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Abstract

Lower Bounds for Fundamental Geometric Problems

by

Je�rey Gordon Erickson

Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Raimund Seidel, Chair

We develop lower bounds on the number of primitive operations required to solve

several fundamental problems in computational geometry. For example, given a set of

points in the plane, are any three colinear? Given a set of points and lines, does any point

lie on a line? These and similar questions arise as subproblems or special cases of a large

number of more complicated geometric problems, including point location, range searching,

motion planning, collision detection, ray shooting, and hidden surface removal.

Previously these problems were studied only in general models of computation, but

known techniques for these models are too weak to prove useful results. Our approach is to

consider, for each problem, a more specialized model of computation that is still rich enough

to describe all known algorithms for that problem. Thus, our results formally demonstrate

inherent limitations of current algorithmic techniques. Our lower bounds dramatically

improve previously known results and in most cases match known upper bounds, at least

up to polylogarithmic factors.

In the �rst part of the thesis, we develop lower bounds for several degeneracy-

detection problems, using adversary arguments. For example, we show that detecting

colinear triples of points requires 
(n2) sidedness queries in the worst case. Our lower

bound follows from the construction of a set of points in general position with several

\collapsible" triangles, any one of which can be made degenerate without changing the

orientation of any other triangle. Using similar techniques, we prove lower bounds for

deciding, given a set of points in IRd, whether any d+1 points lie on a hyperplane, whether

any d+ 2 points lie on a sphere, or whether the convex hull of the point is simplicial.
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In the second part, we consider o�ine range searching problems, which are usu-

ally solved using geometric divide-and-conquer techniques. To study these problems, we

introduce the class of partitioning algorithms. We prove that any partitioning algorithm

requires 
(n4=3) time to detect point-line incidences in the worst case. Using similar tech-

niques, we prove an 
(n4=3) lower bound for deciding if a set of points lies entirely above

a set of hyperplanes in dimensions �ve and higher.

Professor Raimund Seidel
Dissertation Committee Chair
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To Nancy, who asked, \Then what?".

It was a large room. Full of people. All kinds.
And they had all arrived at the same building at more or less the same time.
And they were all free.
And they were all asking themselves the same question:

What is behind that curtain?

| Laurie Anderson, \Born, Never Asked", Big Science, 1982
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Chapter 1

Introduction

The overwhelming majority of research in computational geometry is devoted to

the design and analysis of algorithms and data structures, in an e�ort to �nd the fastest

possible solutions to geometric problems. This thesis, however, is concerned with lower

bounds on the complexity of these problems. Here, the goal is to describe inherent limits

on the ability of a model of computation to solve a geometric problem, or in other words,

to de�ne the phrase \fastest possible solution".

This thesis describes new lower bounds on the complexity of several fundamental

decision problems that arise in computational geometry. For example: Given a set of points

in the plane, are any three colinear? Given a set of points and lines in the plane, does any

point lie on any line? These and similar questions arise as subproblems or special cases of

a large number of more complicated geometric problems, including point location, range

searching, motion planning, collision detection, ray shooting, visibility, and hidden surface

removal [86, 75].

In the last several years, computational geometers have developed powerful tech-

niques for solving these problems e�ciently, at least in theory, and there is a common belief

that the best known algorithms for these problems are optimal or very close to optimal.

Unfortunately, there are still large gaps between the running times of these algorithms

and the best known lower bounds. Currently available methods for deriving lower bounds

in general models of computation (algebraic decision trees, for example) are simply not

powerful enough to give very good results.

The approach taken in this thesis, therefore, is to develop new lower bounds in

models of computation that are more specialized to each problem. For each problem, the
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model we consider is powerful enough to describe all known algorithms for solving it. Thus,

the lower bounds we develop formally demonstrate the limitations of solving the problem

using currently available techniques.

Results in this area are important for two reasons. A good lower bound for a prob-

lem, in a su�ciently general model of computation, indicates that an e�cient solution to the

problem is essentially impossible. In such a situation, research is more pro�tably aimed at

deriving approximate solutions, deriving algorithms that are e�cient (or correct) only with

high probability (either with respect to some input distribution or internal randomization),

or considering useful special cases.

Lower bounds in specialized models of computation are also useful, provided those

models accurately describe all known algorithms. Such results direct algorithms researchers

to consider fundamentally new techniques for solving geometric problems, in an e�ort to

avoid the limitations of current approaches. Moreover, by describing exactly why current

approaches fail, these results ease the discovery of new approaches.

1.1 Old Results

Before describing our speci�c new results, we begin with a whirlwind tour of

previously known lower bounds in computational geometry. Along the way, we will point

out inherent limitations of the techniques used to derive these bounds.

In order to say anything meaningful about algorithmic complexity, we must �rst

agree on what an algorithm is. All lower bounds are expressed in terms of a model of

computation , a set of assumptions about the operations algorithms are allowed to perform

and the how much \time" each of these operations costs. (Actually, all upper bounds are

expressed in terms of a model of computation, too, but the model is rarely described explic-

itly.) For purposes of proving lower bounds, we almost always ignore all but a few simple

operations such as branches, input/output, assignments, pointer traversals, or arithmetic,

and then restrict further which of these operations we allow.

1.1.1 Output Size

For many geometric problems, the only available way to prove tight lower bounds

is by bounding the combinatorial complexity of the output. For example, any algorithm
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that constructs an arrangement of n hyperplanes in IRd must take time 
(nd)1 in the worst

case, because the arrangement can have that many cells [62]. Similarly, any algorithm that

constructs the convex hull of a set of n points in IRd must take time 
(nbd=2c) in the worst

case, because there are polytopes with that many facets [87].

This approach is clearly worthless if the output size is always small, or if we want

to prove output-sensitive lower bounds of the form �(f(n) + r), where r is the output size.

For almost all the problems we consider in this thesis, the output size is a single bit.

1.1.2 Decision Trees

Decision trees are one of the simplest and most widely studied models of compu-

tation. A k-ary decision tree is a rooted directed tree in which every internal node has

k children. If the degree k is unspeci�ed, we take it to be a small constant; in practice k

is almost always either 2 or 3. Associated with each internal node is a question about the

input, or query , with k possible answers. Each answer is associated with a unique outgoing

edge. Each leaf is labeled with an output value. To compute with such a tree, we start at

the root and proceed down to a leaf. At each internal node, the answer to its associated

query tells us which child to go to next. The running time of the algorithm is the number

of queries asked, which in the worst case is the depth of the tree. Memory management,

data movement, arithmetic, and other aspects of real-world algorithms are simply ignored.

Typically, a decision tree is designed only to deal with inputs of a particular size. Thus, an

algorithm in this model is represented by a family of decision trees, one for each possible

input size.

One of the easiest techniques for proving lower bounds on the depth of decision

trees is based on information theory : if a problem has N possible outputs, then any

decision tree that solves it must have at least N leaves, and thus its depth must be at least

dlogkNe. For example, �nding an unknown integer between 1 and 1 000 000 using only

yes-no questions requires at least dlog2 1 000 000e = 20 questions. Since n items can be

ordered in n! di�erent ways, any k-ary decision tree that sorts a list of n items must have

depth dlogk(n!)e = 
(n logn).

