16 Minimum Cuts

Let G be an arbitrary graph, and let s and t be two vertices of G. An (s, t)-cut (or more formally, an (s, t)-edge-cut) is a subset X of the edges of G that intersects every path from s to t in G. A minimum (s, t)-cut is an (s, t)-cut of minimum size, or of minimum total weight if the edges of G are weighted. (In this context, edge weights are normally called capacities.)

The fastest method to compute minimum (s, t)-cuts in arbitrary graphs is to compute a maximum (s, t)-flow and then exploit the classical proof of the maxflow-mincut theorem. In undirected planar graphs, however, this dependency is reversed; the fastest method to compute maximum flows actually computes minimum cuts first.

16.1 Duality: Shortest essential cycle

Let Σ be an undirected planar map, each of whose edges e has a non-negative capacity $c(e)$, and let s and t be vertices of Σ. The first step in our fast minimum-cut algorithm is to view the problem through the lens of duality. It is helpful to think of the source vertex s and the target vertex t as punctures or obstacles — points that are missing from the plane — and similarly to think of the corresponding faces s^* and t^* as holes in the dual map Σ^*. In other words, we should think of the dual map Σ^* as a decomposition of the annulus $A = \mathbb{R}^2 \setminus (s^* \cup t^*)$ rather than a map on the plane or a disk. Without loss of generality, assume that t^* is the outer face of Σ^*.

A simple cycle γ in Σ^* is essential if it satisfies any of the following equivalent conditions:

- γ separates s^* from t^*.
- γ has winding number ± 1 around s^*.
- γ is homotopic in A to the boundary of s^*.
- γ is homotopic in A to the boundary of t^*.

Each edge e^* in the dual map Σ^* has a cost or length $c^*(e^*)$ equal to the capacity of the corresponding primal edge e. Whitney’s duality between simple cycles in Σ and and minimal cuts (bonds) in Σ^* immediately implies the following:

Lemma: A subset X of edges is a minimum (s, t)-cut in Σ if and only if the corresponding set X^* of dual edges is a minimum-cost essential cycle in Σ^*.

![Figure 1: A minimum (s, t)-cut in a planar graph is dual to a shortest essential cycle in the annular dual map.](image-url)
16.2 Crossing at most once

Now let π be a shortest path in Σ^* from any vertex of s^* to any vertex of t^*. We can measure the winding number of any directed cycle γ in Σ^* by counting the number of times γ crosses π in either direction. We have to define “crossing” carefully here, because γ and π could share edges.

Suppose $\pi = p_0 \rightarrow p_1 \rightarrow \cdots \rightarrow p_k$, where p_0 lies on s^* and p_k lies on t^*. To simplify the following definition, we add two “ghost” darts $p_{-1} \rightarrow p_0$ and $p_k \rightarrow p_{k+1}$, where p_{-1} lies inside s^* and p_{k+1} lies inside t^*. We say that a dart qp_i enters π from the left (resp. from the right) if the darts $p_{i-1} \rightarrow p_i$, qp_i, and $p_{i+1} \rightarrow p_i$ are ordered clockwise (resp. counterclockwise) around p_i. Symmetrically, we say that a dart leaves π to the left (resp. to the right) if its reversal enters π from the left (resp. from the right). The same dart can leave π to the right and enter π to the left.

A positive crossing between π and γ is a subpath of γ that starts with a dart entering π from the right and ends with a dart leaving π to the left, and a negative crossing is defined similarly.

Intuitively, for purposes of defining crossings, we are shifting the path π very slightly to the left, so that it intersects the edges of Σ^* transversely. It follows that the winding number $\text{wind}(\gamma, s^*)$ is the number of darts in γ that leave π to the left, minus the number of darts in γ that enter π from the left.

Lemma: The shortest essential cycle in Σ^* crosses π exactly once.

Proof: We follow the same intuition that we used for shortest homotopic paths in the plane.

Let γ be any essential cycle in Σ^*, directed so that $\text{wind}(\gamma, s^*) = 1$, that crosses π more than once. Then γ must have a negative crossing followed immediately by a positive crossing. It follows that γ has a subpath $p_i \rightarrow q \rightarrow \cdots \rightarrow p_j$, where $p_i \rightarrow q$ leaves π to the right, $r \rightarrow p_j$ enters π from the right. Let γ' be the cycle obtained from γ by replacing this subpath with the subpath of π from p_i to p_j. Because π is a shortest path, γ' must be shorter than γ. We conclude that γ' is not the shortest essential cycle in Σ^*. \qed

16.3 Slicing along a path

Now let $\Delta := \Sigma^* \setminus \pi$ denote the planar map obtained by slicing the annular map Σ^* along path π. The slicing operation replaces π with two copies π^+ and π^-. Then for every vertex p_i of π, all edges incident to p_i on the left are redirected to p_i^+, and all edges incident to p_i on the left are redirected to p_i^-. The channel between two two paths π^+ and π^- joins s^* and t^* into a single outer face. Thus, we should think of Δ as being embedded on a disk. Every face of Σ^* except s^* and t^* appears as a face in Δ.

2
Figure 3: Any essential cycle that crosses π more than once can be shortened.

Figure 4: Slicing along π.

