
Kinetic Binary Space Partitions for

Intersecting Segments and Disjoint Triangles

(Extended Abstract)

Pankaj K. Agarwal� Je� Ericksony Leonidas J. Guibasz

Abstract

We describe randomized algorithms for e�ciently maintain-

ing a binary space partition of continuously moving, possibly

intersecting, line segments in the plane, and of continuously

moving but disjoint triangles in space. Our two-dimensional

BSP has depth O(log n) and size O(n log n+ k) and can be

constructed in expected O(n log2 n+ k log n) time, where k

is the number of intersecting pairs. We can detect combina-

torial changes to our BSP caused by the motion of the seg-

ments, and we can update our BSP in expectedO(log n) time

per change. Our three-dimensional BSP has depth O(log n),

size O(n log2 n+k0), construction time O(n log3 n+k0 log n),

and update time O(log2 n) (all expected), where k0 is the

number of intersections between pairs of edges in the xy-

projection of the triangles. Under reasonable assumptions

about the motion of the segments or triangles, the expected

number of number of combinatorial changes to either BSP is

O(mn�s(n)), where m is the number of moving objects and

�s(n) is the maximum length of an (n; s) Davenport-Schinzel

sequence for some constant s.

1 Introduction

Hidden surface removal is a fundamental problem in
computer graphics. Given a set of objects, a viewpoint,
and an image plane, the hidden-surface-removal prob-
lem asks for computing the scene visible from the view-
point on the image plane. A simple and widely used
algorithm for hidden surface removal is the so-called
painter's algorithm [10], which draws the objects on the

�Center for Geometric Computing, Computer Science Depart-

ment, Duke University, Box 90129, Durham, NC 27708{0129,
agarwal@cs.duke.edu, http://www.cs.duke.edu/�agarwal. Re-

search supported by National Science Foundation grant CCR-93-

01259, by U.S. Army Research O�ce MURI grant DAAH04-96-

1-0013, by a Sloan Fellowship, by a National Science Foundation

NYI award and matching funds from Xerox Corporation, and by

a grant from the U.S.-Israeli Binational Science Foundation.
yCenter for Geometric Computing, Computer Science Depart-

ment, Duke University, Box 90129, Durham, NC 27708{0129,

je�e@cs.duke.edu, http://www.cs.duke.edu/� je�e. Research sup-

ported by National Science Foundation grant DMS-9627683 and

by U.S. Army Research O�ce MURI grant DAAH04-96-1-0013.
zComputer Graphics Laboratory, Computer Science

Department, Stanford University, Stanford, CA 94305,
guibas@cs.stanford.edu, http://www-graphics.stanford.edu/
�guibas. Research partially supported by National Science

Foundation grant CCR-9623851 and by U.S. Army Research

O�ce MURI grant 5-23542-A.

image plane in a back-to-front order (also known as a
depth order). Since such an ordering does not always
exist, objects may need to be split so that their frag-
ments admit a depth order. In a typical setting one
wants to draw the same set of objects repeatedly from
di�erent viewpoints, which calls for a data structure to
store these objects so that a depth order from a given
viewpoint can be computed quickly. Fuchs et al. [11]
introduced the binary space partition (BSP), based on
earlier work by Schumacker et al. [21], as a data struc-
ture for computing a depth order from a viewpoint. Bi-
nary space partitions are also used to �lter out a small
subset of the input objects that comprises those visi-
ble from a given viewpoint. Even algorithms that rely
on a hardware z-bu�er cannot render very large scenes
(composed of millions of polygons) in real time, so �l-
tering a small superset of objects visible from a given
viewpoint is a critical step in obtaining fast rendering
algorithms [23]. Besides these two important applica-
tions, BSPs have been used for many other problems
in graphics (including ray tracing [16] and shadow gen-
eration [7, 8]), solid modeling [15, 24], geometric data
repair [14], robotics [4], etc.

A BSP B for a set S of objects in IRd is a binary
tree, each of whose nodes v is associated with an open
convex polytope �v , called the cell of v, and the set
Sv = fs \ �v j s 2 Sg of objects clipped to within
�v . (In our case S is either a set of segments in the
plane or a set of triangles in IR3.) If Sv = ;, then v is
a leaf of the binary space partition. Otherwise, �v is
partitioned into two convex polytopes by a cutting hy-

perplane hv . We store with v the equation of hv and
the set fs j s � hv ; s 2 Svg of objects in Sv that lie
on hv . The polytopes associated with the left and right
children of v are �v \ h

�

v and �v \ h
+
v , respectively

where h+v and h
�

v denote the open halfspaces bounded
by hv. The size of B is the the number of nodes in B,
together with the storage required to hold the informa-
tion associated with each node. The e�ciency of many
BSP-based algorithms depends critically on the number
of nodes in the tree. This dependence has motivated
several algorithms for constructing BSPs of small size;
see [2, 6, 11, 19, 20, 23, 24].

Most of the work to date on BSPs has dealt with static

objects. In practice, however, the set of objects changes
over time | some objects move along continuous paths,
some new objects are added, and some old objects are
removed. Relatively little attention has been paid so far
to developing e�cient algorithms for updating a BSP
dynamically. In this paper, we investigate the problem
of maintaining a BSP as objects, either intersecting seg-
ments in the plane or disjoint triangles in space, move
along continuous paths. Extant work in the graphics
community on maintaining a BSP of moving objects is
all based on discretizing time into short intervals. At
these discrete times the moving objects are deleted from
the BSP and re-inserted in their new positions; see, for
example, [17, 25, 9]. Such approaches su�er from the
fundamental problem that it is di�cult to know how to
choose the correct length of the discretization interval.
If the interval is too small, then the BSP does not in fact
change combinatorially, and the deletion/re-insertion is
just wasted computation; on the other hand, if the in-
terval is too big, important intermediate events can be
missed, with ill e�ects on applications using the tree.