There are many problems for which the information-theoretic bound is far too

weak to be useful. For example, consider the simple problem of choosing the largest of n

1We assume the reader is familiar with the standard asymptotic notations o(�);O(�);�(�);
(�), and !(�).
Otherwise, see [52, 103].
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input items. Any reasonable algorithm obviously requires linear time2, but since there are

only n possible outputs, the information-theoretic lower bound is only 
(logn). In fact, a

matching O(logn) upper bound can be obtained by a decision tree that uses queries like

\Is the largest item in the �rst half of the list?"

If we restrict the questions the algorithm can ask, we can often improve the

information-theoretic lower bound by using an adversary argument. The argument works

as follows. Instead of choosing a single input in advance and letting the algorithm ask

questions about it, an all-powerful malicious adversary pretends to choose an input, and

answers questions in whatever way will make the algorithm do the most work. If the algo-

rithm doesn't ask enough queries, then there will be several di�erent inputs, each consistent

with the adversary's answers, that should result in di�erent outputs. Whatever the algo-

rithm outputs, the adversary can \reveal" an input that is consistent with all of its answers,

but inconsistent with the algorithm's output. The adversary approach hinges critically on

the fact that a decision tree only has access to its input through its queries; the algorithm

cannot distinguish the adversary from an honest user that chooses an input in advance.

Adversary algorithms have proven particularly useful in proving lower bounds on

the depth of comparison trees. In a comparison tree, the input is a set of items from some

totally ordered domain (typically ZZ or IR), and every query is a comparison between two

input values. The following simple adversary argument implies that any comparison tree

that chooses the largest of n input values x1; x2; : : : ; xn must have depth at least n - 1.

The adversary initially presents an arbitrary list of distinct values, say xi = i for all i. If an

algorithm declares that xn is the largest input value after fewer thann-1 comparisons, there

must be at least one other input value xi 6= xn that is bigger than anything the algorithm

compared it to. The adversary can change the value of xi to n + 1, and then \reveal"

its modi�ed input, proving the algorithm wrong. Since the algorithm cannot distinguish

between the original input and the modi�ed input, it cannot possibly give the correct result

for both.

Adversary arguments have also been used to prove lower bounds on the number

of comparisons required to choose the largest and smallest elements in a list, the second-

largest element [102, 104] (see also [60]), the median element [21, 122], or the kth largest

element for arbitrary values of k [122, 99]. The minimum number of comparisons required

2unless we allow a small probability of error [148]
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to solve the last two problems is still not known; the simplest open case is k = 3. Several

more references can be found in [17].

We can generalize comparison trees by allowing more complicated query expres-

sions. A dth order algebraic decision tree [125, 126, 138] is a ternary decision tree whose

input is a vector (x1; x2; : : : ; xn) of real numbers, and each of whose queries asks for the sign

of a multivariate query polynomial f(x1; x2; : : : ; xd) of degree at most d. For example, in a

comparison tree, every query is of the form xi - xj. Typically, the parameter d is omitted,

and assumed to be a �xed constant. An important special case of algebraic decision trees

are linear decision trees, in which every query polynomial is linear (i.e., d = 1) [58, 117].

The element uniqueness problem asks, given a list of n numbers, whether any

two are equal. It seems \obvious" that any algorithm that solves this problem must sort the

input values3 , and so the decision tree complexity \ought" to be
(n logn). Unfortunately,

since there are only two possible outputs, YES and NO, the information-theoretic bound is

trivial. A simple adversary argument establishes a lower bound of n- 1 in the comparison

tree model, but that is hardly satisfactory.

Dobkin and Lipton [58] proved a lower bound of
(n logn) for the element unique-

ness problem in the linear decision tree model, and therefore also in the comparison tree

model, as follows. Fix a linear decision tree, and for each leaf `, let X` be the set of input

vectors for which computation reaches `. X` is the intersection of several hyperplanes and

linear halfspaces, and is therefore a convex polytope; in particular, X` is connected. Let

W � IRn be the set of input vectors whose elements are distinct. In order for the decision

tree to be correct, W must equal the union of X` over all leaves ` whose output label is

YES. Clearly W has n! disjoint connected components. It follows that any linear decision

tree that solves the element uniqueness problem must have at least n! YES leaves. Other-

wise, there must be some leaf ` such that X` intersects more than one component of W and

therefore intersects the complement of W, a contradiction. Any ternary tree with n! leaves

has depth at least dlog3(n!)e = 
(n logn). More generally, any linear decision tree that

solves the set membership problem for a set W with #W connected components must

have depth at least dlog3(#W)e.
Following ideas of Yao [154], this argument was later generalized to higher-order

3Like many \obvious" statements, this is actually false! The discriminant
Q

i<j(xi - xj) can be directly

computed using O(n log n) multiplications (and O(n log2 n) additions) without sorting the inputs [15, 141].

The input elements xi are distinct if and only if this expression is not equal to zero, but the expression gives
us (almost) no information about the sorted order of the inputs.
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algebraic decision trees by Steele and Yao [138] and Ben-Or [16]. The generalization hinges

on the following theorem of algebraic geometry independently proven by Petrovski�� and

Ole��nik [120, 121], Thom [147], and Milnor [115]. (See also [13, 14, 152].) A semialgebraic

set is the set of points satisfying a �nite number of polynomial equations and inequalities.

Theorem 1.1 (Petrovski��/Ole��nik/Thom/Milnor). Let V be a semialgebraic set in

IRn, de�ned by t polynomial inequalities of maximum degree d. The sum of the Betti

numbers of V is (td)O(n); in particular, V has (td)O(n) connected components.

This theorem implies that, if t is the depth of a dth order algebraic decision

tree that solves the set membership problem for W, then W has at most 3t(td)O(n) con-

nected components. It follows immediately that the depth must be 
(log#W - n logd);

in particular, the complexity of the element uniqueness problem is 
(n logn). Ben-Or [16]

strengthened the argument further, deriving a similar lower bound in the stronger algebraic

computation tree model.

More recent techniques imply lower bounds based on di�erent complexity measures

of the setW, such as its higher order Betti numbers [158], its Euler characteristic [19, 159], or

the number of its lower-dimensional faces [118, 157, 94]. Lower bounds can also be derived

by considering the complexity of the complement of W, the interior of W, the closure

of W, or the intersection of W with another semi-algebraic subset of IRn. For further

generalizations, see [156, 93]. All of these techniques are essentially information-theoretic;

in every case, the implied lower bound is the logarithm of the complexity of W.

A large class of geometric problems can be formalized as asking whether a point

lies in a (semi-)algebraic set W de�ned by a polynomial number of constant-degree polyno-

mial (in-)equalities. Fortunately, this is precisely the framework in which these lower bound

arguments apply. As a consequence, it is quite easy to derive 
(n logn) lower bounds for

many of these problems. Unfortunately, this is the best we can do. The Petrovski��/Ole��nik/

Thom/Milnor theorem and its generalizations [13, 14, 152] imply that the complexity ofW,

in any reasonable sense of the word \complexity", is at most nO(n). Thus, for these prob-

lems, no known lower bound technique can imply lower bounds bigger than 
(n logn)

in the algebraic decision tree model. An !(n logn) lower bound for any natural prob-

lem solvable in polynomial time would be a major breakthrough. Quadratic lower bounds

are known for a few NP-complete problems [59, 16, 93], but again, this is the best lower
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bound we can prove, since for these problems the number of de�ning inequalities is only

singly-exponential.

