Winding numbers + homotopy

Are these two polygons homotopic in $\mathbb{R}^2 \setminus 0$?
Compute $\text{wind}(P,0) = \text{wind}(Q,0)$?

What if there's more than one obstacle?

Topological properties

\begin{align*}
\downarrow \quad \text{Combinatorial objects} \\
\text{Computational}
\end{align*}

Crossing sequence

\[BAabBAaabB \]

- Same crossing sequence \Rightarrow homotopic
- Equivalence of crossing seqs \Rightarrow Unique minimum equiv. reduction
- Homotopic \iff same reduced crossing sequence

Computed quickly
Fix finite set $D = \{a, b, c, \ldots\}$ with no two on a vertical line.

Lemma: Two polygons with same crossing sequence are homotopic.

Proof:

Place sentinel points near obstacles.
Reroute crossings thru sentinels.
Move rest of polygon down to a common basepoint.
Elementary reduction
- delete Aa or aA substring
- or $A \rightarrow a$
- or $a \rightarrow A$

Elementary expansion
is reverse of elem. reduction

Two xing seq's are equivalent
if connected by elem.
reductions and expansions

Reduced if no reductions possible

Lemma: Every xing sequence is equivalent to
a unique reduced sequence.

Left greedy reduction

Random
def LeftGreedyReduce(X):
 n = size(X)
 Y = [0 for _ in range(n)] // reduced sequence = stack
top = -1 // top stack index

 // ----- linear reduction -----
 for i in range(X):
 if top < 0 || (X[i] != -Y[top]): // empty or no match
 top++
 Y[top] = X[i] // push
 else:
 top-- // pop

 // ----- cyclic reduction -----
 bot = 0
 while (bot < top) and (Y[bot] = -Y[top]):
 bot++
 top--

 // ----- done! -----
return Y[bot:top+1]

Proof: Pick cyclic string w

reductons w->x w->y

Induction
Equivalent \(x \neq y \)

\[X \leftrightarrow w_1 \leftrightarrow w_2 \leftrightarrow \ldots \leftrightarrow w_k = Y \]

Suppose \(w_{i-1} \leftrightarrow w_i \rightarrow w_{i+1} \)

either \(w_{i-1} = w_{i+1} \) or \(w_{i-1} \rightarrow w_i \leftrightarrow w_{i+1} \)

Induction:

\[x \rightarrow \rightarrow \rightarrow Z \leftrightarrow \leftrightarrow \leftrightarrow y \]

either \(x \neq Z \) or \(y \neq Z \)

\(x \) is not reduced
or \(y \) is not reduced \(\square \)

Theorem: Two polygons are homotopic in \(\mathbb{R}^2 \setminus \mathbb{O} \) iff they have the same reduced xing sequence.

Proof:

\(\Rightarrow \) Every safe vertex move changes xing seq by elem. reductions + expansions

Homotopic polygons have equiv xing sequences

\(\Rightarrow \) equal reduced xing sequences expansion

\(\Leftarrow \) Every elementary reduction can be effected by a sequence of safe vertex moves
Thm: Given two n-gons P, Q and k points O, we can decide if P and Q are homotopic in $\mathbb{R}^2 \setminus O$ in $O(k \log k + kn)$ time.

Proof:
1. Sort O → $O(k \log k)$
2. Compute crossing sequences of P and Q → $O(nk)$ time
 $O(n + k + O \log k)$
3. Reduce crossing seqs $O(x) = O(nk)$
4. Compare reduced sequences $A \equiv B \equiv 3 \equiv 3$ \Rightarrow $O(x) = O(nk)$