A more e�ective approach is to regard BSP as a ki-

netic data structure, as introduced by Basch et al. [5].
(See [3, 12, 18] for some other weaker models for solving
kinetic problems.1) In the kinetic view each moving ob-
ject follows a posted
ight plan or path. In the binary
space partition context, the equations of the cuts made
at the nodes of the BSP become continuous functions
of time. Combinatorial changes in the BSP (we de�ne
this notion precisely later), however, occur only at cer-
tain discrete times. We explicitly take advantage of the
continuity of the motion of the objects involved so as to
update the BSP only when actual events cause the BSP
to change combinatorially. Such an approach was �rst
used in a recent paper by Agarwal et al. [1] to maintain
the BSP of a set of disjoint segments in the plane. In
this paper we extend their approach to e�ciently main-
tain a BSP for the considerably more complex case of
disjoint triangles in IR3. To achieve this result, we �rst
develop a method to e�ciently maintain a BSP for in-
tersecting line segments in the plane; we are then able
to \lift" our two-dimensional solution into three dimen-
sions. These are the �rst kinetic structures proposed for
these problems.

Our kinetic structures are based on new randomized
algorithms for constructing static BSPs for these two sit-
uations. In Section 2 we present a randomized algorithm
to construct a BSP for a set S of n stationary (possibly
intersecting) segments in the plane. The algorithm con-
structs a BSP of expected size O(n logn+k) in expected

1Atallah [3] and Ottmann and Wood [18] study kinetic ge-

ometric problems in an o�-line setting, and Kahan [12] studies
some problems under the assumption that the speed of the ob-

jects is bounded. The model introduced by Basch et al. is on-line

and does not assume any bound on the rate at which the objects

move.

time O(n log2 n+k logn), where k is the number of inter-
section points between the segments of S. We then ex-
tend this algorithm to construct a BSP of expected size
O(n log2 n+ k

0) in expected time O(n log3 n + k
0 logn)

for a set � of n disjoint triangles in space; here k
0 is

the number of intersection points among the edges of
the xy-projections of triangles in �. The previous best-
known algorithms for triangles are by Agarwal et al. [1].
They present a randomized algorithm that constructs a
BSP of size O(n2) in expected time O(n2 log2 n), and
a deterministic algorithm that constructs a BSP of size
O((n + k

0) logn) in time O((n + k
0) log2 n). A short-

coming of all known algorithms (including ours) for con-
structing a BSP of triangles is that they may construct
a BSP of size
(n2) even though a BSP of size O(n)
exists. It is a challenging open problem to construct in
polynomial time a BSP whose size is close to optimal
(say, within a constant factor).

Neither the algorithms by Agarwal et al. nor the orig-
inal algorithm by Paterson and Yao [19] is suitable for a
kinetic data structure because a small motion of one of
the objects may cause many or non-local changes to the
BSP. In Section 3 we show that our static algorithms
can be used to maintain the BSP of a set of moving
segments or triangles. As in [1], we assume that the
segment motions are oblivious to the random bits used
by the algorithm. Following Basch et al. [5], we also as-
sume that each moving segment has a posted
ight plan
that gives full or partial information about its current
motion. Based on these
ight plans, we maintain a pri-
ority queue of upcoming events that change the combi-
natorial structure of our BSP. We can process each such
event in O(log n) time. Whenever a
ight plan changes
(possibly due to an external agent), our algorithm is no-
ti�ed and updates the global event queue to re
ect the
change. Furthermore, assuming that the motions of the
segments are \pseudo-algebraic" and that m of the n

segments are actually moving, we show an O(mn�s(n))
bound on the number of events processed, where �s(n)
is the maximum length of an (n; s) Davenport-Schinzel
sequence, for some constant s.

The kinetic structure we propose for intersecting seg-
ments in the plane brings to light several important and
subtle issues that did not arise in the disjoint segment
context of [1]: intersections among the segments have
to be detected and maintained; vertical threads from
intersection points need to be propagated and their cost
analyzed; when a segment becomes vertical during the
motion, the entire ordering of intersection points on it

ips, thus creating an event that can be expensive to
process unless we can keep track of this ordering im-
plicitly; and �nally the analysis of the worst possible
number of events that have to be processed by the ki-
netic BSP is substantially more challenging in this case.

a

b

d

c

g

li

l

g

i

kc

f

g

e e
n

k
p

o

j

q

r

m

a

g he e

j k

h

b

a

d

a

d

c

f

j

e

b

h

k

m n o p q r

b

c

d

e

h h ha aaa

b

d

j

f

c

f

c

g

li

Figure 1. The sequence of cuts made while inserting a segment, and the resulting BSPs after each phase. In each phase, the shaded

trapezoids and leaves are being split.

2 Static Algorithms

In this section, we will describe and analyze randomized
algorithms for constructing binary space partitions for
intersecting line segments in the plane and for disjoint
triangles in IR3.

2.1 Intersecting Planar Segments

Let S be a set of line segments in the plane. Our al-
gorithm constructs a BSP B = B(S) containing three
types of cuts. A vertex cut is a vertical cut through an
endpoint of a segment. An intersection cut is a vertical
cut through the intersection point of two segments. An
edge cut is a cut along (a contiguous subset of) a seg-
ment. Vertex cuts and intersection cuts are collectively
referred to as point cuts. For every node v in B, the cor-
responding convex polygon �v is a trapezoid with two
vertical edges (one of which can have length zero) in-
duced by point cuts, and top and bottom edges induced
by edge cuts; some cells are unbounded.