1.1.3 Semigroup Arithmetic

The semigroup arithmetic model was introduced by Fredman [82, 81] and re�ned

by Yao [155] and Chazelle [34] to study the complexity of range searching data structures.

In this model, each point in the input is given a value from an abelian semigroup satisfying

a mild technical condition4. These points are preprocessed into a data structure, so that the

sum of the weights of the points contained in an arbitrary query range can be computed

quickly. The data structure consists of a collection of partial sums, called generators,

which are added together to produce the answer to each range query. The size of the data

structure is the total number of generators. The time required to answer a range query is the

minimum number of generators whose sum is the correct answer. The only computational

activity considered in this model is the addition of semigroup values; branches, pointer

traversals, memory allocation, and other aspects of real-world range searching algorithms

are ignored.

Algorithms in the semigroup model can exploit special properties of the semigroup,

but they are not allowed to exploit the particular weights on the points; the same algorithm

must work for any assignment of weights to the points. In e�ect, answers must be computed

symbolically. Subtraction of semigroup values is also disallowed, even if the semigroup is

actually a group, as is frequently the case.

The semigroup model was originally introduced by Fredman [81, 82], who derived

lower bounds for dynamic orthogonal and halfplane range searching data structures, which

must support the insertion and deletion of points as well as range queries. The model was

�rst applied to static range searching problems by Yao [155], who proved lower bounds for

orthogonal range searching in two dimensions. Vaidya [150] proved lower bounds for or-

thogonal range searching in higher dimensions, which were later improved by Chazelle [34].

Chazelle also derived lower bounds for simplex range searching [33], and with Br�onnimann

and Pach, halfspace range searching [23]. All of these online lower bounds give tradeo�s

between the space required by the data structure and the resulting query time. The model

4Speci�cally, the semigroup must be faithful : any two identically equal linear forms must involve exactly

the same set of variables, although not necessarily with the same coe�cients. For example, (ZZ;+), (f0; 1g;_),
(IR;max), and (2P;[) (for any nonempty set P) are faithful semigroups, but (f0g;+) and ZZ=2ZZ are not [155].
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was later generalized to deal with o�ine problems, where the ranges are all known in ad-

vance. Chazelle and Rosenberg [42, 41] derived lower bounds for computing partial sums

in multi-dimensional arrays (a special case of orthogonal range searching where the points

lie on a lattice), and Chazelle [38] proved lower bounds for both orthogonal and simplex

range searching. With the exception of halfspace range searching [23], all of these lower

bounds are optimal, up to polylogarithmic or n" factors, in the semigroup model. For

further details, we refer the reader to an excellent survey by Matou�sek [112].

Every set of points and set of ranges de�nes a bipartite incidence graph, where

the presence of an edge denotes that a point lies in a range. A key step in the proofs of

many semigroup lower bounds is the construction of a set of points and ranges, such that

(some subgraph of) the incidence graph has several edges but no large complete bipartite

subgraphs. For example, Fredman's lower bounds for dynamic halfplane range searching

[82] rely on a construction of Erd}os of n points and n lines in the plane with 
(n4=3)

point-line incidences; since any pair of lines intersects in at most one point, the incidence

graph for this point-line con�guration has no K2;2. We will use a similar technique in the

second part of this thesis.

Unfortunately, the semigroup arithmetic model is inappropriate for studying the

complexity of range emptiness problems, where we just want to know whether any points

lie inside a given query range. If the range is empty, then the algorithm will perform no

additions; conversely, if we perform even a single addition, the range must not be empty.

The problem is that algorithms in this model are not allowed to \know" the weights assigned

to the points. All of the previous lower bounds hold when weights are taken from the faithful

semigroup (f0; 1g;_), but not under the assumption that every point is given weight 1. This

may be somewhat counterintuitive, since we can \obviously" remove the points with weight

zero before doing anything else. However, in many range searching applications, weights

are often not assigned in advance, but are determined implicitly by some other criterion,

for example, presence in or absence from some other query range.

Very little is known about the complexity of range searching in the group arith-

metic model, where subtractions are also allowed. Willard [153] considers dynamic or-

thogonal range searching data structures and shows that under some fairly restrictive as-

sumptions, allowing subtractions cannot make these structures more e�cient. Chazelle

derives nontrivial (but very weak) lower bounds for o�ine halfplane [37] and orthogonal

range counting [38] by examining the spectra of point-range incidence matrices. Absolutely
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nothing is known about range searching over more complicated domains such as rings or

�elds.

A useful special case of range searching is range reporting, where we want to

know which points are in each query range, not just how many. Since the output from a

reporting query can be quite large, we would like bounds of the form �(f(n) + r), where

r is the number of points reported. Techniques similar to those used in the semigroup

model imply lower bounds of this form in Tarjan's pointer machine model [144]. In this

model, a data structure is represented by a directed graph in which every node has constant

outdegree. The graph has a special starting node, or source. Each node in the graph is

either unlabeled or is labeled with the index of exactly one point. A query is answered

by visiting nodes in the graph, starting at the source and traversing edges in arbitrary

order, until the index of every point in the query range has been seen at least once. Query

algorithms are also allowed to modify the data structure by adding new nodes and adding

or deleting edges between previously visited nodes. The query time is the number of nodes

visited; all other aspects of computation are ignored. Chazelle [34] derives lower bounds

for orthogonal range reporting in this model; his techniques were applied to simplex range

reporting by Chazelle and Rosenberg [44]. Again, this model is inappropriate for studying

range emptiness problems, since if a query range is empty, we don't need to do any work

at all.

1.2 New Results

The remainder of this thesis divides naturally into two parts.

In Part I (Chapters 2 through 5), we derive lower bounds for several degeneracy-

detection problems. For each of the problems we consider, the previously best lower bound,

in any model of computation, was only 
(n logn) [138, 16].

In Chapter 2, we show that, in the worst case, 
(nd) sidedness queries are re-

quired to decide, given n points in IRd, whether any d + 1 lie on a common hyperplane.

Since there is an algorithm that solves this problem in time O(nd) [39, 68, 69], our lower

bound is tight. Our lower bound follows from an extremely simple adversary argument,

based on the construction of a set of points in general position with 
(nd) \collapsible"

simplices, any one of which can be made degenerate without changing the result of any

other sidedness query. If the algorithm doesn't do enough work, then the adversary can
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collapse some unchecked simplex, resulting in a degenerate set of points that the algorithm

cannot distinguish from the original nondegenerate set. We also show that our lower bound

still holds if we allow a wide variety of other computational primitives, such as coordinate

comparisons and slope comparisons.

In Chapter 3, using similar techniques, we show that
(ndd=2e-1) sidedness queries

are required to determine is the convex hull of n points in IRd is simplicial, or to count the

number of convex hull facets. This matches known upper bounds when d is odd [36].

In Chapter 4, we show that 
(nd+1) insphere queries are required to decide if

any d + 2 points lie on a common �nite-radius sphere in IRd. In the plane, 
(n3) incircle

queries are required to decide if any four points lie on a common circle or line. These lower

bounds are optimal [68, 69].

In Chapter 5, we prove an 
(ndr=2e) lower bound for the following problem: For

some �xed linear equation in r variables, given a set of n real numbers, do any r of them

satisfy the equation? Our lower bound holds in a restricted linear decision tree model, in

which each decision is based on the sign of an arbitrary linear combination of r or fewer

inputs. In this model of computation, our lower bound is as large as possible. Previously,

this lower bound was known only for even r, and only for one special case [55, 56, 80].

