W. Tutte "How to draw a graph" (1963)

Given: Planar graph G 3-connected

Face f_0 of some embedding of G in plane

Convex polygon P with $|f_0|$ vertices

Output: Tutte drawing $p : V(G) \rightarrow \mathbb{R}^2$

- for each vertex v_i on f_0, $p(v_i) = P_i$
- any vertex v not on f_0

\[\sum_{uv} \lambda_{uv} (p_u - p_v) = 0 \]

For some $\lambda_{uv} > 0$ can be given

If $\lambda_{uv} = \lambda_{vu} = w_{uv}$

potential energy $\Phi(p) = \sum_{uv} w_{uv} |p_u - p_v|^2$

$\nabla \Phi = 0$

Theorem: Every Tutte drawing of 3-connected simple planar graph is a convex embedding
Outer Face is outer: For every vertex not on \(\partial P \), \(v \) is in interior of \(P \)
\[v = \text{all of } v' \text{'s nbs} \]

Star mesh transformation at \(v \)

3-conn \(\Rightarrow v \) can directly reach at least 3 vertices of \(\partial P \)
even after pivoting \(v \) out

Lemma:
If \(v \) has nbr on one side of line \(l \) then \(P_v \) then other side too.

Halfplane lemma

For any halfplane \(H \) that intersects \(P \), subgraph of \(G \) induced by vertices in \(H \) is connected

There is a path from \(v \) to \(t \) where \(y \)-coords never decrease

1. \(y_t = y_v \)
2. \(U = \text{all verts reachable from } v \text{ via horiz-edges} \)
 \(w = \text{some vert } x \text{ in } U \text{ with non-horiz nbs} \)
 \(w \rightarrow x \text{ with } x \text{ above } w \)
 \(\text{In } : x \rightarrow t \)
No flat vertex neighborhoods

Utility Lemma: $K_{5,3}$ isn't planar
\iff Euler

1. No outer vertex v

$U = \text{reachable from } u$ and all nbrs on l

3-conn \Rightarrow
At least 3 disjoint paths from u to boundary

$w_1, w_2, w_3 \times U, V^+, V^-$
gives subdivision of $K_{5,3}$
$K_{5,3}$ is minor of G
$\Rightarrow G$ non-planar

No degenerate faces

Gecen's Lemma:

Let P = any path from S to S'

Every path from u to v except uv crosses P

$JCT \Rightarrow$ Lemma \Box

[whitney]: 3-con planar graph has unique
embedding (up to homeo) on sphere
Split Faces: Let uv = any interior edge
$f, f' = $ faces incident to uv
$s, s' = $ verts of f, f' not u or v
$l = $ any line thru p, and pu
s and s' lie on opposite sides of l not on l

$\Rightarrow pu \neq pv$

$uv, P, and Q$ satisfy conditions for Geelen's Lemma
$\Rightarrow P$ and Q intersect
But $Q \perp l$ and $P \parallel l$!

No face is flat
\Rightarrow Every face is strictly convex

Last step:
Any pt.$ \in P$

is inside ≤ 1 Face of Tutte-drawing

Faces can't overlap \Rightarrow embedding