the path connecting bs
and bt cannot use boundary vertices only. Such a path can
become too long so we need an additional preprocessing step
to deal with this. However, first we need to show how to use
non-simple paths together with the result of Corollary 11.

B.1 Using Non-Simple Paths
Let π = (v1, . . . , v�) be a non-simple path and let v be a

vertex appearing at least twice on the path π, i.e., v = vi =
vj for some i < j. We say that the path π is self-crossing
in v if the edges incident to v on π appear in the following
circular order (vi−1, vi), (vj−1, vj), (vi, vi+1), (vj , vj+1) in
the embedding. We say that a path π is self-crossing if π
is self-crossing in some vertex v. Otherwise we say that π
is non-crossing. If a vertex v appears at least twice on a
non-crossing path π then we say that π touches itself in v.
In Section 6, we assumed that the path π from fs to ft in
G is simple. Now we will show that the weaker assumption
that π is non-crossing suffices.

In order to work with non-crossing paths we will mod-
ify the graph G to make the path π simple. Let us sketch
the idea: pick v as a vertex where π touches itself in G.
Take i such that there is no other edge from π between
edges (vi−1, vi), (vi, vi+1) in a cyclic order around v. Take
all edges Ev incident to v that are embedded between and
including the edges (vi−1, vi), (vi, vi+1). Now, add a new
vertex v′ to G and make the edges Ev to be incident to
v′ instead of v. Finally connect v with v′ using an undi-
rected edge of weight zero (see Figure 3). Starting with π
a non-crossing path, perform this vertex-splitting operation
until π becomes simple. This produces a new graph Gs,π.
Note that this transformation does not change the weights
of separating cycles, so we get the following observation.

vi+1

vi-1

v=vi

(a)

vi+1

vi-1

v=viv'
0

(b)

Figure 3: Dealing with non-simple paths. (a) A
non-crossing path π of G that touches itself at vertex
v = vi. (b) The vertex splitting transformation at
vertex v.

Corollary 16. The weights of min st-separating cycles
in G and Gs,π are the same.

As a result, if π is a non-simple non-crossing path, instead
of running our algorithm on G, we can compute the graph
Gs,π and run our algorithm on it.

B.2 Additional Preprocessing
In the following, regard external faces of pieces as holes.

For each hole h in a piece P , we fix a boundary vertex bh.
For each pair of holes h, h′ in P , we fix a path πh,h′ which
is not self-crossing and which starts in bh, ends in bh′ , goes

through bh′′ for all holes h′′ in P , and for all bh′′ on the path
walks around the hole h′′ passing through all its boundary
vertices (see Figure 4). For each pair of holes h, h′ in P
we compute the dense distance graph in the piece obtained
from P by cutting open along πh,h′ and we find a min bhbh′ -
separating cycle Ch,h′ in P .

bh

bh''bh'
h

h' h''

Figure 4: The path πh,h′ .

Lemma 17. Additional processing takes O(n log r) time.

Proof. For each piece P and each pair of holes the dense
distance graph can be computed in O(r log r) time as in
Lemma 2 and a min separating cycle can be found within the
same time bound. Hence, over all pieces we need O(n log r)
time.

Now in order to connect fs and ft we will use paths πh,h′
whenever we need to pass between two different holes h, h′

in a piece P . Let Pπ be the set of all such pieces on π.
The resulting path is no longer simple, but it will be non-
crossing. As shown in Appendix B.1, non-crossing paths can
be dealt with as well. We make the following observation
(see Figure 5).

Corollary 18. A min st-separating cycle C either con-
tains a vertex in ∂π or is fully contained in a piece of Pπ.

Proof. If cycle C contains a vertex in ∂π, we are done.
Assume that it does not contain any vertex from ∂π. In
order to be an st-separating cycle, it has to cross path π and
it can do so in one of πh,h′ . Then it has to be fully contained
in the corresponding piece P since by the construction of
πh,h′ , all boundary vertices of P lie on π.

Figure 5: On illustrating Corollary 18. Either a sep-
arating cycle is fully contained in one of the pieces
Pπ (such as Ci) or it must contain one of the bound-
ary vertices in ∂π (such as Cj).

Using Corollary 18, we can find a min st-separating cycle
in two phases. First, let Ci be the shortest Ch,h′ in Pπ

for bh, b
′
h ∈ π. Second, run the algorithm of Section 6.2

on a path π in G
2
st to find a cycle Cb. Finally, return the

shortest of Ci and Cb. These computations do not increase
the asymptotic running time of our dynamic algorithm.
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