Generic closed curve

\underline{unsigned Gauss code}

Gauss 1840
Tait 1870s

Dehn 1923

\[\text{abcdefgchaigjkhbiFejk} \]

\[\text{Smoothing} \]

\[\text{Alexande numbering} \]
\[\text{wind}(Y_1 \times) = \]
\[\# \text{ccw cycles containing } x \]
\[- \# \text{cw cycles containing } x \]

rotation \# = \# ccw cycles
- \# cw cycles

Seifert decomposition
Gauss' parity condition

Substring between two occurrences of any symbol has even length

Proof via winding number

⇒ Any two generic closed curves generically intersect in even # points

⇒ abab is not a planar Gauss code

abcd cdecdebe abcabcdecode abcadedede

Gauss

Nagy graph

Tait
reverse every other edge of image graph

Parity \Rightarrow Nagy graph of any curve is Eulerian

every node has in degree 2 and out degree 2

Dehn code = sequence of self-tangencies

Pick an Euler tour of Nagy graph

Dehn code = sequence of vertices

"Dehn diagram"
Dehn: Gauss code can be realized by generic planar curve

Dehn code can be realized by planar self-touching / weakly simple curve

Dehn diagram is \textit{planar} \rightarrow inside arcs outside arcs

Baum-Zwiebel Figur

co.onion-onion
tree-cotree decomposition
interlacement graph

Lemma: Dehn diagram is planar if and only if its interlacement graph is bipartite.

Rosenstiehl + Tarjan: O(n) time
Planarity testing "left-right"