
19 Maximum Flow

W
O

0

4-
0

U
E

1-i
>

~

0
.

n21

cu

00
'-D

S
2

Z

2
.4

-.

0
u

II
0

0
li

1"-o
0

00~

4n0
0

2

0
:

0

00

N
.

00

000
IV

0

L
000

Figure 1: Harris and Ross’s map of the Warsaw-Pact railway network.

19.1 Background

Here I’ll provide a brief overview of standard definitions related to the maximum flow problem.
For a more thorough and gentler introduction, see chapters 10 and 11 in my algorithms textbook.

Pseudoflows, flows, and circulations

Recall that a pseudoflow (or 1-chain, or discrete 1-form) in a graph G is any function φ : D(G)→ R
on the darts of G that is antisymmetric, meaning φ(d) = −φ(rev(d)) for every dart d. Intuitively,
the value φ(u→v) represents the rate of flow of some divisible substance like water, train cars,
or network packets from u to v along the undirected edge uv. In particular, a negative value
indicates that the substance is flowing backward from v to u.1

The boundary ∂ φ : V (G)→ R of a pseudoflow φ that intuitively describes the total net flow into
each vertex v:

∂ φ(v) :=
∑

u

φ(u→v).

A circulation is a pseudoflow φ whose boundary ∂ φ is identically zero. Intuitively, circulations
are pseudoflows that respect conservation of mass; any positive flow into v must be balanced by
negative flow into v (that is, positive flow out of v).

For two fixed vertices s and t, an (s, t)-flow is a pseudoflow f such that ∂ f (v) = 0 for all v except
possibly s and t. The value of an (s, t)-flow φ is the total net flow into t or out of s:

|φ| := ∂ φ(t) = −∂ φ(s).
1A more common textbook definition of (pseudo)flow is any function φ : D(G)→ R such that for every dart d, we

have φ(d)≥ 0 and either φ(d) = 0 or φ(rev(d)) = 0. That is, for each edge, instead of choosing an arbitrary values
for the darts that sum to 0, we choose both a direction and a non-negative value for the edge. Converting between
the antisymmetric formulation and the non-negative formulation is straightforward.

1

Intuitively, (s, t)-flows model some substance being injected into a network of pipes at s and
being extracted at t, with conservation at every other vertex. Every circulation is an (s, t)-flow
with value 0.

Lemma: For any two (s, t)-flows φ and ψ in the same graph G and any two real numbers α and β ,
the function αφ + βψ is an (s, t)-flow in G with value α|φ|+ β |ψ|. In particular, if φ and ψ are
circulations, then αφ + βψ is also a circulation. Thus, circulations and (s, t)-flows in any graph G
define vector spaces.

We can regard any directed cycle γ as a circulation:

γ(d) =

1 if d ∈ γ
−1 if rev(d) ∈ γ
0 otherwise

Similarly, we can regard any directed path π from s to t as an (s, t)-flow:

π(d) =

1 if d ∈ π
−1 if rev(d) ∈ π
0 otherwise

Lemma: Every circulation is a weighted sum of simple directed cycles. Every (s, t)-flow is a weighted
sum of simple directed (s, t)-paths and simple directed cycles.

Capacities and residual graphs

A capacity function for a graph G is any function c : D(G) → R from the darts to the reals.
Capacities are not necessary either symmetric, antisymmetric, or non-negative. A flow network is
a graph G together with a capacity function c.

A pseudoflow (or circulation or (s, t)-flow)φ is feasible with respect to c if and only ifφ(d)≤ c(d)
for every dart d. In particular, we allow the capacity of a dart to be negative; a negative dart
capacity is equivalent to a positive lower bound on the amount of flow through the reversal of
the dart. The zero flow φ ≡ 0 is feasible if and only if every dart has non-negative capacity.

Given a graph G, capacity function c, and two vertices s and t as input, the maximum flow
problem asks for a feasible (s, t)-flow in G with the largest possible value.

Fix a graph G and a capacity function c. Any pseudoflow φ in G induces a residual capacity
function cφ : D(G)→ R, defined simply as cφ(d) = c(d)−φ(d). A pseudoflow φ is feasible if and
only if every dart has non-negative residual capacity. The residual graph Gφ is just the original
graph G but with the new capacity function cφ. A residual path (respectively, residual cycle)
is a directed path (respectively, directed cycle) in Gφ in which every dart has positive residual
capacity.

