Planar section

Find topologically interesting cycles in surface maps.

non-contractible = non-trivial homotopy,
non-separating = non-trivial homology

Thomassen 90] 3-path condition

\[\begin{align*}
\alpha \cdot \beta & \geq \\
\beta \cdot \gamma & \geq \\
\alpha \cdot \gamma & \geq
\end{align*}\]

If two of these are trivial so is the third.

⇒ Assume edges of \(\Sigma\) have non-neg. weights

\(\sigma\) = shortest non-trivial cycle

\(x, y = \text{antipodal pts on } \sigma\)

\(a\) and \(Y\) are shortest paths in \(\Sigma\).

Proof: Suppose not. Let \(\beta\) be true shortest path from \(x\) to \(y\).

\(\alpha \cdot \beta\) is shorter than \(\sigma\) ⇒ trivial

\(\beta \cdot \gamma\) is shorter than \(\sigma\) ⇒ trivial

3-path ⇒ \(\sigma\) is trivial
For all vertices x, shortest path tree T_x for all edges $e \in T_x \leq O(n)$

examine loop $(T_x, e) \leq O(n)$ time

$O(n^3)$ time

Greedy tree-root tree decomposition (T_i, L_i, C_i)

$T = \text{shortest path tree rooted at } a \cdot b$-vertex x.

$C = \max. \text{spanning tree of } \Sigma *

w(e*) = \text{length of loop } (T, e)

$L = E \setminus (T \cup C)$

Greedy system of loops: $L = \bigcup \text{loop}(T_i, e) \mid e \in L_i$

Any system of loops L is non-separating

- Every loop based at x is homotopic to sequence of loops in L

 "basis of T_x"

- Slicing Σ along L leaves a disk.

Greedy:

- L is the shortest system of loops based at x

[EW '05, CDV '10]

One-casing condition

The shortest nontrivial cycle σ crosses any shortest path π at most once.

Proof: same exchange arg.
Dual cut graph $K^* = C^* \cup L^*$ subgraph of E^* with one face
$= E^* \setminus K^*$ is a disk

Greedy Reduced dual cut graph ΓZ^*
repeatedly remove degree 1 vertices ("hair") from K^*

Lemma: loop(T, e) or cycle(T, e)
is separating
$\iff K^* \setminus e^*$ is disconnected
$\iff e^*$ is a bridge of K^*
$- e^*$ is "hair" \implies contractible loop
$- e^*$ is bridge in $R^* \implies$ noncontractible

For any basepoint x find shortest nontrivial loop based at x in $O(n \log n)$ time

$O(n \log n) \rightarrow$ Dijkstra \rightarrow T
$O(n \log n) \rightarrow$ Borůvka \rightarrow $C^* \cup L^*$
\rightarrow bookkeeping \rightarrow K^*
\rightarrow T FS \rightarrow ΓZ^*
$O(n)$
\rightarrow min wrt edge $e^* \in R^*$ \rightarrow shortest non-con loop
\rightarrow min wrt non-bridge $e^* \in R^*$ \rightarrow shortest non-sep loop
$O(n) \rightarrow O(n^2)$ find shortest overall $[EH 03]$ $[Cd 10]$

Don't try every basepoint at a time
CC ID

AG

EF

Erg

aecomp

cycle

CT
es
I
ee
L
zonmone
sq
enFIE
ieasEonee

Shortest non-sep cycle crosses
some cycle in \(\Pi \) at least once

Every non-sep cycle crosses
some cycle in \(\Pi \) at least once

Shortest non-sep cycle crosses
each cycle in \(\Pi \) at most once

For each \(ee \in \mathcal{L} \)
slice \(\geq 1 \) along cycle \(CT(e) \)

MSSP \(\leftrightarrow \) shortest cycle
crossing (cycle\(CT(e)\)) once

MSSP for surfaces

Tree-cotree \(\rightarrow \) Tree-grove dynamic forest

Tree-cotree \(\rightarrow \) Tree-grove dynamic forest

Each dart enters \(\Gamma \) at most \(2g + 1 \) times

\(O(G \log n) \) time per pivot

\(O(G^2 n \log n) \) time overall

\(O(g^2 n \log n) \) time

Conjecture: \(O(g \cdot n \log n) \)