A key step in the lower bound proof is the introduction of formal in�nitesimals into the

adversary con�guration. We use a theorem of Tarski [146] to show that if we can construct

a hard input containing in�nitesimals, then for every decision tree algorithm, there exists

a corresponding set of real numbers which is hard for that particular algorithm.

In Part II (Chapters 6 and 7), we derive lower bounds for problems that are

typically solved by geometric divide-and-conquer techniques.

In Chapter 6, we establish new lower bounds on the complexity of the follow-

ing basic geometric problem, attributed to John Hopcroft: Given a set of n points and

m hyperplanes in IRd, is any point contained in any hyperplane? We de�ne a gen-

eral class of partitioning algorithms, and show that in the worst case, for all m and

n, any such algorithm requires time 
(n logm + n2=3m2=3 + m logn) in two dimensions,

or 
(n logm + n5=6m1=2 + n1=2m5=6 + m logn) in three or more dimensions. We obtain

slightly higher bounds for the counting version of Hopcroft's problem in four or more dimen-

sions. Informally, a partitioning algorithm divides space into a constant number of regions,

determines which points and lines intersect which regions, and recursively solves the re-

sulting subproblems. Our planar lower bound is within a factor of 2O(log
�(n+m)) of the best
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known upper bound [111].5 The previously best lower bound was only
(n logm+m logn)

[138, 16]. We develop our lower bounds in two stages. First we de�ne a combinatorial rep-

resentation of the relative order type of a set of points and hyperplanes, called a monochro-

matic cover, and derive lower bounds on its size in the worst case. We then show that the

running time of any partitioning algorithm is bounded below by the size of some monochro-

matic cover. As a related result, using a straightforward adversary argument, we derive a

quadratic lower bound on the complexity of Hopcroft's problem in a surprisingly powerful

decision tree model of computation.

Finally, in Chapter 7, we derive a lower bound of 
(n logm+n2=3m2=3+m logn)

for the following halfspace emptiness problem: Given a set of n points and m hyperplanes

in IR5, is every point above every hyperplane? This matches the best known upper bound

up to polylogarithmic factors [107, 3, 29], and improves the previously best lower bound


(n logm+m logn) [138, 16]. We also obtain marginally better bounds in higher dimen-

sions. Our lower bound applies to partitioning algorithms in which every query region is a

polyhedron with a constant number of facets.

At the end of each chapter, we outline some relevant open problems and suggest

directions for further research.

Sadly enough, surveying the status of lower bounds in computational geometry
is a fairly easy task.

| Bernard Chazelle, \Computational Geometry: A Retrospective", 1994

5The iterated logarithm log� n is 1 for all n � 2 and 1 + log�(log2 n) for all n > 2.
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Part I

Adversary Lower Bounds

Down with Euclid! Death to the triangles!

| Jean Dieudonn�e, c. 1960

An adversary means opposition and competition,
but not having an adversary means grief and loneliness.

| Zhuangzi (Chuang-tsu), c. 300 BC



13

Chapter 2

A�ne Degeneracies

A fundamental problem in computational geometry is determining whether a given

set of points is in \general position." A simple example of this type of problem is determin-

ing, given a set of points in the plane, whether any three of them are colinear. In 1983, van

Leeuwen [151] asked for an algorithm to solve this problem in time o(n2 logn). Chazelle,

Guibas, and Lee [39] and Edelsbrunner, O'Rourke, and Seidel [68] independently discov-

ered an algorithm that runs in time and space O(n2) by constructing the arrangement of

lines dual to the input points.1 Edelsbrunner et al. [68] also solved the higher-dimensional

version of this problem, which we call the a�ne degeneracy problem Their algorithm,

given n points in IRd, determines whether d + 1 of them lie on the same hyperplane, in

time and space O(nd).2 Edelsbrunner and Guibas [65] later improved the space bound to

O(n) in all dimensions.

A basic primitive used by all of these algorithms is the sidedness query : Given

d + 1 points p0; p1; : : : ; pd, does the point p0 lie \above", on, or \below" the oriented hy-

perplane a�(p1; : : : ; pd)? These are also sometimes called orientation tests, simplex queries,

or (in the plane) triangle queries. The result of a sidedness query is given by the sign of

1We refer readers unfamiliar with projective duality to [140].
2The original analysis of their algorithm was 
awed. A correct proof of the crucial Zone Theorem was

later given by Edelsbrunner, Seidel, and Sharir [69].
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the following determinant. �����������

1 p01 p02 � � � p0d

1 p11 p12 � � � p1d
...

...
...

. . .
...

1 pd1 pd2 � � � pdd

�����������
The value of this determinant is d! times the signed volume of the simplex spanned by

p0; : : : ; pd. The orientation of a simplex (p0; p1; : : : ; pd) is the result of a sidedness query

on its vertices (in the order presented). If the orientation is zero, we say that the simplex

is degenerate.

In the algebraic decision tree and algebraic computation tree models, there is a

somewhat trivial lower bound of
(n logn) on �nding a�ne degeneracies in any dimension,

since it takes 
(n logn) time just to determine whether all the points are distinct [138, 16].

Prior to the results described in this chapter, no better lower bound was known in any

model of computation.

Two sets of labeled points are said to have the same order type if corresponding

simplices have the same orientation. The order type of a set of points can be represented by

the face lattice of its dual hyperplane arrangement or by its lambda-matrix [88], both repre-

sentations requiring space
(nd). One might consider representing order types by canonical

sets of points. Unfortunately, the full �eld of algebraic numbers is required to represent

every planar order type [96], and even among integer order types, point coordinates must

be doubly-exponential in the worst case [90].

The fastest known algorithm for determining the order type of a set of points

constructs its dual hyperplane arrangement in time and space O(nd) [68, 69]. Even though

all known representations of order type require space 
(nd), there is some hope of a

smaller representation, and thus, a faster algorithm, since it is known that there are

only (n=d)�(d
2n) = 2�(n logn) order types [89]. Prior to the results in this chapter, the

information-theoretic lower bound of 
(n logn) was the only lower bound known for this

problem.

In this chapter, we �rst derive a lower bound of 
(nd) on the number of sidedness

queries required to decide if a set of n points in IRd is a�nely degenerate, or to determine the

set's order type. This matches known upper bounds. Our lower bound holds in a decision

tree model of computation in which every decision is based on the result of a sidedness query.
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We are not allowed, for example, to compare the values of di�erent sidedness determinants.

This is not quite as unreasonable a restriction as it may appear at �rst glance; all known

algorithms for determining degeneracy or order type rely (or can be made to rely) exclusively

on sidedness queries [39, 65, 68]. Our lower bound implies that there is no hope of improving

these algorithms unless other primitives are used.

These lower bounds follow from an extremely simple adversary argument. We

describe a nondegenerate set of points that contains 
(nd) independent \collapsible" sim-

plices, any one of which the adversary can make degenerate without changing the orientation

of any other simplex. If an algorithm fails to perform a sidedness query for every collapsible

simplex, the adversary can move the points so that the perturbed set is degenerate, and

the algorithm will be unable to distinguish between the original set and the perturbed set.

The adversary's point set consists of rational points on a particular polynomial curve.