The standard textbook algorithm for maximum flows, proposed by Lester Ford and Delbert
Fulkerson in 1953, is the augmenting path method. The method starts by finding an initial
feasible (s, t)-flow φ; typically all capacities are non-negative, so we can start with the zero
flow φ ≡ 0. Then we repeatedly augment the flow φ by pushing more flow along paths from s
to t. Specifically, at each iteration, we find a residual path π and augment the flow by setting

2

φ′ ← φ +mind∈π cφ(d) · π; here I’m treating π both as a sequence of darts and as an (s, t)-
flow. Straightforward definition-chasing implies that if the original flow φ is feasible, then the
augmented flow φ′ is also feasible. When Gφ contains no more residual paths, φ is a maximum
(s, t)-flow. More generally:

Lemma: Let φ and φ′ be any (not necessarily feasible) (s, t)-flows in G.

(a) φ′ is a feasible (s, t)-flow in G if and only if φ′ −φ is a feasible (s, t)-flow in the residual
graph Gφ .

(b) In particular, if |φ| = |φ′|, then φ′ is a feasible (s, t)-flow in G if and only if φ′ −φ is a
feasible circulation in Gφ .

(c) In particular, φ′ is a maximum (s, t)-flow in G if and only if φ′−φ is a maximum (s, t)-flow
in Gφ .

19.2 Planar Circulations

Flows and circulations have particularly nice structure in planar graphs, or more accurately, in
planar maps.

Fix an arbitrary circulation φ in an arbitrary planar map Σ, with a distinguished outer face
o. The winding number of φ around each face f of Σ, denoted wind(φ, f) can be defined by
extending the definition of the Alexander numbering of a curve:

• wind(φ, o) = 0
• For every dart d, we have wind(φ, left(d)) = φ(d) +wind(φ, right(d)).

Conservation at each vertex v implies that this st of constraints has a unique solution. Equivalently,
for any path (in fact, any walk) π in the dual map Σ∗ from dual of the outer face o∗ to the dual
vertex f ∗, we have

wind(φ, f) =
∑

d∗∈π
φ(d).

The second definition is independent of the choice of dual path π, again by conservation. A third
equivalent definition uses the fact that φ is a weighted sum of simple cycles:

φ =
∑

i

αi · γi =⇒ wind(φ, f) =
∑

i

αi ·wind(γi , f);

This definition is independent of the chosen decomposition of φ into cycles γ1,γ2,

Alexander numbering is an example of a face potential (or 2-chain); more generally, a face
potential in Σ is any function α: F(Σ) → R assigning a real number to each face of Σ. The
boundary of a face potential α is the circulation ∂ α: D(Σ)→ R defined by setting

∂ α(d) = α(left(d))−α(right(d))

for every dart d. It should be easy to verify that ∂ α is indeed a circulation. Moreover, the
boundary operator ∂ is linear; for all face potentials α and β and real numbers a and b, we have
∂ (a ·α+ b · β) = a · ∂ α+ b · ∂ β .

The following lemma is a natural generalization (and consequence) of the Jordan Curve Theorem.

Lemma: Every circulation in a planar map is a boundary circulation.

3

Proof: For any circulation φ, routine definition-chasing implies φ = ∂ (wind(φ)). That is,
φ = ∂ α, where α(f) = wind(α, f) for every face f . □

Corollary: The difference between any two (s, t)-flows with the same value in the same planar map
Σ is a boundary circulation in Σ.

19.3 Feasible Planar Circulations and Shortest Paths

Now suppose we endow our planar map Σ with a capacity function c : D(Σ)→ R. Every dart d∗

in the dual map Σ∗ has a cost or length c(d∗) equal to the capacity of the corresponding primal
dart d; in short, we have c(d∗) = c(d).

Lemma [Venkatesan]: Let Σ be any planar map, and let c : D(Σ)→ R be any capacity function
for Σ. There is a feasible circulation in Σ if and only if the dual map Σ∗ has no negative cycles.