We begin by choosing a random permutation
hs1; s2; : : : ; sni of S. Once the permutation is chosen,
our algorithm is completely deterministic. We insert the
segments one at a time in the chosen order and maintain
a BSP of the segments added so far. Whenever i < j,
we say that si has higher priority than sj ; segments
with higher priority are inserted earlier. Let Bi denote
the BSP after the �rst i segments are inserted; B0 is the
trivial tree containing one node, and Bn = B. We insert
si into Bi�1 in three phases.

1. We insert vertex cuts into the cell(s) containing the
endpoints of si.

2. For each j < i such that sj intersects si, we insert
intersection cuts into the cells above and below the
point si \ sj .

3. We insert an edge cut along si into each cell that
intersects the interior of si.

Within each of the three phases, the cuts can be inserted
in any order. Each leaf of Bi�1 is the ancestor of at most
four leaves of Bi. An example of our insertion algorithm
is illustrated in Figure 1.

Since each interior node is associated with a cut, the
size of B is twice the number of cuts made by our al-
gorithm. There are clearly 2n vertex cuts and 2k in-
tersection cuts in B. As Paterson and Yao observe [19],
the number of edge cuts contributed by a segment si is
one more than the number of point cuts that cross si.
Thus, to compute the size of B, it su�ces to count the
segments crossed by each point cut.

Lemma 2.1. The expected number of segments

crossed by each vertex and intersection cut are O(logn)
and O(1), respectively.

Proof: The portion of the point cut that extends above
(resp. below) an endpoint or an intersection point of
p is called the upper thread (resp. lower thread) of p.
The segment containing the other endpoint of the thread
is called the thread's stopper. Note that the stopper
of a vertex thread is inserted before than the segment
containing the vertex, and the stopper of an intersection
thread is inserted before at least one of the two segments
containing the intersection point.

Let p be an endpoint of a segment s 2 S, and let
�1; �2; : : : ; �m be the sequence of segments intersected
by a vertical ray shooting upwards (in the positive y-
direction) from p. The upper thread of p crosses �i

if and only if s is inserted before any of the segments
�1; : : : ; �i. Since the segments are inserted in random
order, the probability that the upper thread crosses �i

is precisely 1=(i + 1). Thus, the expected number of
segments crossed by the upper thread of p isHm+1�1 �
Hn � 1 = O(logn).

Next, let p be the intersection point of two segments
s; s

0 2 S, and let �1; �2; : : : ; �m be the sequence of seg-
ments intersected by a vertical ray shooting upwards
from p. The upper thread of p crosses �i if and only if
both s and s

0 are inserted before any of the segments
�1; : : : ; �i. Since the segments are inserted in random
order, the probability that the upper thread crosses �i
is precisely 2=(i + 2)(i + 1). The expected number of
segments crossed by the upper thread is

mX
i=1

2

(i+ 2)(i+ 1)
= 1�

2

m+ 2
< 1:

The lower threads are analyzed symmetrically. �

Lemma 2.2. The depth of B is O(log n) with high

probability.2

Proof: First we compute the depth of an arbitrary
point p in the plane, that is, the depth of the leaf v
whose cell �v contains p. We will say that the cuts as-
sociated with the nodes on the path from the root to v

see the point p. We separately count the vertex cuts,
edge cuts, and intersection cuts that see p.

Let �1; �2; : : : be the sequence of segments intersected
by a vertical ray shooting upwards (in the positive y-
direction) from p. An edge cut through �i sees p if and
only if �i is inserted before any of �1; : : : ; �i�1. This
occurs with probability 1=i. It follows that the total
expected number of edge cuts that see p from above
is at most Hn = O(logn). Let X be the number of
edge cuts that see p from above. Since X is the sum of
independent indicator variables and � = E[X] � Hn,
by Cherno�'s bound,

Pr[X > ��] <

�
e
��1

��

��
= O(n�� ln�+��1);

for any constant � [13, p.68]. In particular, for any
constant c, we can choose � so that Pr[X > �Hn] <
n
�c. Similarly, we can bound the number of edge cuts

that see p from below.

Now let �1; �2; : : : be the left segment endpoints that
lie to the left of p. In order for a vertex cut through
�i to see p, the segment containing �i must be inserted
before the segments containing �1; : : : ; �i�1. By our ear-
lier analysis, the number of such cuts is O(log n) with
high probability. Similar arguments apply to the right
endpoints to the left of p and the endpoints to the right
of p.

2
i.e., with probability 1 � n

�c for any constant c, where the

constant hidden in the big-Oh depends on c.

It remains to count the intersection cuts that see p.
Every intersection cut � is de�ned by a pair of segments
(si; sj) where j > i. If � is made at a node v of B, then
either the top or the bottom edge of the trapezoid �v

is a portion of si, and the intersection point si \ sj lies
on this edge. Suppose � sees p; then p must lie in �v .
We call � essential if the lower-priority segment sj does
not intersect the vertical line through p inside �v (e.g.,
if si lies above p and si \ sj lies to the right of p, then
slope of sj is less than that of si); otherwise � is called a
nonessential. A nonessential cut that sees p is immedi-
ately preceded or followed by a vertex cut, an edge cut,
or an essential intersection cut that also sees p. Thus,
we only need to count the essential intersection cuts. We
will explicitly consider only essential cuts (�; �) where �
lies above p and the intersection point � \ � lies to the
right of p (and therefore � has smaller slope than �); let
us refer to such cuts as north-east cuts. Other cases are
handled symmetrically.
Recall that �1; �2; : : : is the sequence of segments

above p. For each segment �i, let pi be the point on
�i directly above p, and let �i1; �i2; : : : ; �imi

be the se-
quence of segments that intersect �i to the right of pi
and have slope less than �i. Any north-east cut is de-
�ned by some pair (�i; �ij). If this cut sees p, then �i

and �ij must be inserted (in that order) before any of
the segments �1; : : : ; �i�1; �i1; : : : ; �i;j�1. The probabil-
ity of this event is 1=(i + j)(i + j � 1). It follows that
the expected number of north-east cuts that see p is at
most

nX
i=1

n�iX
j=1

1

(i+ j)(i+ j � 1)
= Hn � 1:

Moreover, by our earlier analysis, the number of north-
east cuts that see p is O(log n) with high probability.
We conclude that the depth of any point is O(logn)

with high probability.
The segments in S, together with vertical lines

through every endpoint and intersection point, split the
plane into O(n3) trapezoids. Two points in the same
trapezoid are on the same side of every cut in any BSP
that our algorithm constructs, so the depth of B is the
maximum of the depths of only O(n3) points, one from
each trapezoid. Since each of these points has depth
O(logn) with high probability, the depth of B is also
O(logn) with high probability. �

Theorem 2.3. Let S be a set of n segments in IR2, and

let k be the number of intersecting pairs of segments

in S. The BSP B(S) has expected size O(n logn + k)
and expected depth O(logn).

2.2 Disjoint Triangles in Space

Let S be a set of triangles in space, and let E be the
set of edges of the triangles in S. For any object s in

IR3, let s� denote its orthogonal projection onto the xy-
plane. We say that two objects in IR3

overlap if their xy-
projections intersect. Let k denote the number of pairs
of edges in E that overlap, or equivalently, the number
of intersections between segments in E

� = fe� j e 2 Eg.

Just as in the previous section, our algorithm con-
structs B = B(S) by choosing a random permutation
hs1; s2; : : : ; sni of S and inserting the triangles one at
a time in the chosen order. Our algorithm uses four
types of cuts. A vertex cut is a cut parallel to the yz-
plane through a triangle vertex. An edge cut is a cut
parallel to the z-axis along (a contiguous subset of) a
triangle edge. An intersection cut is a cut parallel to
the yz-plane through the intersection of an edge of one
triangle and an edge cut de�ned by an earlier triangle.3

Finally, a surface cut is a cut along (a contiguous sub-
set of) a triangle. Again, vertex cuts and intersection
cuts are collectively referred to as point cuts. For ev-
ery node v in B, the corresponding polytope �v is a
four-sided cylinder whose xy-projection is a trapezoid
with two facets de�ned by point cuts and two de�ned
by edge cuts; the top and bottom faces of the cylinder
are de�ned by surface cuts.

We insert si into Bi�1 in four phases.

1. We insert vertex cuts into the cell(s) containing the
vertices of si.

2. For each j < i, we insert intersection cuts through
any point on the boundary of si that overlaps a
point on the boundary of sj .

4

3. For each edge e of si, we insert an edge cut along
e into each cell that intersects e.

4. Finally, we insert a surface cut along si into each
cell that intersects si.

Within each phase, the cuts can be inserted in any order.
Each leaf of Bi�1 is the ancestor of a constant number
of (at most 15) leaves of Bi.

Our three-dimensional BSP B induces a shadow BSP

B� on the projected triangles S�. The cuts in B� are
the projections of vertical cuts in B onto the xy-plane;
surface cuts in B do not contribute to B�. The shadow
BSP is almost exactly the same as the cylindrical BSP
described in the previous section for the projected edges
E
�. The only di�erence is that instead of inserting all

3n edges in random order, the three edges of each trian-
gle are inserted together. This di�erence has minimal
e�ect on the analysis; the shadow BSP still has expected

3It might be more consistent to call these \overlap cuts", but

we want to emphasize the similarity with the two-dimensional

case.
4Actually, we only need to insert intersection cuts through the

intersections of edges of si and previous edge cuts, but the extra

cuts simplify our analysis.

size O(n logn+ k) and expected depth O(logn). It im-
mediately follows that our three-dimensional BSP has
only O(n log n+ k) point and edge cuts.

Lemma 2.4. The expected number of surface cuts is

O(n log2 n+ k).

Proof: Let B0

i be the BSP just before the surface cuts
for si are inserted. The intersection of si with the cells of
B0

i forms a decomposition of si into trapezoids. Since the
decomposition is a planar graph, the number of trape-
zoids is at most three times the number of vertices. Ev-
ery vertex of the decomposition is the intersection of
si, a point cut in B0

i, and an edge cut in B0

i. Thus, to
count the surface cuts, it su�ces to count these triple
intersection points.

Let p be an arbitrary point in IR3. For any object (or
set of objects) X in IR3, Let X jp denote the intersec-
tion of (the objects in) X with the plane �p through p

normal to the x-axis. The BSP B induces a slice BSP

Bjp for the set of disjoint segments Sjp. The cuts in Bjp
are the intersections of the cuts in B with �p. Point
cuts in B, and other cuts that do not meet the plane,
do not contribute to Bjp. We easily observe that Bjp is
a cylindrical BSP of the disjoint segments Sjp, exactly
as described by Agarwal et al. [1] and in the previous
section. To emphasize their connections to cuts in B,
we refer to vertex cuts in Bjp as endpoint cuts, since
they are induced by edges in S, and edge cuts in Bjp
as segment cuts, since they are induced by surface cuts
in B. Each slice BSP has expected size O(n logn) and
expected depth O(logn).

Now consider the triple intersection points contained
in the vertex cut through a triangle vertex p. Each of
these triple intersection points is also a vertex in the pla-
nar decomposition de�ned by the slice BSP Bjp, and lies
within the three-dimensional cell C split by the point
cut. These vertices also lie in the two-dimensional cell
Cjp split by the endpoint cut through p (= pjp) in
Bjp. Since the decomposition of Cjp by Bjp is a planar
graph, the number of vertices is a constant multiple of
the number of trapezoids in the decomposition, which
is equal to the size of the subtree of Bjp rooted at the
endpoint cut through p.