Later in the chapter, we describe a large class of \allowable" primitives, which

do not improve the lower bound even by a single sidedness query, even if we permit our

algorithms to perform an arbitrarily large (but �nite) number of them. Allowable queries

include coordinate comparisons, slope comparisons, comparisons of second-order points

de�ned as vertices of the dual hyperplane arrangements, and so forth. In fact, almost every

bounded-degree multivariate polynomial is an allowable query.

2.1 Lower Bounds for a Restricted Problem

We begin by considering a restricted version of the degeneracy problem. Say

that a hyperplane in IRd is vertical if it contains a line parallel to the xd axis. The

nonvertical a�ne degeneracy problem asks, given a set of n points in IRd, whether there

is a nonvertical hyperplane passing through d+ 1 of them. In this section, we prove the

following theorem.

Theorem 2.1. Any decision tree that detects nonvertical a�ne degeneracies in IRd, using

only sidedness queries, must have depth 
(nd).

In order to give a more intuitive picture, we �rst consider the planar case, and

then generalize to arbitrary dimensions.
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(a) (b)

Figure 2.1. A planar adversary construction for nonvertical degeneracies. (a) The initial set, with one

collapsible triangle shaded. (b) The perturbed set, showing collapsed triangle.

2.1.1 The Planar Lower Bound

Without loss of generality, we assume n is a multiple of 3. The adversary \presents"

the following set of points:

S
4

=

n=3[
i=1

f(-1; 4i); (0; 4i+ 1); (1; 4i)g :

The set S consists of three smaller sets of points, evenly spaced along vertical line segments.

See Figure 2.1(a). If we pick points p and r from the left and right segments, respectively,

there is a unique point q in the middle segment such that the vertical distance from q to

 !
pr is exactly one. We shall refer to each such triple fp; q; rg as a collapsible triangle , for

the following reason. Without loss of generality, let q lie below  !pr . If we perturb the set

by moving p and r down by 1=2 and moving q up by 1=2, then the three points become

colinear. See Figure 2.1(b). No other degeneracies are introduced by this perturbation;

moreover, no other triangle changes orientation.

The adversary's point set S contains n2=9 = 
(n2) collapsible triangles. If the

algorithm does not check the orientation of every collapsible triangle, the adversary per-

turbs the set so that some unchecked triangle becomes degenerate. The algorithm cannot

distinguish between the original point set and the perturbed point set. This completes the

proof in the planar case.

It may be helpful to see what this construction looks like in the dual setting. Here
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(a) (b)

Figure 2.2. The dual version of our planar adversary construction. (a) The initial set, with collapsible

triangles shaded. (b) The perturbed set, showing collapsed triangle.

we are given n lines in the plane and asked if any three of them have a common intersection.3

The dual of the adversary's point set consists of three bundles of parallel lines. Two of the

bundles meet in a mesh of squares, and the third cuts through the squares at a 45� angle,

so that each square in the mesh has a small triangle cut o� one corner. See Figure 2.2(a).

Each of the small triangles in the mesh corresponds to a collapsible triangle in the primal

point set. To collapse a triangle, the adversary simply translates its three bounding lines

so that they intersect at the triangle's centroid. See Figure 2.2(b).

2.1.2 Higher Dimensions

For the d-dimensional problem, the adversary's point set consists of d + 1 smaller

sets. The points in each smaller set are evenly spaced along vertical line segments l0; l1; : : : ; ld.

These line segments intersect any horizontal hyperplane at the centroid and vertices of a

regular (d - 1)-simplex.

Without loss of generality, we assume n is a multiple of 3d. Each of the outer

segments l1; : : : ; ld contains 2n=3d points, and l0 contains the remaining n=3 points. The

xd coordinates of the outer points are multiples of 2d between 0 and 4n=3 - 2d. Thus,

any hyperplane de�ned by d points, one from each outer segment, intersects the xd-axis

at an even integer coordinate between 0 and 4n=3 - 2d. The points in the inner set lie

at alternate odd integer coordinates between 1 and 4n=3 + 1. This gives us b(d - 1)=2c
3The restriction to nonvertical colinearities in the primal setting is re
ected in the dual by ignoring the

intersection points \at in�nity" between parallel lines.
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\wasted" points at the top of the inner segment, which we can ignore.

Suppose we pick one point from each of the outer sets. These points de�ne a

hyperplane h. The vertical distance between h and the unique point in the inner set that is

closest to h is exactly 1. We refer to each such set of d + 1 points as a collapsible simplex.

The adversary can make any collapsible simplex degenerate by simultaneously moving the

inner point up and the outer points down (or vice versa) a distance of 1=2. Clearly, no other

simplex changes orientation because of this perturbation. There are (2n=3d)d = 
(nd)

collapsible simplices in the adversary's point set, each of which must be checked by the

algorithm.

This completes the proof of Theorem 2.1.

Since collapsing a simplex changes the order type of the set, we immediately have

the following corollary.

Corollary 2.2. Any decision tree that determines the order type of a set of n points in

IRd, using only sidedness queries, must have depth 
(nd).

2.1.3 Beating the Lower Bound

If we know in advance that the points lie on d + 1 vertical lines, then our 
(nd)

lower bound can be defeated for all d > 2. In this special case, we can detect nonvertical

degeneracies in O(nd=2) time if d is even, and in O(n(d+1)=2 logn) time if d is odd. The

algorithms that achieve these running times do not use only sidedness queries, but also

compute the signs of certain linear forms. In addition to providing a pedagogical example

of the importance of choosing the right model of computation, these algorithms suggest

that a new approach may be required to extend our lower bounds into more general models

of computation, at least in higher dimensions.

Suppose we are given d+1 sets S0; S1; : : : ; Sd � IRd, each containing n points, such

that each set Si is contained in a vertical line li. The only possible nonvertical degeneracies

contain one point from each line. The positions of the lines li determine constants ai such

that points p0 2 l0; : : : ; pd 2 ld lie on a nonvertical hyperplane if and only if their dth

coordinates satisfy the equation

dX
i=0

aipid = 0:
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We describe two algorithms, one for even dimensions and one for odd dimensions.

Our algorithms compare the weighted sums of tuples of dth coordinates of points, where

the weight of each point is determined by the set from which it is taken. We call such a

query a tuple comparison . Both algorithms work in two phases, a sorting phase and a

scanning phase. In the sorting phase, both algorithms perform dd=2e-tuple comparisons.

In the scanning phase, both algorithms perform sidedness queries. In the odd-dimensional

case, the sidedness queries we perform are actually (d + 1)=2-tuple comparisons. In the

discussion that follows, pi always refers to a point in Si.

If d is even, we sort all possible values of the expressions

d=2-1X
i=0

aipid and

d-1X
i=d=2

aipid:

Then for each point pd 2 Sd, we scan through the two lists, looking for a pair of elements

whose sum is -adpdd. This algorithm runs in O(nd=2+1) time.

If d is odd, we sort all possible values of the expressions

bd=2cX
i=0

aipid and

dX
i=dd=2e

-aipid;

and then simultaneously scan through the two lists for duplicate elements. This algorithm

runs in O(n(d+1)=2 logn) time.

A simple variant of the odd-dimensional algorithm can be used to solve a slightly

more general problem, in which the points are only constrained to lie on two vertical

(d + 1)=2-
ats, which necessarily intersect at a vertical line l. Instead of sorting weighted

sums, we sort the possible positions at which the a�ne hulls of (d + 1)=2-tuples of points

from the same (d+ 1)=2-
at intersect l. This algorithm also runs in O(n(d+1)=2 logn) time.

