Minimum cuts in surface maps — Homology

Cycle space

- Space of all subgraphs of \(G \) generated by cycles under sym diff \(\oplus \)
- Elements are even subgraphs
- Vector space \(\mathbb{Z}_2^{E-V+1} \)
- Generated by fundamental cycles wrt any spanning tree

Cut space

- Space of subgraphs that cross partitions of \(V \)
- Elements are edge cuts
- Vector space \(\mathbb{Z}_2^{V-1} \)
- Generated by fundamental cuts wrt any spanning tree

Cycle space \(\mathbb{Z}_2^E \) — space of all subgraphs
- \(V \) linear constraints at vertices
- But 1 redundant

Boundary space

- Boundary of subset \(A \subseteq F \)
 - All edges with one shore in \(A \)
- All boundary subgraphs
 - \(\mathbb{Z}_2^{F-1} \)
- Every boundary subgraph is even.
- Not every even subgraph is boundary!

Planar maps:

\[
\text{Cycle}(\Xi) = \text{Cut}(\Xi^*) \quad \mathbb{Z}_2^{F-1}
\]
Two subgraphs of surface map Σ are homologous iff $A \oplus B$ is a boundary.

First homology group / Homology space:

\[H_1 = \text{cycles} / \text{boundaries} \]

set of homology classes of even subgraphs

\[A \sim A', \quad B \sim B' \implies A \oplus B \sim A' \oplus B' \]

\[H_1 = \mathbb{Z}_2^{n-v+1} / \mathbb{Z}_2^{n-1} = \mathbb{Z}_2^{g} \]

Testing homology

Given subgraph A of Σ, is A a boundary?

$O(n)$ time dual WFS

Computing homology

Tree-cotree decomposition (T, L, C)

system of cycles: $\Gamma = \sum_{i=1}^{g} \xi_i$, $\delta_i = \text{cycle}(T, e_i)$, $e_i \in L$

basis for H_1

Every even subgraph is hom. to sum of cycles in Γ:

system of cocycles: $\Lambda = \sum_{i=1}^{g} \lambda_i$

\[\lambda_i = \text{cycle}(C^i, e_i^*) \quad e_i \in L \]
For every edge \(e \) of \(\Sigma \) define \([e] \in \mathbb{Z}_2^{\Sigma}\) for every \(i \): \([e]_i = [e \in \lambda_i^i]\)

Homology class of \(A = \bigoplus_{e \in A} [e] = [A] \in \mathbb{Z}_2^{\Sigma}\).

Poincaré duality:

Min cut in planar map \(\Sigma \):

- Shortest cycle in \(\Sigma^* \backslash \{s^*, t^*\}\)

homologous with \(\partial s^* \)

Dual:

Even subgraph with min cut homologous with \(\partial s^* \)
in \(\Sigma^* \backslash \{s^*, t^*\}\)

Even subgraph homol. with \(\gamma \) in \(\Sigma^* + \text{handle} \)

Find shortest cycle in given homology class, \(h \in \mathbb{Z}_2^{\Sigma}\)

\(\Sigma = \mathbb{Z}_2 \)-homology cover of \(\Sigma \)

\(= (\emptyset, \hat{e}, \hat{F}) \)

Ghe \(2^{2g} \) copies of \(\Sigma \) together complexity \(2^{2g,n} \), genus \(2^{2g} \).
\[\Phi = \{ (v, h) \mid v \in V, \ h \in \mathbb{Z}_e^{2g} \} \]
\[\hat{E} = \{ (u, h)(v, h') \mid u \sim v, \ h \oplus h' = \Sigma uvf \} \]

\[\text{shortest cycle in } \hat{E} \text{ contains } v \text{ in homology class } h \]
\[\text{shortest path in } \hat{E} \text{ from } V_{000...0} \text{ to } V_n \]

Try all \(v \) and compute shortest path from \(u \) to \(v \) in \(\tilde{E} \) \(n \log n \) steps.

\[\tilde{O}(p_0(n \log n)) = 2^{O(g)} n \log n \]

\[\text{MSSP} \Rightarrow \text{shortest cycle in any hom. class} \quad 2^{O(g)} n \log n \]

\[\min \text{ wt even subgraph} \quad 2^{O(g)} n \log n \]

\[\text{NP-hard} \]

\[\mathcal{O}(g^s \cdot n) ? \]