In the full version of the paper, we show that for
any endpoint p in any set S of n disjoint segments
in the plane, the expected size of the subtree of B(S)
rooted at the endpoint cut through p is O(log2 n). Thus,
the expected number of triple intersection points con-
tained in each vertex cut in our three-dimensional BSP
is O(log2 n). By a similar argument, the expected num-
ber of triple intersection points contained in each inter-
section cut is only a constant. �

Theorem 2.5. Let S be a set of disjoint triangles

in IR3, and let k be the number of intersections be-

tween edges of S�. The BSP B(S) has expected size

O(n log2 n+ k) and expected depth O(log n).

3 Kinetic Algorithms

In this section, we describe how to maintain the BSPs
constructed in the previous section, as the set S of input
objects moves continuously. Each segment or triangle
is speci�ed by the positions of its endpoints. If each
object of S is moving rigidly, then not all the coordin-
ates of the vertices of an object are independent. For
example, we need three parameters to denote the posi-
tion of a segment in the plane while the coordinates its
two endpoints have four parameters. However, our algo-
rithm, as well as the analysis, works even if we assume
that the vertices move independently, that is, even if
the segments (or triangles) are not only moving rigidly
but they are also expanding and shrinking continuously
with time. For the sake of simplicity, let us assume that
the segments (resp. triangles) do not shrink to points
(resp. line segments). We suppose also that each ver-
tex has a posted
ight path specifying its position as a
continuous function of time.

Both of our static algorithms begin by choosing a ran-
dom permutation of the objects and inserting them in
a BSP in the chosen order. Once this permutation is
chosen, it remains �xed for all time. At any moment
in time, the BSP maintained by our kinetic algorithm
is precisely the BSP that would be constructed by the
corresponding static algorithm, given the sequence of
objects in their current positions as input. We assume
that the
ight paths of the vertices are chosen com-
pletely independently of the original permutation of the
objects.

For any real value t, let t� and t+ respectively denote
t�" and t+" for some su�ciently small constant " > 0.

3.1 Intersecting Line Segments

Let S = hs1; s2; : : : ; sni be a sequence of segments in
random order. Let S(t) denote the positions of the seg-
ments in S at time t, and let B(t) denote the BSP of
S(t) constructed by our static algorithm.

The combinatorial structure of B(t) changes at time
t if some segment si rotates through a vertical line at
time t, or if some segment si intersects �v at time t

� but
not at time t

+, or vice-versa, for some leaf v in Bi�1.
We refer to such times t as critical events. Since the
endpoints of segments in S are moving continuously, a
segment may leave or enter a cell �v of Bi�1 only in one
of the following three ways: (1) an endpoint of si passes
through the left or right edge of �v , (2) an endpoint
of si passes through the top or bottom edge of �v, or

(3) the interior of si passes through a vertex of �v. We
will refer to these critical events as vertex, intersection,
and edge events, respectively. We will call a segment
rotating through a vertical line a
ip event.
Following [1], we say that a node w of B is transient

if the parent of w is associated with a point cut and �w

contains no vertices or intersection points, so the subtree
rooted at w contains only edge cuts. To detect critical
events, we maintain three types of certi�cates, which
guarantee the combinatorial structure of our BSP: (1)
a certi�cate for each transient node v, which becomes
invalid when the cell �v collapses, (2) a certi�cate for
each segment endpoint pi, which becomes invalid when
the next segment above or below pi changes, and (3) a
certi�cate for each segment si, which becomes invalid
when si
ips. We easily observe that the combinatorial
structure of our BSP does not change as long as these
certi�cates remain valid, and that at least one certi�cate
becomes invalid at each critical event. We assume that
the expiration time of each certi�cate can be computed
in constant time.
The following lemma is easy to prove.

Lemma 3.1. The combinatorial structure B(S)
changes only at critical events. There are O(n + k)
valid certi�cates at any time, and only O(1) certi�cates
can change at any critical event. Changing the
ight

plan of a segment si changes O(ki + 1) certi�cates,

where ki is the number of segments that intersect si.

We maintain a priority queue of critical events, or-
dered chronologically. At each critical event t, we must
transform B(t�) into B(t+), update the certi�cates, and
update the event queue. In the rest of the subsection
we describe how we handle each of the critical events.
Due to lack of space, we defer most of the details to the
full paper.

3.1.1 Vertex Events

A vertex event occurs when an endpoint pi of a segment
si passes through the left or right side of the trapezoid
�v for some leaf v of Bi�1. Figure 2 illustrates four
types of vertex events; all other cases can be obtained by
horizontal or vertical re
ection, time reversal, or both.
In each case, pi is the right endpoint of si, and pi is
moving to the right through a point cut de�ned by a
point above pi.
Three of the four cases already occur when the seg-

ments are disjoint, and were described and analyzed
by Agarwal et al. [1]. The only new case occurs when
pi passes directly under the intersection point sj \ sj0 ,
where sj is the top edge of the cell containing pi at time
t
�, and sj0 is the top edge of cell containing pi at time
t
+. This is the �rst case in Figure 2. However, this can
also be handled using the same algorithm. Omitting
further details, we conclude:

Figure 2. Four types of vertex events. Shaded cells are transient.

Lemma 3.2. The expected cost of a vertex event is

O(log n). If m the segments are moving along pseudo-

algebraic paths and the other n�m remain stationary,

there are O(mn
2) vertex events.