The special case of the a�ne degeneracy problem solved by these algorithms is

an example of a linear satis�ability problem : Given a set of n real numbers, does any

subset satisfy a �xed linear equation? We will consider linear satis�ability problems in

greater detail in Chapter 5. The main result of that chapter (Theorem 5.1) implies that

the algorithms we have just described are optimal, except possibly for a logarithmic factor

when d is odd, when only sidedness queries and dd=2e-tuple comparisons are allowed.
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2.2 Lower Bounds for The General Problem

The weird moment curve, denoted !d(t), is the parameterized curve

!d(t) =
�
t; t2; : : : ; td-1; td+1

�
:

where the parameter t ranges over the reals. The weird moment curve is similar to the

standard moment curve (t; t2; : : : ; td-1; td), except that the degree of the last coordinate is

increased by one.

If we project the weird moment curve down a dimension by dropping the last

coordinate, we get a standard moment curve. Since every set of points on the standard

moment curve is a�nely nondegenerate, no d points on the d-dimensional weird moment

curve lie on a single (d- 2)-
at. However, it is possible for d+ 1 points to all lie on a single

hyperplane. The following lemma characterizes these a�ne degeneracies.

Lemma 2.3. Let x0 < x1 < � � � < xn be real numbers. The orientation of the simplex

(!d(x0); !d(x1); : : : ; !d(xd)) is given by the sign of
Pd

i=0 xi. In particular, the simplex is

degenerate if and only if
Pd

i=0 xi = 0.

Proof: The orientation of the simplex (!d(x0); !d(x1); : : : ; !d(xd)) is given by the sign

of the determinant of the following matrix.

M =

2666664
1 x0 x20 � � � xd-10 xd+10

1 x1 x21 � � � xd-11 xd+11

...
...

...
. . .

...
...

1 xd x2d � � � xd-1d xd+1d

3777775
The determinant of M is an antisymmetric polynomial of degree

�
d+1
2

�
+ 1 in the variables

xi, and it is divisible by (xi - xj) for all i < j. It follows that

detMQ
i<j(xj - xi)

is a symmetric polynomial of degree one, and we easily observe that its leading coe�cient

is 1. (This polynomial is well-de�ned, since the xi are distinct.) The only such polynomial

is
Pd

i=0 xi. 2

This result, or at least its proof, is hardly new. If we replace the weird moment

curve by any polynomial curve, the orientation of a simplex is given by the sign of a Schur
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polynomial [131]. A determinantal formula for Schur polynomials was discovered by Jacobi

in the mid-1800's [100].

Theorem 2.4. Any decision tree that decides whether a set of n points in IRd is a�nely

degenerate, using only sidedness queries, must have depth 
(nd). If d � 3, this lower

bound holds even when the points are known in advance to be in convex position.

Proof: Let X denote the set of integers from -dn to n. If we lift X up to the weird moment

curve, the resulting set of points !d(X) contains 
(nd) degenerate simplices. To pick a

degenerate simplex, choose arbitrary distinct positive elements x1; x2; : : : ; xd 2 X, and let

x0 = -
P

i xi.

The adversary initially presents the point set !d(X
0), where X 0 denotes the set

X+1=(2d+2) = fx+1=(2d+2) j x 2 Xg. This point set is a�nely nondegenerate, since the the

sum of any d+ 1 elements in X 0 is always a half-integer. Choose arbitrary distinct positive

elements x 01; x
0

2; : : : ; x
0

d 2 X 0, and let x 00 = 1=2-
P

i x
0

i. The points !d(x
0

i) form a collapsible

simplex. To collapse it, the adversary shifts the points back to their original positions

!d(xi). The collapsed simplex is obviously degenerate. Moreover, since the expressionPd
i=0 x

0
i changes by at most 1=2- 1=(2d+ 2) < 1=2 for any other simplex, no other simplex

changes orientation. In particular, the collapsed simplex is the only degenerate simplex.

The adversary's point set contains
�
n
d

�
= 
(nd) collapsible simplices. If an al-

gorithm does not check the orientation of every collapsible simplex, then the adversary

perturbs the input so that some unchecked simplex becomes degenerate. The algorithm

cannot distinguish between the original point set and the perturbed point set, even though

only one of them is degenerate.

Since every set of points on the standard moment curve is in convex position,

every set of points on the d-dimensional weird moment curve in convex position if d � 3.

(Given a set of points in convex position in the plane, we can easily determine whether any

three are colinear in O(n logn) time.) 2

Figure 2.3 illustrates the new two-dimensional construction. In order to make the

colinearities more visible, the �gure uses a curve of the form y = x3 - �x; since this is a

linear transformation of the unit cubic y = x3, all colinearities are preserved.

We emphasize that if the points are known in advance to lie on the weird mo-

ment curve, a�ne degeneracies can be detected in O(nd=2) time if d is even, and in
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(a) (b) (c)

Figure 2.3. A planar adversary construction for arbitrary degeneracies. (a) The degenerate con�gura-

tion, with one degenerate triangle emphasized. (b) The adversary con�guration, with the corresponding

collapsible triangle. (c) The corresponding collapsed con�guration.

O(n(d+1)=2 logn) time if d is odd, by simple algorithms that use more complicated queries,

similar to the algorithms described in Section 2.1.3.

2.2.1 An Alternate Proof in Two Dimensions

In the 1950's, Sylvester noted that a set of n integer points on the unit cubic

can have n2=8 collinear triples [96]. F�uredi and Pal�asti [84] improve this lower bound to

roughly n2=6 using a slightly di�erent construction, which we describe below. We can

use their construction to slightly improve our lower bound for the two-dimensional a�ne

degeneracy problem. The resulting lower bound is the best that can be derived using our

techniques, except possibly for some lower-order terms.

F�uredi and Pal�asti describe their construction in the dual. Let L(�) be the line

passing through the point (cos�; sin�) at angle -�=2 to the x-axis. The line L(�) also

passes through the point (cos(�-2�); sin(�-2�)); if this is the same point as (cos�; sin�),

then the line is tangent to the unit circle at that point. Three lines L(�); L(�); L(
)

are concurrent if and only if � + � + 
 � 0 (mod 2�). It follows that the set of lines

fL(2�i=n) j 1 � i � ng has 1+ bn(n- 3)=6c concurrent triples. See Figure 2.4(a). See [84]
for further details. Related results are described in [24] and [72].

The set of lines fL((2i- 1)�=n) j 1 � i � ng has no concurrent triples, but its ar-

rangement has dn(n- 3)=3e triangular cells, each bounded by a triple of lines of the form

L((2i- 1)�=n); L((2j- 1)�=n); L((2k- 1)�=n);
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(a) (b) (c)

Figure 2.4. Another planar adversary construction for arbitrary degeneracies, following a construction of

F�uredi and Pal�asti. (a) The degenerate con�guration. (b) The adversary con�guration. (c) A collapsed

con�guration.

where i+ j+ k � 1 or 2 (mod n). See Figure 2.4(b). Each of these triangles is collapsible;

to collapse such a triangle, we shift each of its three de�ning lines by �=3n, resulting in the

lines

L((2i- 2=3)�=n); L((2j- 2=3)�=n); L((2k- 2=3)�=n);

if i+ j+ k � 1 (mod n), or

L((2i- 4=3)�=n); L((2j- 4=3)�=n); L((2k- 4=3)�=n);

if i + j + k � 2 (mod n). See Figure 2.4(c). We easily verify that the collapsed triangle

is degenerate, and that no other triangle changes orientation, since the sum of any other

triple of de�ning angles changes by at most 2�=3n < �=n.