Proof: First, consider an arbitrary circulation φ in Σ and an arbitrary cycle λ∗ in the dual
map Σ∗ with negative total cost. Without loss of generality, assume λ∗ is simple and
oriented counterclockwise. Whitney’s duality theorem implies that the set λ of primal
darts whose duals lie in λ∗ define a directed edge cut. Specifically, let A denote the vertices
of Σ whose corresponding dual faces lie inside λ∗. Then λ is the set of all darts in Σ such
that head(d) ∈ A and tail(d) ̸∈ A. Straightforward calculation implies
∑

d∈λ

φ(d) =
∑

head(d)∈A

φ(d) because φ(d) = −φ(rev(d))

=
∑

v∈A

∑

head(d)=v

φ(d)

=
∑

v∈A

∂ φ(v) by definition of ∂

=
∑

v∈A

0 because φ is a circulation

= 0

>
∑

d∈λ

c(d).

(In the first step, we are adding φ(d) for all darts with both endpoints in A.) We conclude
that φ(d)> c(d) for at least one dart d ∈ λ; in short, φ is not feasible.

On the other hand, suppose shortest-path distances are well-defined in Σ∗. For any dual
vertex p, let dist(p) denote the shortest-path distance from the outer face o to p. We can
interpret the function dist as a face potential function for Σ. I claim that the boundary
circulation ∂ dist is feasible. For any dart d, we have

φ(d) = dist(left(d)∗)− dist(right(d)∗)

Now define the slack of every dart d as

slack(d) := c(d)−φ(d)
= c(d)− dist(left(d)∗) + dist(right(d)∗)
= dist(tail(d∗)) + c(d∗)− dist(head(d∗))

The definition of shortest paths implies that slack(d) ≥ 0 for every dart d, and thus
φ(d)≤ c(d) for every dart d. We conclude that φ is feasible.

4

Corollary: Given a planar map Σ with n vertices and arbitrary dart capacities, we can compute
either a feasible circulation in Σ or a negative-cost cycle in Σ∗ in O(n log2 n) time.

Proof: Run the shortest-path algorithm of Klein, Mozes, and Weimann, starting at the vertex
o∗ dual to the outer face o. If shortest-path distances in Σ∗ are well-defined, set φ(d) =
dist(left(d)∗)− dist(right(d)∗) for every dart d. Otherwise, the algorithm finds a negative
cycle in Σ∗. In both cases, the algorithm runs in O(n log2 n) time.

19.4 Our First Planar Max-flow Algorithm

The previous lemma can also be used to find feasible (s, t)-flows with particular values. Fix two
vertices s and t in G.

Corollary: Let φ be an arbitrary (not necessarily feasible) (s, t)-flow in Σ. There is a feasible
(s, t)-flow in G with value |φ| if and only if the dual residual map Σ∗

φ
has no negative cycles.

Corollary: Given a planar map Σ with n vertices, arbitrary dart capacities, and a real number λ,
we can either compute a feasible (s, t)-flow in Σ with value λ, or correctly report that no such flow
exists, in O(n log2 n) time.

Proof: Let π be any path from s to t in Σ with value λ, and let φ be the flow λ ·π. Then φ′ is a
feasible (s, t)-flow with value λ if and only if φ′ −φ is a feasible circulation in the residual
map Σφ . □

Corollary: Given a planar map Σ with n vertices, non-negative integer dart capacities c(d), we
can compute a maximum (s, t)-flow in Σ in O(n log2 n log(nU)) time, where U =maxd c(d).

Proof: Suppose every dart in Σ has an integer capacity between 0 and U . Because all capacities
are non-negative, we know that the zero circulation is a feasible flow with value 0, and the
upper bound on individual capacities implies that every feasible flow has value at most nU .
If there is a feasible flow with any value λ, we can scale it down to a feasible flow with any
value smaller than λ. Finally, Ford and Fulkerson’s augmenting-path algorithm implies by
induction that the maximum flow in a network with integer capacities has integer value.
Thus, we can compute a maximum flow in Σ by performing a binary search over the nU
possible flow values, running the O(n log2 n)-time decision algorithm at each iteration.
□

I find this algorithm deeply unsatisfying, in part because it requires integer capacities, but it
does at least serve as a proof of concept. Hassin and Johnson proved that for undirected planar
graphs, where every dart has the same capacity as its reversal, we can compute a maximum
(s, t)-flow by first running Reif’s minimum-cut algorithm and then running Dijkstra’s algorithm
in a modified dual graph. Using Reif’s original algorithm, this approach funds maximum flows
in (n log2 n) time; this running time can be improved to O(n log n) using either the linear-time
shortest-path algorithm of Henzinger et al inside Reif’s algorithm, or by replacing Reif’s algorithm
with multiple-source shortest paths.