3.1.2 Edge Events

An edge event occurs whenever a segment si passes
through a corner of a trapezoid �v for some leaf v of
Bi�1. There are essentially �ve distinct types of edge
events, illustrated in Figure 3(a). All other cases can be
obtained from these by horizontal or vertical re
ection,
time reversal, or both. Due to lack of space we only
describe the �rst illustrated case: a segment si passes
over the endpoint of sj , for some j < i. The other cases
are either easier or can be handled in a similar manner.

Suppose si passes over the left endpoint of sj at time
t, for some j < i, and si intersects sj at time t

+. We
now have to add intersection cuts at two leaves Bi�1;
see Figure 3(a). Let v be one of these leaves. Suppose v
is the left child of its parent u in B(t�). We create a new
node w, associated with the new intersection cut, make
v the right child of w, and make w the new left child of u.
We also create a new node vL and make it the left child
of w. See Figure 3(b). We create a new subtree, rooted
at vL, which contains the edge cuts that intersect the
left edge of �v, using the following recursive algorithm.
Here left(v) and right(v) are the left and right children
of v, and cut(v) is the cut associated with v.

LeftShave(v) :

Create a new node vL
if cut(v) is an edge cut

cut(vL) cut(v)

left(vL) LeftShave(left(v))

right(vL) LeftShave(right(v))

else if cut(v) is a point cut

vL LeftShave(left(v))

return vL

The edge cuts in the new subtree are induced by ex-
actly the edges that intersect the new intersection cut.
By Lemma 2.1, the expected number of edges is a con-
stant. Lemma 2.2 implies that the path from v to any

leaf has O(logn) edges with high probability. It fol-
lows that the expected time to create the new subtree
is O(logn).

We may also have to insert a new edge cut into vL,
by creating a new node with a leaf as its right child and
vL as its left child. We conclude:

Lemma 3.3. The expected cost of an edge event is

O(logn).

If m of the segments are moving along pseudo-
algebraic paths, there are clearly at most O(mn

3) edge
events, since each such event involves at most four seg-
ments, of which at least one must be moving. We can
construct a sequence S of n segments, m of which are
translating along horizontal paths, such that B(S) must
change
(mn

3) times. However, the expected number
of edge events for any set of segments is signi�cantly
smaller.

Lemma 3.4. If m segments in S move along pseudo-

algebraic trajectories, and the remainingm�n segments

remain stationary, the expected number of edge events

is O(mn�s+2(n)) for some positive integer s.

Proof (sketch): There are four di�erent types of com-
binatorial changes that can cause an edge event: two in-
tersection points switching their x-coordinate order, an
endpoint and an intersection point switching their x-
coordinate order, a segment passing over an endpoint,
or a segment passing over an intersection point. The
second, third, and fourth types of changes can occur
only O(mn

2) times, regardless of the insertion order of
the segments. It therefore su�ces to bound the edge
events involving two intersection points.

Fix two segments si; sj 2 S, and let lij(t) denote the
vertical line through their intersection point at time t,
or the empty set if si and sj do not intersect at time
t. Let �ij(t) be the y-coordinates of the intersection of
lij(t) and S(t). (If si and sj do not intersect at time
t, then �ij(t) is empty.) If we plot �ij(t) as a func-
tion of t, the result is a collection of monotone Jordan
arcs in the (y; t)-plane. Call this collection of Jordan
arcs �ij . Because the segments are moving pseudo-
algebraically, each segment sk 2 S n fsi; sjg contributes
a constant number of arcs to �ij , which we will label �k.
Each intersection point �k \�l corresponds to a time at
which the two intersection points si \ sj and sk \ sl

have the same x-coordinate, and thus each double in-
tersection event in which one of the intersection points
is si \ sj corresponds to an intersection point �k \ �l.
However, not every intersection point of �ij corresponds
to an event. The expected number of intersection points
that correspond to an event is only O(�s+2(n)), where
the constant s is the maximum number of times that
two arcs in �ij intersect, and �s+2(n) is the maximum

(a)

L
v

v

v

w

v

w

L

v

L

L

v

vv v v

(b)

Figure 3. (a) Five types of edge events. (b) Shaving the left side of a node. Lightly shaded cells are transient; darker cells are leaves.

(a)

v
L

v
R

M

v

M
v

R
v

L
v

v

w

x

y

v

(b)

Figure 4. (a) An intersection event. (b) Splitting a node. Lightly

shaded cells are transient; darker cells are leaves.

length of an (n; s+2) Davenport-Schinzel sequence [22],
a (very) slightly superlinear function of n. Summing
over all pairs i; j, the total number of events is only
O(n2�s+2(n)).

We obtain an improved bound by further classify-
ing the events according to which of the segments
si; sj ; sk; sl are stationary and which are moving. We
omit further details from this extended abstract. �

3.1.3 Intersection Events

An intersection event occurs when an endpoint of si
passes through sj , for some j < i. Up to re
ections
and time reversal, there is only one type of intersection
event, illustrated in Figure 4(a): the right endpoint pi
of si passes upwards through sj , creating a new inter-
section cut. The event a�ects two leaves of Bi�1, one
above and one below sj .

Updating the lower node is trivial; we only have to
change the vertex cut to an intersection cut. To update
the upper node v, we �rst split the subtree rooted at
v into three subtrees vL; vM ; vR containing the cuts to
the left, between, and to the right of the new point cuts,
respectively, using an algorithm similar to the one we
used for edge events. To complete the update, we then
perform some pointer manipulation, which is illustrated
in Figure 4(b). We omit further details.

Lemma 3.5. The expected cost of an intersection

event is O(logn). If m of the segments move along

pseudo-algebraic paths and the other n�m remain sta-

tionary, there are O(mn) intersection events.