Theorem 2.5. Any decision tree that decides whether a set of n points in IR2 is a�nely

degenerate, using only sidedness queries, must have depth at least dn(n- 3)=3e.

Gr�unbaum [96] proved that a simple arrangement of n lines in the projective plane

can have at most bn(n - 1)=3c triangular cells if n is even, and at most bn(n - 2)=3c if
n is odd. Thus, we cannot hope to prove a lower bound bigger than n2=3 + O(n) using

collapsible triangles.

2.3 Allowable Queries

In this section, we identify a general class of computational primitives which, if

added to our model of computation, do not a�ect our lower bounds. In fact, even if we allow
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any �nite number of these primitives to be performed at no cost, the number of required

sidedness queries is the same. These primitives include comparisons between coordinates of

input points in any number of directions, comparisons between coordinates of hyperplanes

de�ned by d-tuples of points, and in-sphere queries.

The model of computation we consider is a restriction of the algebraic decision

tree model. Recall that in this model, the result of every query is given by the sign of a

multivariate query polynomial , evaluated at the coordinates of the input. If the sign is zero

(resp. nonzero), we say that the input is degenerate (resp. nondegenerate) with respect to

that query. For example, a set of points is a�nely degenerate if and only if it is degenerate

with respect to some sidedness query.

A projective transformation of IRd (or more properly, of the projective space

IRIPd) is any map that takes hyperplanes to hyperplanes. If we represent the points of IRd

in homogeneous coordinates, a projective transformation is equivalent to a linear transfor-

mation of IRd+1.

Let X = f-dn; 1 - dn; : : : ; ng be the set of numbers described in the proof of

Theorem 2.4. We call an algebraic query allowable if for some projective transformation �,

the point con�guration �(!d(X)) is nondegenerate with respect to that query. Our choice

of terminology is justi�ed by the following theorem.

Theorem 2.6. Any decision tree that decides whether a set of n points in IRd is a�nely

degenerate, using only sidedness queries and a �nite number of allowable queries, requires


(nd) sidedness queries in the worst case. If d � 3, this lower bound holds even when the

points are known in advance to be in convex position.

Proof: Every d-dimensional projective transformation can be written as a (d+1)� (d+1)

real matrix. For any polynomial q, the set of projective tranformations � such that

q(�(!d(X))) = 0 is an algebraic variety in IR(d+1)�(d+1). It follows that if some projec-

tive transformation makes !d(X) nondegenerate with respect to an algebraic query, then

almost every projective transformation (i.e., all but a measure-zero subset) makes !d(X)

nondegenerate. Moreover, for any �nite set of allowable queries, almost every projective

transformation makes !d(X) nondegenerate with respect to all of them. Let � be such a

transformation.

Now consider the degenerate con�guration �(!d(X)) as a single point in the con-

�guration space IRdn. Every algebraic query induces an algebraic surface in this space,
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consisting of all con�gurations that are degenerate with respect to that query. Since alge-

braic surfaces are closed, if �(!d(X)) is nondegenerate with respect to some �nite set of

alllowable queries, then for all X 0 in an open neighborhood of X in IRn, the con�guration

�(!(X 0)) is also nondegenerate with respect to that set of queries.

The theorem now follows from a slight modi�cation of the proof of Theorem 2.4.

Let " > 0 be some su�ciently small real number. The set �(!d(X+ ")) is a�nely nonde-

generate, but has 
(nd) collapsible simplices, each corresponding to a degenerate simplex

in �(!d(X)). No allowable query can distinguish between �(!d(X+ ")) and any collapsed

con�guration, or even between �(!d(X+ ")) and �(!d(X)). 2

We give below a (nonexhaustive!) list of allowable queries. We leave the proofs

that these queries are in fact allowable as easy exercises.

� Comparisons between points in any �xed direction are allowable. In fact, we can

allow the input points to be presorted in any �nite number of �xed directions. A

similar result was described by Seidel in the context of three-dimensional convex hull

lower bounds [133, Theorem 5]. We emphasize that the directions in which these

comparisons are made must be �xed in advance. No matter how we transform the

adversary con�guration, there is always some direction in which a point comparison

can distinguish it from a collapsed con�guration.

� More generally, deciding which of two points is hit �rst by a hyperplane rotating

around a �xed (d - 2)-
at is allowable. We can even presort the points by their

cyclic orders around any �nite number of �xed (d - 2)-
ats. If the (d - 2)-
at is

\at in�nity", then \rotation" is just translation, and we have the previous notion of

point comparison. We can interpret this type of query in dual space as a comparison

between the intersections of two hyperplanes with a �xed line. Again, we emphasize

that the (d - 2)-
ats must be �xed in advance.

� Sidedness queries in any �xed lower-dimensional projection are allowable. This is a

natural generalization of point comparisons, which can be considered sidedness queries

in a one-dimensional projection. We can even specify in advance the complete order

types of the projections onto any �nite number of �xed a�ne subspaces. (As a tech-

nical point, we would not actually include this information as part of the input, since
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this would drastically increase the input size. Instead, knowledge of the projected

order types would be hard-wired into the algorithm.)

� \Second-order" comparisons between vertices of the dual hyperplane arrangement, in

any �xed direction, are also allowable. Such a query can be interpreted in the primal

space as a comparison between the intersections of two hyperplanes, each de�ned by

a d-tuple of input points, with a �xed line. To prove that such a query is allowable,

it su�ces to observe that a projective transformation of the primal space induces a

projective transformation of the dual space, and vice versa. Note that a second-order

comparison is algebraically equivalent to a sidedness query if the two d-tuples share

d- 1 points.

� Since most projective transformations do not map spheres to spheres, in-sphere queries

are allowable. Given d + 2 points, an in-sphere query asks whether the �rst point

lies \inside", on, or \outside" the oriented sphere determined by the other d + 1

points. (See Chapter 4.) Similarly, in-sphere queries in any �xed lower-dimensional

projection are allowable.

� Distance comparisons between pairs of points or pairs of projected points are allow-

able. More generally, comparing the measures of pairs of simplices of dimension less

than d | for example, comparing the areas of two triangles when d > 2 | de�ned

either by the original points or by any �xed projection, are allowable.

On the other hand, comparing the volumes of arbitrary simplices of full dimension

is not allowable. In any projective transformation of !d(X), all of the degenerate simplices

have the same (zero) volume. It is not possible to collapse a simplex in any adversary

con�guration while maintaining the order of the volumes of the other collapsible simplices.

2.4 Implications and Open Problems

A problem similar to �nding degeneracies is �nding the minimum measure simplex.