Unfortunately, this approach does not extend to directed planar graphs, because we do not
have a similar divide-and-conquer minimum-cut algorithm in that setting. In 1997, Karsten
Weihe described an algorithm to compute maximum flows in directed planar graphs in O(n log n)
time, generalizing his earlier O(n)-time algorithm for undirected unit-capacity planar graphs.
However, his algorithm assumes that every dart in the input graph appears in at leas one simple
path from s to t. Darts that do not satisfy this criterion can be safely removed from the input

5

graph, but an efficient algorithm to find all such “useless” darts was only found in 2017, by Jittat
Fakcharoenphol, Bundit Laekhanukit, and Pattara Sukprasert.

Meanwhile, in 2006, Glencora Borradaile and Philip Klein discovered a much cleaner algorithm
to compute planar maximum flows in O(n log n) time. In the rest of this lecture note I will
describe a reformulation of their algorithm that I published in 2010.

19.5 Parametric Shortest Paths

We formulate the planar maximum-flow problem as a parametric shortest-path problem, similar
to our first multiple-source shortest-path problem. Fix an arbitrary path π from s to t. We are
trying to find the largest value λ such that Σ supports and (s, t)-flow with value λ. Equivalently,
by the arguments in the last two sections, we are looking for the largest value λ such that the dual
residual map Σ∗

λ·π does not contain a negative cycle. The algorithm maintains a shortest-path
tree in the dual residual map Σ∗

λ·π as the parameter λ continuously increases from 0. At critical
values of λ, darts p→q in Σ∗ become tense and pivot into the shortest-path tree, replacing earlier
darts p′→q. The algorithm halts when a pivot introduces a cycle into the shortest-path tree,
which would become negative if we increased λ any further. (That cycle is dual to the minimum
cut!)

Again, we fix an arbitrary path π from s to t; we treat this path as a flow with value 1:

π(d) =

1 if d ∈ π
−1 if rev(d) ∈ π
0 otherwise

We also fix a vertex o in the dual map Σ∗. Let’s establish some notation.

• Σλ is just shorthand for the residual graph Σλ·π.
• c(λ, d) = c(λ, d∗) = c(d) − λ · π(d) is the capacity of d in the residual graph Σ, and

therefore the cost of d∗ in the dual residual map Σ∗
λ
.

• Tλ is the single-source shortest-path rooted at o in Σ∗
λ
.

• dist(λ, p) is the shortest-path distance from o to p in Σ∗
λ
.

• path(λ, p) is the shortest path from o to p in Σ∗
λ
.

• pred(λ, p) is the second-to-last vertex of path(λ, p).
• slack(λ, p→q) = dist(λ, p) + c(λ, p→q)− dist(λ, p)
• cycle(λ, p→q) is the closed walk obtained by concatenating path(λ, p), p→q, and

rev(path(λ, q)).
• A dart d of Σλ is tense if slack(λ, d∗) = 0.
• An edge e of Σλ is loose if neither of its darts is tense.
• Lλ is the subgraph of all loose edges in Σλ.
• A dart d in Σλ is active if slack(λ, d∗) is decreasing at λ.
• LPλ is the set of all active darts in Σλ.

Except at critical values of λ, subgraph Lλ is a spanning tree of Σλ, and in fact (Lλ, Tλ) is a
tree-cotree decomposition of Σ.

Lemma: LPλ is the unique path from s to t in Lλ.

Lemma: LPλ is the set of all active darts in Σλ.

6

19.6 Active Darts

19.7 Fast Pivots

19.8 Universal Cover Analysis

19.9 References

1. Therese C. Biedl, Bronǎ Brejová, and Tomáš Vinař. Simplifying flow networks. Proc. 25th
Symp. Math. Found. Comput. Sci., 192–201, 2000. Lecture Notes Comput. Sci. 1893,
Springer-Verlag.

2. Glencora Borradaile and Anna Harutyunyan. Maximum st-flow in directed planar graphs
via shortest paths. Proc. 24th Int. Workshop Combin. Algorithms, 423–427, 2013. Lecture
Notes Comput. Sci. 8288, Springer. arXiv:1305.5823.