3.1.4 Flip Events

If the segment si
ips over, we must update the subtrees
rooted at every leaf v of Bi�1 whose cell intersects si.
Fortunately, each of these subtrees can be updated using
the same algorithm. The various cases (up to re
ection)
are illustrated in Figure 5(a). Let x be the grandchild
of v whose cell lies between the two point cuts and is
associated with the edge cut through si. Note that the
subtree rooted at x contains only edge cuts and intersec-
tion cuts through si. The y-coordinate order of the edge
cuts in this subtree remains unchanged by the
ip event,
but the x-coordinate order of the intersection cuts is ex-
actly reversed. Thus, in addition to the usual constant
amount of pointer manipulation, shown in Figure 5(b),
we also traverse the subtree rooted at x, swapping the
children of every descendant associated with an inter-
section cut. If we are careful to avoid descendants of
x whose cells do not intersect si, the number of edges
we traverse to
ip the subtree is a constant times the
number of edges sj that intersect si, with j > i. Alto-
gether, we modify a constant number of nodes for every
segment that intersects si.

Lemma 3.6. The expected cost of a
ip event is

O(ki logn), where ki is the number of segments in S

that intersect the
ipping segment. If m of the seg-

ments move along pseudo-algebraic paths and the other

n�m remain stationary, there are O(m)
ip events, and

the total time spent handling them is O(k0 logn), where
k
0 is the number of pairs of segments that ever intersect.

Unlike every other kind of event, which we can han-
dle in O(log n) time, the worst-case cost of a
ip event
is O(n logn). However, by storing some extra infor-
mation with the BSP, we can reduce the cost of a
ip
event to O(log n). We construct the augmented BSPeB(S) as follows. If a segment si induces two point cuts

(a)

x

yw

w

y

v

y

yw

w

v

x

(b)

Figure 5. (a) Possible e�ects of a
ip event. (b) How to
ip a

node. Shaded cells contain no segment endpoints.

inside a leaf of Bi�1, instead of inserting two binary
nodes, we insert a ternary node whose three children
correspond to the cells to the left, between, and to the
right of the cuts. This lets us avoid the local pointer
manipulation. To avoid swapping the children of inter-
section cuts, we mark one endpoint of si, and let the
sense of an intersection cut de�ned by si \ sj , where
i < j, depend on whether the marked endpoint is fur-
ther to the right or to the left. If the marked endpoint is
to the left, then intersection cuts are handled normally:
the left child of an intersection cut corresponds to the
points geometrically to the left of the cut. If the marked
endpoint is to the right, then intersection cuts are inter-
preted \backwards": the left child of an intersection cut
corresponds to the points geometrically to the right of
the cut. We now easily observe that
ip events do not
change eB at all. Moreover, with only minor changes to
the algorithm, we can use eB in any application of true
binary space partition trees, since it implicitly encodes
the structure of B. Each vertex, intersection or edge
event can create or destroy at most one ternary node,
but this has minimal e�ect on our analysis; Lemmas
3.2{3.5 still apply.

Putting everything together, we obtain the following
main result.

Theorem 3.7. If m segments in a set S of n segments

move along pseudo-algebraic trajectories, and the re-

maining n � m segments remain stationary, the to-

tal expected time spent maintaining B(S) (or eB(S)) is

O(mn�s+2(n) logn) for some positive integer s.

3.2 Disjoint Triangles in Space

We now brie
y describe how to extend the algorithm
for segments to maintain the BSP B = B(S) of a set S
of n disjoint triangles in IR3.

The combinatorial structure of B changes when a tri-
angle rotates through a vertical plane, an edge of a tri-
angle rotates through a line parallel to the yz-plane, a
triangle si enters a cell �v of Bi�1, or a triangle si leaves
a cell �v of Bi�1. Since we assume the triangles in S

to be always disjoint, a triangle si can leave or enter
a cell of Bi�1 only in one of two ways: a vertex of si
passes through a vertical face of �v or an edge of si
passes through a vertical edge of �v . The former cor-
responds to vertex and intersection events of segments
in the plane, and the latter corresponds to edge events.
An edge of si rotating through a line parallel to the yz-
plane is the same as the
ip event (Section 3.1.4). The
only new event is a triangle rotating through a vertical
plane, which we will refer to as a
op event. In this
case we update the subtrees rooted at every leaf of Bi�1
whose cell intersects si. It can be shown that the ex-
pected number of cells to be updated is O(n�(n) log n)
and that each can be updated in O(1) time; here �(n)
is the inverse Ackermann function.

Each vertex, intersection, and edge event can be han-
dled in O(log2 n) expected time, each edge
ip event
in O(n log n) expected time, and each face
op event
in O(n�(n) logn) expected time. We can augment the
three dimensional BSP so that edge
ip events only re-
quire O(logn) time, and face
op events cost nothing.
Hence, we obtain the following result.

Theorem 3.8. If m triangles in a set S of n trian-

gles move along pseudo-algebraic trajectories, and the

remaining n � m segments remain stationary, the to-

tal expected time spent maintaining B(S) (or eB(S)) is

O(mn�s+2(n) log
2
n) for some positive integer s.

4 Open Problems

Our static algorithm for triangles in IR3 is optimal in the
worst case, since there are sets of triangles for which ev-
ery BSP has size
(n2). However, like earlier algorithms
[1, 19, 23], there are inputs for which our algorithm will
build a BSP of quadratic size, even when a linear-size
BSP is possible. How quickly can one construct binary
space partitions whose size is optimal, or within a con-
stant factor of optimal? No polynomial-time algorithm
is currently known, even for disjoint line segments in the
plane.

Our kinetic algorithms are responsive; that is, each
critical event causes changes the BSP only locally, and
we can update the tree in only polylogarithmic time.
However, the number of events may be larger than nec-
essary. For example, a di�erent BSP tree might pro-
cess fewer events for the same motions. Could a pri-

ori knowledge of the motions be exploited in this way?
Conversely, can we prove lower bounds on the number
of combinatorial changes that any kinetic BSP must un-
dergo in the worst case, or their total cost, under some
speci�c class of motions?

