1. For any simple polygons *P* and *Q*, the Dehn-Schönflies theorem implies that there is a homeomorphism $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ such that $\phi(P) = Q$. Moreover, if *P* has *n* vertices p_1, p_2, \ldots, p_n and *Q* has *n* vertices q_1, q_2, \ldots, q_n , we can further require that $\phi(p_i) = q_i$ for every index *i*. This question asks you to construct such a homeomorphism explicitly.

Let \Box be a square that is large enough to comfortably contain both *P* and *Q*. We say that a triangulation *T* of \Box *supports P* if every vertex of *P* is a vertex of *T* and every edge of *P* is the union of edges of *T*—more succinctly, if some subcomplex of *T* is a triangulation of *P*. Two triangulations T_P and T_Q of \Box with labeled vertices are *compatible* with *P* and *Q* if they satisfy the following conditions:

- T_P and T_Q are isomorphic as labeled planar maps. That is, the vertex labeling induces bijections between the vertices, edges, and faces of T_P and the vertices, edges, and faces of T_Q , respectively.
- Corresponding vertices on the boundary of □ have the same coordinates in both triangulations.
- T_P supports P and T_Q supports Q.
- The vertex labeling also induces bijections between the vertices, edges, and interior faces of P and the vertices, edges, and interior faces of Q, respectively. In particular, for any index i, vertices p_i and q_i have the same label in T_P and T_Q , respectively.

Compatible labeled triangulations of two simple polygons.

- (a) Describe an algorithm to compute compatible triangulations for two given *n*-gons with at most $O(n^2)$ vertices. (This implies a piecewise-linear homeomorphism $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ with complexity at most $O(n^2)$ that is the identity outside the bounding box \Box .)
- (b) Prove that the $O(n^2)$ upper bound cannot be improved in the worst case.
- *(c) Describe and analyze an algorithm to determine if two simple *n*-gons have compatible triangulations with exactly n + 4 vertices: the vertices of the polygon plus the vertices of the bounding box \Box .¹
- ★(d) Prove that computing compatible triangulations with the minimum number of vertices is NP-hard.²

It may be easier to start by considering compatible triangulations only of the interiors of the polygons. See Aronov, Seidel, and Souvaine [*CGTA* 1993]. A similar problem for arbitrary point sets was previously considered by Saalfeld [SOCG 1989].

¹Small stars indicate problems I don't know how to solve. That does not necessarily mean the problem is open, difficult, or interesting.

²Large stars indicate problems that I know are open.

- Recall that the dual of a directed edge e = tail(e)→head(e) in a directed plane graph is
 e^{*} = left(e)^{*}→right(e)^{*}.
 - (a) Prove that a directed plane graph G is acyclic if and only if the dual graph G^* is strongly connected.
 - (b) Call an edge of a directed graph *G* internal if its endpoints lie in the same strong component of *G* and *external* otherwise. Prove that an edge *e* in a directed *plane* graph *G* is internal if and only if the corresponding dual edge e^* of the dual graph G^* is external.
- 3. A vertex *v* of a directed plane graph is *regular* if all incoming edges are adjacent in cyclic order around *v*; a non-regular vertex is called a *saddle*.
 - (a) Let *G* be a planar dag with a unique source and a unique sink. Prove that any planar embedding of *G* has no saddle vertices.
 - (b) Let *G* be a planar dag with *s* sources and *t* sinks. Prove that any planar embedding of *G* has at most s + t 2 saddles.