3. Glencora Borradaile and Philip Klein. An O(n log n) algorithm for maximum st-flow in a
directed planar graph. J. ACM 56(2):1–9:1–30, 2009.

4. David Eppstein and Kevin A. Wortman. Optimal embedding into star metrics. Proc. 11th
Algorithms Data Struct. Symp. (WADS), 290–301, 2009. Lecture Notes Comput. Sci. 5664,
Springer. Another application of parametric shortest paths.

5. Jeff Erickson. Parametric shortest paths and maximum flows in planar graphs. Proc. 21st
Ann. ACM-SIAM Symp. Discrete Algorithms, 794–804, 2010.

6. Jittat Fakcharoenphol, Bundit Laekhanukit, and Pattara Sukprasert. Finding all useless arcs
in directed planar graphs. Preprint, May 2018. arXiv:1702.04786.

7. Lester R. Ford and Delbert R. Fulkerson. Maximal flow through a network. Canad. J.
Math. 8(399–404), 1956. First published as Research Memorandum RM-1400, The RAND
Corporation, Santa Monica, California, November 19, 1954.

8. Lester R. Ford and Delbert R. Fulkerson. Flows in Networks. Princeton University Press,
1962. First published as Research Memorandum R-375-PR, The RAND Corporation, Santa
Monica, California, August 1962.

9. Theodore E. Harris and Frank S. Ross. Fundamentals of a method for evaluating rail
net capacities. Research Memorandum RM-1573, The RAND Corporation, Santa Monica,
California, October 24, 1955. Declassified May 13, 1999.

10. Refael Hassin and Donald B. Johnson. An O(n log2 n) algorithm for maximum flow in
undirected planar networks. SIAM J. Comput. 14(3):612–624, 1985.

11. Samir Khuller, Joseph (Seffi) Naor, and Philip Klein. The lattice structure of flow in planar
graphs. SIAM J. Discrete Math. 477–490, 1993. Removing clockwise residual cycles.

12. Karl Menger. Zur allgemeinen Kurventheorie. Fund. Math. 10:96–115, 1927.

13. Shankar M. Venkatesan. Algorithms for network flows. Ph.D. thesis, The Pennsylvania State
University, 1983.

14. Karsten Weihe. Edge-disjoint (s, t)-paths in undirected planar graphs in linear time. J.
Algorithms 23(1):121–138, 1997.

7

https://doi.org/10.1007/3-540-44612-5_15
https://doi.org/10.1007/978-3-642-45278-9_36
https://doi.org/10.1007/978-3-642-45278-9_36
https://arxiv.org/abs/1305.5823
https://doi.org/10.1145/1502793.1502798
https://doi.org/10.1145/1502793.1502798
https://doi.org/10.1007/978-3-642-03367-4_26
https://doi.org/10.1137/1.9781611973075.65
https://arxiv.org/abs/1702.04786
https://arxiv.org/abs/1702.04786
https://doi.org/10.48550/arXiv.1702.04786
http://doi.org/10.4153/CJM-1956-045-5
https://www.rand.org/pubs/papers/P605.html
https://www.jstor.org/stable/j.ctt183q0b4
https://www.rand.org/pubs/reports/R375.html
https://apps.dtic.mil/sti/citations/AD0093458
https://apps.dtic.mil/sti/citations/AD0093458
https://doi.org/10.1137/0214045
https://doi.org/10.1137/0214045
https://doi.org/10.1137/0406038
https://doi.org/10.1137/0406038
http://doi.org/10.4064/fm-10-1-96-115
https://www.proquest.com/docview/303173800
http://doi.org/10.1006/jagm.1996.0831

15. Karsten Weihe. Maximum (s, t)-flows in planar networks in O(|V | log |V |) time. J. Comput.
Syst. Sci. 55(3):454–476, 1997.

19.10 Aptly Not

8

https://doi.org/10.1006/jcss.1997.1538

	Maximum Flow
	Background
	Pseudoflows, flows, and circulations
	Capacities and residual graphs

	Planar Circulations
	Feasible Planar Circulations and Shortest Paths
	Our First Planar Max-flow Algorithm
	Parametric Shortest Paths
	Active Darts
	Fast Pivots
	Universal Cover Analysis
	References
	Aptly Not