The analysis of our kinetic algorithms assumes that
the motion of the objects is completely independent of
the random permutation used to construct the original
static BSP. This assumption may not be totally realistic.
Flight paths can be speci�ed interactively by user input.
By observing the response time of the algorithm, a ma-
licious user could learn which motions cause signi�cant
delays, and invalidate our independence assumption by
performing only those motions. However, the algorithm
could then respond by evolving the BSP according to a
random walk in the space all permutations de�ning the
BSP. An interchange of the positions of two adjacent
segments along such a permutation can be re
ected in
the BSP quickly, and a sequence of such interchanges is
known to be rapidly mixing. Exactly how to schedule
and analyze such random interchanges and how to ar-
gue that one can defeat a malicious user this way remain
interesting open problems.

Acknowledgments. The authors would like to thank
Jo~ao Comba and T. M. Murali for useful discussions.

References

[1] P. K. Agarwal, L. J. Guibas, T. M. Murali, and J. S.

Vitter. Cylindrical static and kinetic binary space parti-

tions. Proc. 13th Annu. ACM Sympos. Comput. Geom.,

pp. 39{48, 1997.

[2] J. M. Airey. Increasing Update Rates in the Building

Walkthrough System with Automatic Model-space Sub-

division and Potentially Visible Set Calculations. Ph.D.

thesis, Dept. of Computer Science, University of North

Carolina, Chapel Hill, 1990.

[3] M. J. Atallah. Some dynamic computational geometry

problems. Comput. Math. Appl. 11:1171{1181, 1985.

[4] C. Ballieux. Motion planning using binary space par-

titions. Tech. Rep. Inf/src/93-25, Utrecht University,

1993.

[5] J. Basch, L. Guibas, and J. Hershberger. Data struc-

tures for mobile data. Proc. 8th ACM-SIAM Sympos.

Discrete Algorithms, pp. 747{756, 1997.

[6] T. Cassen, K. R. Subramanian, and Z. Michalewicz.

Near-optimal construction of partitioning trees by evo-

lutionary techniques. Proc. Graphics Interface '95, pp.

263{271, 1995.

[7] N. Chin and S. Feiner. Near real-time shadow genera-

tion using BSP trees. Comput. Graph. 23:99{106, 1989.

Proc. SIGGRAPH '89.

[8] N. Chin and S. Feiner. Fast object-precision shadow

generation for areal light sources using BSP trees. Com-

put. Graph. 25:21{30, Mar. 1992. Proc. 1992 Sympos.

Interactive 3D Graphics.

[9] Y. Chrysanthou. Shadow Computation for 3D Inter-

action and Animation. Ph.D. thesis, Queen Mary and

West�eld College, University of London, 1996.

[10] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes, and

Phillips. Introduction to Computer Graphics. Addison-

Wesley, Reading, MA, 1993.

[11] H. Fuchs, Z. M. Kedem, and B. Naylor. On visible

surface generation by a priori tree structures. Comput.

Graph. 14:124{133, 1980. Proc. SIGGRAPH '80.

[12] S. Kahan. A model for data in motion. Proc. 23th Annu.

ACM Sympos. Theory Comput., pp. 267{277, 1991.

[13] R. Motwani and P. Raghavan. Randomized Algorithms.

Cambridge University Press, New York, NY, 1995.

[14] T. M. Murali and T. A. Funkhouser. Consistent solid

and boundary representations from arbitrary polygo-

nal data. Proc. 1997 Sympos. Interactive 3D Graphics,

1997.

[15] B. Naylor, J. A. Amanatides, andW. Thibault. Merging

BSP trees yields polyhedral set operations. Comput.

Graph. 24:115{124, Aug. 1990. Proc. SIGGRAPH '90.

[16] B. Naylor and W. Thibault. Application of BSP trees

to ray-tracing and CSG evaluation. Technical Report

GIT-ICS 86/03, Georgia Institute of Tech., School of

Information and Computer Science, Feb. 1986.

[17] B. F. Naylor. Interactive solid geometry via partitioning

trees. Proc. Graphics Interface '92, pp. 11{18, 1992.

[18] T. Ottmann and D. Wood. Dynamical sets of points.

Comput. Vision Graph. Image Process. 27:157{166,

1984.

[19] M. S. Paterson and F. F. Yao. E�cient binary space

partitions for hidden-surface removal and solid model-

ing. Discrete Comput. Geom. 5:485{503, 1990.

[20] M. S. Paterson and F. F. Yao. Optimal binary space

partitions for orthogonal objects. J. Algorithms 13:99{

113, 1992.

[21] R. A. Schumacker, R. Brand, M. Gilliland, and

W. Sharp. Study for applying computer-generated im-

ages to visual simulation. Tech. Rep. AFHRL{TR{69{

14, U.S. Air Force Human Resources Laboratory, 1969.

[22] M. Sharir and P. K. Agarwal. Davenport-Schinzel Se-

quences and Their Geometric Applications. Cambridge

University Press, New York, 1995.

[23] S. J. Teller. Visibility Computations in Densely Oc-

cluded Polyhedral Environments. Ph.D. thesis, Dept. of

Computer Science, University of California, Berkeley,

1992.

[24] W. C. Thibault and B. F. Naylor. Set operations on

polyhedra using binary space partitioning trees. Com-

put. Graph. 21:153{162, 1987. Proc. SIGGRAPH '87.

[25] E. Torres. Optimization of the binary space partition al-

gorithm (BSP) for the visualization of dynamic scenes.

Eurographics '90, pp. 507{518, 1990.

