These questions are rather long, so I don’t expect everyone to submit solution to everything.

1. Let $\Gamma = \{\gamma_1, \gamma_2, \ldots, \gamma_k\}$ be a set of generic closed curves that intersect each other only pairwise, transversely, and away from their vertices; we call any such set a \textit{(generic) family of planar curves}. For simplicity, assume that every curve γ_i is either non-simple or intersects another curve γ_j. Then the image of Γ is a 4-regular plane graph, which may be disconnected. Conversely, every 4-regular plane graph is the image of a family of planar curves.

A \textit{Gauss paragraph} of Γ is a family of k strings, obtained by uniquely labeling the vertices of Γ, and then listing the vertices in order along each curve γ_i in an arbitrary direction, starting at an arbitrary basepoint, considering the curves in arbitrary order.

\begin{center}
\includegraphics[width=0.5\textwidth]{gauss_paragraph.png}
\end{center}

A connected family of planar curves with Gauss paragraph $\{acfe, jgfbadgi, iebcdhhj\}$.

Now let’s go the other direction. A Gauss paragraph is any set of non-empty strings in which any symbol appears exactly twice or not at all. Each Gauss paragraph X defines a 4-regular graph $G(X)$ whose vertices are the characters in X and whose edges correspond to adjacent character pairs. If X is the Gauss paragraph of a family of planar curves, then $G(X)$ is the image graph of that family.

(a) Prove that if X is the Gauss paragraph of a family of planar curves, then the edges of $G(X)$ can be directed so that every vertex has in-degree 2 and out-degree 2. \textit{[Hint: Consider self-intersection points of one curve and intersection points of two curves separately.]}

(b) Describe a linear-time algorithm that either directs the edges of $G(X)$ as described in part (a) or correctly reports that no such orientation exists, given the Gauss paragraph X as input.

(c) Prove that X is the Gauss paragraph of a generic family of planar curves if and only if $G(X)$ has a planar embedding such that every component has a weakly simple Euler tour.

(d) Sketch a linear-time algorithm to decide whether a given string is the Gauss paragraph of a generic family of planar curves. (Just describe the necessary modifications to the algorithm for single curves.)
2. Fix an arbitrary point \(o \) in the plane, called the origin. Let \(P \) be a polygon in \(\mathbb{R}^2 \setminus o \) with vertices \(p_0, p_1, \ldots, p_{n-1} \). A vertex move on \(P \) replaces an arbitrary vertex \(p_i \) with a new point \(q_i \). This vertex move is safe if neither of the triangles \(\triangle p_i q_i p_{i-1} \) and \(\triangle p_i q_i p_{i+1} \) contains \(o \). (All index arithmetic is modulo \(n \).) Every sequence of safe vertex moves describes a homotopy between two polygons with the same number of vertices and the same winding number around the origin.

(a) Let \(n \) be an arbitrary odd integer. Let \(P \) be a regular star polygon with \(n \) vertices spaced evenly around the unit circle, such that \(\text{wind}(P, o) = \lfloor n/2 \rfloor \), as shown below. Describe how to rotate \(P \) around the origin by half a circle using \(O(n) \) safe triangle moves.

(b) Let \(P \) and \(Q \) be two arbitrary \(n \)-gons in \(\mathbb{R}^2 \setminus \{o\} \), such that \(\text{wind}(P, o) = \text{wind}(Q, o) \). Prove that \(P \) can be transformed into \(Q \) using \(O(n) \) safe vertex moves. [Hint: Aim for a canonical polygon with winding number \(\text{wind}(P, o) \). The star polygon in part (a) may not be the best candidate.]
3. Let P be an arbitrary polygon with n vertices; for simplicity, assume no three vertices in P are collinear. The image graph $G(P)$ is a planar straight-line graph whose nodes are the vertices of P and the intersection points of edges of P. Let N denote the number of nodes in the image graph $G(P)$. Trivially, $n \leq N \leq \binom{n}{2}$.

We can easily reduce P to a triangle by repeatedly replacing two successive edges $p_{i}p_{i+1}$ and $p_{i}p_{i+1}$ with a new edge $p_{i-1}p_{i+1}$, deleting the shared vertex p_{i}. Define the cost of deleting vertex p_{i} to be the number of nodes of $G(P)$ that lie in the triangle $\triangle p_{i-1}p_{i}p_{i+1}$, except for the three vertices p_{i-1}, p_{i}, and p_{i+1}. For example, if P is convex, every vertex deletion has cost zero.

(a) Prove that any vertex deletion with cost k can be transformed into a sequence of $O(k)$ homotopy moves ($1\rightarrow 0$, $2\rightarrow 0$, and $3\rightarrow 3$), by treating the polygon as a generic curve. [Hint: Watch out for spurs!] This is the motivation for my definition of cost.

(b) Trivially, every vertex deletion has cost $O(n^2)$, and therefore any sequence of $n-3$ vertex deletions has total cost $O(n^3)$. Prove that this $O(n^3)$ bound is tight in the worst case. [Hint: See problem 2.]

(c) Prove that if P is simple, there is a sequence of $n-3$ vertex deletions with total cost 0.

(d) Prove that any polygon P can be reduced to a triangle by a sequence of $n-3$ vertex deletions with cost $O(N^2)$. [Hint: A vertex deletion can actually increase N.]

* (e) Prove or disprove: There is a sequence of $n-3$ vertex deletions with total cost $O(N^{3/2})$. Your proof of part (b) implies a worst-case $\Omega(N^{3/2})$ lower bound.