Finding Trivial Closed Walks in Directed Surface Graphs

- Shortest homotopic paths well-defined unless
 - contractible
 - anti-homotopic neg cycle pair

Given dir. graph \(G = (V,E) \)
embedded on some orientable surface \(\text{genus } g = O(n) \)

Is any closed walk in \(G \) contractible?
null-homologous?
ccw \(O(n) \)
bcw \(O(gn) \)

"cycle" \(\Rightarrow \) NP-hard [Cabello]

No contractible loops \(\circ \)
anti-homotopic edges \(\circ \)

CCW in \(O(n) \) time

- Remove any cocycles from \(G \)
- For every face \(F \)
 - if \(F \) is a disk and \(F \) is coherent
 - return True
- return False

\(f_1 \uparrow f_2 \uparrow f_3 \uparrow \cdots \uparrow f_k \uparrow f_1 \)
\(v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k \rightarrow v_1 \)
Lemma: If G has a ccw, then G has a weakly simple ccw arbitrarily close to a simple cycle.

Proof: Let W be any ccw.

Case 1: W is simple, done.

[Hass-Scott]: There must be a monogon or a bigon.

Case 2: Follow a dual walk $FFFF...$ inside A.

Case 3: Get stuck at face F with cw boundary.

Proof: W has connected interior A.

Lemma: Weakly simple ccw uses each edge at most once.

Proof: [Epstein 66] w is boundary of a disk.

Label faces of G in or out.

\Rightarrow length $\leq \Theta(n)$.

Lemma: If G has a weakly simple ccw, then G has a simple and no cocycles.

Proof: Follow a dual walk $FFFF...$ inside A.

Get stuck at face F with cw boundary.

If F is a disk, done.

Otherwise $F \subset A \Rightarrow F$ is a disk with holes.

$W = \text{bdry of any hole}$.

W is contractible, encloses fewer faces than W.

Lemma: No bvw uses any edge in any cocycle

\[\alpha: F \to \mathbb{N} \] "Z-chain"

\[\delta \alpha: E \to \mathbb{Z}, \quad \delta \alpha(e) = \alpha(\text{right}(e)) - \alpha(\text{left}(e)) \]

Want:
- Non-negative
- Positive edges is connected

Boundary closed walk = Euler tour of pos. cycle circulation with connected support

WLOG
1. No cocycles - \(G^* \) is a deg
2. \(G \) is strongly connected

\(G_0 \) = any strong comp of \(G \)
\(H_0 = G_0 \setminus \text{cocycles} \)

\(G_1 = \text{any strong comp of } H_0 \)
\(H_1 = G_1 \setminus \text{cocycles} \)

\[\vdots \]

until \(G_i = G_{i+1} \)

\[\Rightarrow O(n^2) \text{ time} \]

1. If \(G_i \) has more than one vertex then \(G_i \) has bvw
2. Converges after \(\leq 2g \) iterations