Homework 1 (due March 16)

Teams of up to three people can turn in joint homework solutions. You may use any resource at your disposal—printed, electronic, or human—but cite/acknowledge your sources, just as though you were writing a research paper.

1. After the Great Academic Meltdown of 2010, you get a job as a cook’s assistant at Jumpin’ Jack’s Flapjack Stack Shack, which sells arbitrarily-large stacks of pancakes for just 50 cents each. Jumpin’ Jack insists that a stack of pancakes given to one of his customers must be sorted, with smaller pancakes on top of larger pancakes. Also, whenever a pancake goes to a customer, its top side should not be burned.

The cook provides you with a unsorted stack of n perfectly pancakes, all of different sizes, possibly burned on one or both sides. Your task is to throw out the pancakes that are burned on both sides (and only those) and sort the remaining pancakes so that their burned sides (if any) face down. Your only tool is a spatula. You can insert the spatula under any pancake and then either flip or discard the stack of pancakes above the spatula.

(a) Describe an algorithm to filter and sort the pancakes using $O(n)$ operations.

(b) We can represent a stack of pancakes by a sequence of distinct integers between 1 and n, representing the sizes of the pancakes, with each number marked to indicate the burned side(s) of the corresponding pancake. For example, $1\underline{3}4\underline{2}$ represents a stack of four pancakes: a one-inch pancake burned on the bottom; a four-inch pancake burned on the top; an unburned three-inch pancake, and a two-inch pancake burned on both sides.

Describe a data structure that supports each of the following operations in $O(\log n)$ amortized time:

- **POSITION(x)**: Return the position of integer x in the current sequence, or 0 if x is not in the sequence.
- **VALUE(k)**: Return the kth integer in the current sequence, or 0 if the sequence has no kth element. This is essentially the inverse of POSITION.
- **TOPBurned(k)**: Return True if and only if the top side of the kth pancake in the current sequence is burned.
- **Flip(k)**: Reverse the order and the burn marks of the first k elements of the sequence. For example, Flip(3) transforms $1\underline{3}2$ into $3\underline{1}2$.
- **Discard(k)**: Remove the first k elements of the sequence.

Using this data structure and your algorithm from part (a), you can filter and sort n burned integers in $O(n \log n)$ time.
2. [Demaine, Harmon*, and Iacono]

Let \(X = \langle x_1, x_2, \ldots, x_m \rangle \in [n]^m\) be a sequence of \(m\) integers in the set \([n] = \{1, 2, \ldots, n\}\). We can visualize this sequence as a set of integer points in the plane, by interpreting each element \(x_i\) as the point \((x_i, i)\). The resulting point set, which we can also call \(X\), has exactly one point on each row.

(a) Let \(Y\) be an arbitrary set of integer points in the plane. A pair of points \(p, q \in Y\) is isolated if (1) they differ in both coordinates and (2) the closed axis-aligned rectangle with \(p\) and \(q\) in opposite corners contains no other point in \(Y\). If the set \(Y\) contains no isolated pairs, we call \(Y\) a commune.

Let \(X\) be an arbitrary set of points on the \(n \times n\) integer grid with exactly one point per row. Show that there is a commune \(Y\) that contains \(X\) and consists of \(O(n \log n)\) points.

(b) Consider the following model\(^1\) of dynamic binary search trees. For each request \(x_i\) in the given sequence \(X\), the search algorithm arbitrarily reconfigures some subtree \(S_i\) of the current search tree \(T_i\) to obtain the next search tree \(T_{i+1}\). The only restriction is that \(X_i\) must contain both \(x_i\) and the root of \(T_i\). (For example, in a splay tree, \(S_i\) is the search path to \(x_i\).) The cost of the \(i\)th access is the number of nodes in the subtree \(S_i\).

Prove that the minimum cost of executing an access sequence \(X\) in this model is at least the size of the smallest commune containing the corresponding point set \(X\). [Hint: Lowest common ancestor.]

(c) Suppose \(X\) is a random permutation of the integers 1, 2, \ldots, \(n\). Use the lower bound in part (b) to prove that the expected minimum cost of executing \(X\) is \(\Omega(n \log n)\).

\(\star\) (d) Describe a polynomial-time algorithm to compute (or even approximate up to constant factors) the smallest commune containing a given set \(X\) of integer points, with at most one point per row. Alternately, prove that the problem is NP-hard. [Hint: Tango/multisplay trees imply a fast \(O(\log \log n)\)-approximation algorithm.]

\(^1\)This model is slightly more restrictive than the one Sleator and Tarjan originally proposed. Specifically, we are not allowed to perform arbitrary isolated rotations at unit cost.
3. Let \(G \) be an embedded planar graph with weighted edges, and let \(s \) be one of its vertices. Describe a data structure to maintain \(G \) under the following operations:

- **SetLength**\((e, \ell)\) — Change the weight of edge \(e \) to \(\ell \), which is always positive.
- **Distance**\((v)\) — Return the length of the shortest path from \(s \) to \(v \) with the current edge weights.

Assume without loss of generality that at all times, there is a unique shortest path between any pair of vertices in \(G \). Your **Distance** algorithm should run in \(O(\log n) \) amortized time. Your **SetLength** algorithm should run in amortized time \(O((k + 1)\log n) \), where \(k \) is the number of edges that are in the shortest-path tree rooted at \(s \) after the operation but not before.\(^2\)

\[^2\text{Ideally, SetLength would also run in } O(\log n) \text{ amortized time, regardless of how the shortest path tree changes, but nobody has a clue how to do that. The best algorithm known to date, due to Fakcharoenphol* and Rao [Proc. FOCS 2001], supports both SetLength and Distance in } O(n^{2/3}\log^{7/3} n) \text{ time. Any } o(n^{2/3}) \text{ running time would be publishable. For outer-planar graphs, Djidjev, Pantziou, and Zaroliagis [Algorithmica 2000] describe algorithms to support both SetLength and Distance (between any two vertices) in } O(\log n) \text{ time.}\]

][Hint: Let \(G^* \) be the dual graph of \(G \), whose vertices correspond to faces of \(G \). The edges in \(G^* \) that are not dual to edges in the shortest path tree comprise a spanning tree of \(G^* \). Use appropriate dynamic tree data structures to maintain both the shortest path tree and the dual spanning tree.]

[Hint: For SetLength, imagine continuously changing the length of \(e \) from its old length to \(\ell \); when and how does the shortest-path tree change? You may need different algorithms for increasing and decreasing length, and for edges on and off the shortest-path tree.]