For any index i, let σ_i denote the shortest path in Δ from p_i^+ to p_i^-. The shortest essential cycle γ in Σ^* appears in Δ as one of the shortest paths σ_i. Thus, to compute the minimum (s, t)-cut in our original planar map Σ, it suffices to compute the length of every shortest path σ_i in Δ.

Figure 5: Slicing along π transforms the shortest essential cycle into a shortest path between the clones of some vertex of π.

16.4 Algorithms

The simplest way to compute these k shortest-path distances is to run Dijkstra’s algorithm at each vertex p_i^+. Assuming π has k edges, so there are $k + 1$ terminal pairs p_i^\pm, this algorithm runs in $O(kn \log n)$ time, which is $O(n^2 \log n)$ time in the worst case. We can reduce the running time to $O(kn \log \log n)$ using the faster shortest-path algorithm we described in a previous lecture note, or even to $O(kn)$ using a linear-time shortest-path algorithm.
Alternatively, we can compute all k of these shortest paths in $O(n \log n)$ time using the multiple-source shortest-paths algorithm. This algorithm is faster in the worst case, but slower than the previous algorithm when k is small. Even when $k = 2$, the MSSP algorithm could require $\Omega(n)$ pivots.

John Reif (1983) proposed a divide-and-conquer algorithm that beats both of these time bounds. Reif’s algorithm computes the median shortest path σ_m, where $m = \lfloor k/2 \rceil$, and then recurses in each component of the sliced map $\Delta \setminus \sigma_m$. One of these components contains the terminal pairs $p^+_0, p^+_1, \ldots, p^+_m$; the other contains the terminal pairs $p^-_m, p^-_{m+1}, \ldots, p^-_k$.

Reif’s algorithm falls back on Dijkstra’s algorithm in two base cases. First, if $k \leq 2$, we can obviously compute each of the k shortest paths directly. A more subtle base case happens when the “floor” and “ceiling” paths collide. Let α denote the boundary path from p^+_0 to p^-_0, and let β denote the boundary path from p^+_k to p^-_k. If α and β share a vertex x, then for every index i we have $dist(p^+_i, p^-_i) = dist(p^+_i, x) + dist(x, p^-_i)$; thus, instead of recursing, we can compute all k shortest-path distances by computing a single shortest-path tree rooted at x. (This second base case is not necessary for the correctness of Reif’s algorithm, but it is necessary for efficiency.)

Let $T(n, k)$ denote the running time of Reif’s algorithm, where $k + 1$ is the number of terminal pairs and n is the total number of vertices in the map Δ. This function obeys the recurrence

$$T(n, k) = T(n_1, \lfloor k/2 \rceil) + T(n_2, \lceil k/2 \rceil) + O(n \log n).$$

where n_1 and n_2 are the number of vertices in the two components of $\Delta \setminus \sigma_m$. The second base case ensures that each vertex and edge of Δ appears in at most $O(1)$ subproblems at any level of the recursion tree. Thus, the total work at any level of recursion is $O(n \log n)$. The recursion tree has depth at most $O(\log k)$, so the overall algorithm runs in $O(n \log n \log k)$ time.

If we use a linear-time shortest-path algorithm instead of Dijkstra, the running time improves to $O(n \log k)$. This improvement was first described by Greg Frederickson in 1987, as one of the earliest applications of r-divisions.

\[1\] Without the second base case, it is possible for a constant fraction of the vertices to appear in a constant fraction of the recursive subproblems, leading to a running time of $O(kn \log n)$.
16.5 Sketch of FR-Dijkstra improvement

Frederickson held the record for fastest planar minimum-cut algorithm for almost two and a half decades; the record was finally broken in 2011 by two independent pairs of researchers, who ultimately published their result jointly: Giuseppe Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Their $O(n \log \log n)$-time algorithm relies on an improvement to Dijkstra’s algorithm in dense distance graphs, proposed by Jittat Fakcharoenphol and Satish Rao in 2001, and now usually called FR-Dijkstra.

Recall from our earlier lecture on shortest paths that we can compute a dense distance graph for a nice r-division in $O(n \log r)$ time. The dense distance graph has $O(n/\sqrt{r})$ vertices—the boundary vertices of the pieces of the r-division—and $O(n)$ edges. So Dijkstra’s algorithm with a Fibonacci heap runs in $O(E + V \log V) = O(n + (n/\sqrt{r}) \log n)$ time.

FR-Dijkstra removes the $O(n)$ term from this running time. Specifically, within each piece of the r-division, the algorithm exploits the Monge structure in the boundary-to-boundary distances to avoid looking at every pair of boundary vertices. This is the same high-level strategy that we previously used with FR-Bellman-Ford, but with one significant difference: We do not know the relevant Monge arrays in advance. Instead, portions of each Monge array are revealed each time the Dijkstra wavefront touches the corresponding piece of the r-division.

I’ll discuss FR-Dijkstra in detail, along with the faster planar minimum-cut algorithm, in the next lecture.

16.6 Aptly Named Sir Not

- Global minimum cuts (dual to shortest weighted cycle)
- Deriving maximum flows from minimum cuts
- Minimum cuts in directed planar graphs (via shortest directed essential cycles)
- Maximum cuts (or minimum cuts with negative capacities)