Euler's Formula \[V - E + F = \Omega \]

Deletion

\[G \quad \rightarrow \quad G \setminus e \]

- subgraph
- bridge

Contraction

\[G \]

\[e \]

- minor
- loop

while \(E \neq \emptyset \)

\[e \Leftarrow \text{any edge} \]

- if \(e \) is not bridge
 - delete \(e \)
- if \(e \) is not loop
 - contract \(e \)

Lemma:

- \(e \) is a loop \(\Rightarrow \) \(e \) not in any sp. tree
- \(e \) is a bridge \(\Rightarrow \) \(e \) in every sp. tree
- \(e \) is not a loop \(\Rightarrow \) \(T = \text{sp. tree of } G/e \)
 \(\Rightarrow T + e \) is sp. tree of \(G \)
- \(e \) is not a bridge, \(T = \text{sp. tree of } G \setminus e \)
 \(\Rightarrow T \) is sp. tree of \(G \)

Lemma:

- Every cycle has \(\geq 1 \) blue edge
 - Every cut crossed by \(\geq 1 \) red edge
 - \(\Rightarrow \) blue = sp. tree.

Tarjan's red-blue rule:

Color \(E \) red/blue so that

\[\Rightarrow \text{blue} = \text{sp. tree.} \]
Planar maps

\[(\Sigma \setminus e)^* = \Sigma^* / e^*\]
\[(\Sigma / e)^* = \Sigma^* \setminus e^*\]

contraction is dual to deletion

\[(\text{succ } e)(d) = \begin{cases}
\text{succ\{succ\{succ\{d\}\}\}} & \text{if succ\{d\} \in e and s\{s\{d\}\} \in e} \\
\text{succ\{succ\{d\}\}} & \text{if succ\{d\} \in e} \\
\text{succ\{d\}} & \text{o/w}
\end{cases}\]

\[(\text{succ}^* / e)(d) = \begin{cases}
\text{s}^* (\text{s}^* (\text{s}^* \{d\})) & \text{o/w} \\
\text{succ}^* \{\text{succ}^* \{d\}\} \quad & \text{if succ\{d\} \in e} \\
\text{succ}^* \{d\} & \text{o/w}
\end{cases}\]

Medial map Σ^*
Whitney [1936]

even subgraphs / multieves

boundary between white faces + black faces

cycle space via Θ

cycle $= \text{minimal nonempty even subgraph}$

edge cut

"boundary" between white vertices + black vertices

cut space (via Θ)

bond $= \text{minimal nonempty edge cut}$

$\times(\ast G) = \times^2$
Tree-cotree decomposition

Planar map $\Xi = (V, E, F)$

Partition $E = T \cup C$

s.t. $T =$ sp tree of Ξ

$\iff C^* =$ sp. tree of Ξ^*

Euler: any planar map: $V - E + F = 2$

Proof 1: Induction

- no edges $\implies V = 1$ $F = 1$ $\iff (\emptyset, \emptyset, \emptyset)$

- or pick any edge e
 - not loop, consider Ξ / e
 $V' = V - 1$ $E' = E - 1$ $F' = F$
 - not bridge consider $\Xi \setminus e$
 $V' = V$ $E^* = E - 1$ $F' = F - 1$

Proof 2: Von Staudt 1847

Pick any sp tree T $\implies V - 1$ edges
complementary dual

$(E \setminus T)^*$ is dual sp tree $\implies F - 1$ edges

\[\square \]
Proof 3: Look at medial map Σ^X.

Multicurve $V^X = E$
$E^X = 2E$
$F^X = V + F$

Planar $\Rightarrow F^X = V^X + 2$ \[\Box\]

Combinatorial Gauss-Bonnet

\[\int \kappa \, dA = 4\pi \leq \text{surface area of unit sphere}\]
\[= 2\pi \cdot 2\]
\[\Rightarrow \int \kappa \, dA = 2\pi \cdot \chi\]

Assign "exterior angle" \angle_c to every corner of Σ

"curvature" \[\chi(f) = 1 - \sum_{c \in f} \angle_c\]

\[\chi(v) = 1 - \sum_{c \in v} \left(\frac{1}{2} - \angle_c\right)\]

\[\sum_v \chi(v) + \sum_f \chi(f) = 2\]

$\chi(v) = 0$
$\chi(f) = \chi \geq 2$ if f is bounded
$\chi(f) = \chi \leq 2$ if f is outer
Descartes' angle defect theorem

Convex polyhedron

\[\angle C \text{ is assigned geometrically from faces} \]

\[\Rightarrow \kappa(f) = 0 \]

\[\kappa(u) = \text{angle defect at } u \]

\[\sum \kappa(u) = 2 \]