Let's try this again.

Monge heap:

Given a Monge array D, and "given" an unknown vector c

Define $M[i, j] = D[i, j] + c[j]$ — Monge

No matter what's in c

Three operations:

- **Reveal**(j, x) — Define $c[j] = x$, "reveling" column j of M
- **Find Min** — Report minimum visible element
- **Hide**(i) — Hide row i of M ("Extract Min")

Ultimately, we will find the min of every row of M

Find Min results must be the true row minima

Structure: Revealed cols x unhidden rows is Monge

\Rightarrow row mins are monotone

For each live column j:

- Maintain row intervals $[l, r]$ where min element is in col j.
- Keep triples (j, l_{min}, r_{max}) in a min-heap, keyed by minimum element.

$O(\log k)$ insert, delete, extractmin, $2k$ triples in heap

- Min element in any subcolumn depends only on D

Prep each column of D for range minimum queries

Given l_{min}, r_{max}, find i_{min} is i_{max} minimizing $D[i, j]$

Balanced (static) binary tree with k leaves

- i_{th} leaf stores $D[i, j]$
- Internal node u stores min of children
Reveal (j, x):
- Maintain live cols in BST
- Find prev and next visible columns
- Binary search in col j- for start of col j’s interval
- Binary search in col j+ for end of col j’s interval
- Remove triples (j-, i-, -) that overlap (j, i-, i+)
- Add triples (j-, i-, -), (j-, i-, -), (j+, i-, -)

Overall amortized time: \(O(\log k)\)

Find Min — \(O(1)\) time, at top of global heap

Hide (i):
- Maintain inactive intervals in BST
- Now i intersects at most one triple (j-, i-, i+) in global heap
- Remove that triple.
- Insert (j-, i-, i-1) and (j+, i+, i+1)
- We don’t have to worry about other cols:
 - Visible — Monge
 - Invisible — User guarantee

\(O(\log k)\) time

\(O(k)\) Reveal + Hide ops ⇒ \(O(k \log k)\) time

(Recall SAWK only needs \(O(k)\) time, but completely offline.)
FR-Dijkstra Given planar graph G:

Preprocessing: to be determined

- Build nice r-division — $O(n)$ time
- Build dense distance graph via M5SP — $O(n \log r)$ time
- Recall bdy-to-bdy distance arrays are not Monge but do de-compose into Monge arrays

Prep each Monge subarray for range-min queries — $O(n)$ time

Total prep time = $O(n \log r)$

Query time: Given boundary vertex s, compute distance to every other bdy vertex

Naive: Dijkstra in PDG takes $O(V \log V + E)$

$$= O\left(\frac{n}{r^2} \log r + \chi\right)$$

We're trying to avoid this

Run Dijkstra as usual, but

- Keep a global heap of all Monge heap minimal $\text{dist}(v)$ for all v beyond current wavefront
- $u \leftarrow \text{Extract Min}$ next closest vertex to s

$\Rightarrow \text{Reveal} (u, \text{dist}(u))$ and $\text{Hide} (u)$ in every Monge heap containing u
If \(G \) has bounded degree: \(v \) is on bdy of \(O(1) \) pieces

\[\mathcal{H}_B \]

So \(v \) is in \(O(\log r) \) Monge heaps

Aggregate Monge heaps in each piece

Piece heaps in global heap

Each Hide: \(O(\log r) \) piece heap ops \(\rightarrow \) \(O(\log^2 r) \) time

\(+ O(1) \) global heap ops \(\rightarrow \) \(O(\log r) \) time

Overall time = \(O\left(\frac{r^2}{\log^2 r + \log n}\right)\)

This term can be removed with more effort (like \(O(n) \)-time shortest paths)

Okay, Finally: Minimum cut

We've already reduced to the following problem

Given plane graph \(G \) with vertices

\[s_1, s_2, \ldots, s_k, t_1, t_2, \ldots, t_t \]

in cyclic order on outer face

Compute \(\text{dist}(s_i, t_i) \) for all \(i \)

1. Build \(r \)-division and DD, prep for \(\text{Fedor Dijkstra} \) \(O(n \log r) \)

2. Follow \(\text{Fedor Dijkstra} \) to build \(k / \log n \) paths \(s_i \rightarrow t_i \)

But use \(\text{Fedor Dijkstra} \) : \(O\left(\frac{n^2 \log^3 n}{\log r}\right) \)

3. within each stripe of width \(O(\log n) \)

just run \(\text{Fedor Dijkstra} \) \(O(n \log \log n) \)
Intuition: Phase 2 running time is

\[T(n,k) = O\left(\frac{m}{\log^2 n} + \frac{1}{k^2} \right) \]

where \(n_1 + n_2 = n \)

\[= O\left(\frac{n}{\log^2 n} \log k \right) \]

So total time is

\[O\left(n \log r + \frac{1}{\sqrt{r}} \log^3 n + n \log \log n \right) \]

Set \(r = \log^5 n \Rightarrow O(n \log \log n) \)

Technical problem: Time for FR-Dijkstra depends on total size of pieces intersecting current slab.

"Split" DDG

Minor modification to Merge Heaps

If any piece reduced to a single edge, we can finish off entire slab in \(O(n^3) \) time!