homotopy
= continuous deformation

one obstacle
winding number

one finger
loose
both → fast
def signedArea(P):
 area = 0
 n = size(P)
 for i in range(n):
 area += (P[i].x * P[(i+1)%n].y - P[i].y * P[(i+1)%n].x) / 2
 return area
wind(P, 0) = \text{sum of signed angles at 0 subtended by the edges of } P \quad \text{always integer!}

\frac{\pi}{2} \leq \Theta \leq \frac{\pi}{2}

Don't compute it this way!

wind(P, 0) = \# \text{pos crossings} - \# \text{neg crossings}
def windingNumber(P, o):
 wind = 0
 n = size(P)
 for i in range(n):
 p = P[i]
 q = P[(i+1)%n]
 Delta = (p.x - o.x)*(q.y - o.y) - (p.y - o.y)*(q.x - o.x)
 if p.x <= o.x < q.x and Delta > 0:
 wind += 1
 elif q.x <= o.x < p.x and Delta < 0:
 wind -= 1
 return wind

roots = wind(F(C), 0)
Homotopy = continuous deformation = morph

Homotopy between closed curves in punctured plane $\mathbb{R}^2 \setminus \{0\}$

Continuous function $h: [0,1) \times S^1 \to \mathbb{R}^2 \setminus \{0\}$

$h(0, t)$ is initial curve
$h(1, t)$ is final curve
$h(t, \cdot)$ is intermediate

Even when initial and final curves are nice (polygons), intermediate curves can be nasty.

Two closed curves are homotopic iff there exists a homotopy from one to the other

1. We can model/approx any homotopy by seq. of simple moves

2. Two polygons in $\mathbb{R}^2 \setminus \{0\}$ are homotopic iff

same winding number around 0.
Theorem:
Two polygons in $\mathbb{R}^2 \setminus \{0\}$ are homotopic iff they are connected by a sequence of safe vertex moves.

Proof: \Leftarrow "obvious" (mod definitions)
\Rightarrow hard

Let h be any homotopy from P_0 to P_1

build grid of 8×8 squares
image(□) has diameter $\leq \varepsilon$

Move Δs one at a time above curve
seq of safe vertex moves, each moving a vertex $\leq \varepsilon$

Simplicial approximation theorem
homotopic ⇔ same winding

⇒ wind # only changes when P and o intersect

① remove redundant verts
② subdivide along rays
③ move every vertex to unit circle