Unfortunately, our results are not su�cient to improve the 
(n logn) lower bound on this

problem. Any algorithm that �nds the minimum measure simplex must be able to compare

the values of arbitrary sidedness determinants, and such comparisons are not allowed in
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Figure 2.5. Minimum area triangles are not necessarily collapsible.

any model of computation in which our lower bounds hold. This di�erence may be best

understood by looking at the one-dimensional case: 
(n logn) comparisons are required

to sort a list of n numbers, but a stronger model is required to say anything about �nding

the closest pair. It seems impossible to apply our \collapsible simplex" argument in a

model that allows comparisons between simplex volumes; a radically new idea is called

for. We quickly note that the minimum measure simplex is not necessarily collapsible; see

Figure 2.5.

The planar a�ne degeneracy problem is an example of what Gajentaan and Over-

mars [86] call 3sum-hard problems.4 Formally, a problem is 3sum-hard if the following

problem can be reduced to it in subquadratic time:

3sum: Given a set of real numbers, do any three sum to zero?

Thus, a subquadratic algorithm for any 3sum-hard problem would imply a subquadratic

algorithm for 3sum, and a su�ciently powerful quadratic lower bound for 3sum would im-

ply similar lower bounds for every 3sum-hard problem. Examples of 3sum-hard problems

include several degeneracy detection, separation, hidden surface removal, and motion plan-

ning problems in two and three dimensions. Gajentaan and Overmars [86] show that the

planar a�ne degeneracy problem is 3sum-hard, by considering a lifting from the reals to

the unit cubic.5 In fact, the restricted problem considered in Section 2.1.1 is equivalent to

3sum since there are simple linear-time reductions in both directions. Our results imply a

quadratic lower bound for 3sum; we will present further details in Chapter 5.

Given these reductions, one might think that we have just proven that every

4Some earlier papers, including [73], used the more suggestive but potentially misleading term \n2-
hard" [85] (but see [20]).

5This observation was the initial inspiration for my \weird moment curve" argument.
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3sum-hard problem requires 
(n2) time. Unfortunately, this is not the case. Many of

the reductions discussed in [86] require primitives that our models of computation do not

allow. In these cases, one may still be able to achieve quadratic lower bounds by directly

applying the techniques in this chapter. For example, consider the following problem, which

Gajentaan and Overmars call Separator2: Given a set of n non-intersecting line segments

in the plane, is there a line that separates the set into two non-empty subsets? Using the

techniques in this paper, one can derive a quadratic lower bound for this problem, under

a model that allows sidedness queries and allowable queries among the endpoints of the

segments.

Even so, some 3sum-hard problems, like the minimum-area triangle problem, can-

not be solved in the models in which our techniques apply. Many of these problems already

have O(n2) solutions that use primitives outside our models.

In light of these shortcomings, an obvious open question is whether our lower

bound also holds in models where even more queries are allowed. Ultimately, of course, we

would like a lower bound that holds in a general model of computation such as algebraic

decision trees, but this seems to be completely out of reach.

The other possibility, of course, is that there is a subquadratic algorithm in some

completely di�erent model of computation. The situation may be comparable to sorting or

element uniqueness|
(n logn) time is required to sort using algebraic decision trees [16],

but there are signi�cantly faster sorting algorithms in integer RAM models [83, 9].

Are there faster algorithms for useful special cases? For example, a set of n points

in the plane in (loosely) convex position has only n collapsible triangles, and we can easily

detect colinear triples in such a set in O(n logn) time. Is there a \structure-sensitive"

algorithm for detecting a�ne degeneracies, whose running time depends favorably on the

number of collapsible triangles? Such an algorithm might be useful for solving real-world

instances of other 3sum-hard problems such as planar motion planning and hidden surface

removal [86].

2.5 Out on a Limb

At the risk of annoying the reader, let me close this chapter by outlining some

more evidence that the three-colinear-points problem \really" requires
(n2) time. Readers

looking for more theorems will be disappointed; my aim is only to provide some intuition
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and hopefully provoke further research.

An arrangement of pseudolines is a collection of curves in the plane, each home-

omorphic to a straight line, such that any pair intersect transversely in exactly one point.

Such an arrangement is simple if no three pseudolines pass through a single point. An pseu-

doline arrangement is stretchable if it can be continuously deformed into an arrangement

of straight lines. A theorem of Mn�ev [116] (see also [137, 97, 128]) implies that determining

if a pseudoline arrangement is stretchable is NP-hard.6

Every known algorithm that detects degeneracies in arrangements of lines [39, 65,

68, 69] can also be used to detect degeneracies in arrangements of pseudolines. In fact, there

is no known algorithmic separation of lines and pseudolines. That is, there is no known

problem that can sensibly be asked about both lines and pseudolines (for example, \Sort

the intersection points." or \How many edges are in the kth level?"), such that an e�cient

algorithm is known for the straight line version that doesn't also work for the pseudoline

version. In light of Mn�ev's theorem, this is perhaps not terribly surprising. (A relevant

pseudo-algorithmic result is Steiger and Streinu's proof that any decision tree that sorts

the intersection points of a pseudoline arrangement must have depth 
(n2 logn), but the

vertices of a line arrangement can be sorted by a nonuniform algorithm that uses only

O(n2) comparisons [139]. See Chapter 5 for further discussion of nonuniform algorithms.)

There are 2�(n
2) combinatorially distinct arrangements of n pseudolines in the

plane [105, 79]. (Recall from the beginning of this chapter that only n�(n) of these are

stretchable [89].) It follows immediately that determining the order type of a pseudoline

arrangement requires 
(n2) time. Moreover, since every triangular cell in a pseudoline

arrangement can be \
ipped" to produce a new pseudoline arrangement and there are

arrangements with 
(n2) triangular cells, 
(n2) sidedness queries are necessary to decide

if a pseudoline arrangement is simple.

These observations suggest that deciding if a line arrangement is simple requires


(n2) time because (1) deciding if a pseudoline arrangement is simple requires quadratic

time, and (2) it is not possible for an e�cient algorithm to know that its input consists of

straight lines and not arbitrary pseudolines (unless, perhaps, P=NP). This suggestion is far

too vague to call a \conjecture"; in particular, I haven't mentioned a speci�c model of com-

6Mn�ev showed any primary semialgebraic set de�ned over the integers is stably homotopy-equivalent

to the realization space of some rank-3 oriented matroid (i.e., some pseudoline arrangement). See [18] for
further implications of this remarkable result.
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putation. Nevertheless, any results in this direction (even just formalizing the \conjecture")

would be interesting.

[items 1{19 omitted]
20. I have no arguments to o�er, my �gures are my proofs.
21. The laws of nature are in harmony with me and sustain me.
22. Laugh away these facts and truths if you can.

| Carl Theodore Heisel, The Circle Squared Beyond Refutation, 1934
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Chapter 3

Convex Hull Problems

The construction of convex hulls is perhaps the oldest and best-studied problems

in computational geometry [6, 10, 11, 12, 29, 28, 30, 36, 49, 50, 91, 101, 110, 123, 130,

132, 134, 136, 142]. Over twenty years ago, Graham described an algorithm that constructs

the convex hull of n points in the plane in O(n logn) time [91]. The same running time

was �rst achieved in three dimensions by Preparata and Hong [123]. Yao [154] proved a

lower bound of 
(n logn) on the complexity of identifying the convex hull vertices, in the

quadratic decision tree model. This lower bound was later generalized to the algebraic

decision tree and algebraic computation tree models by Ben-Or [16]. It follows that both

Graham's scan and Preparata and Hong's algorithm are optimal in the worst case. If the

output size f is also taken into account, the lower bound drops to 
(n log f) [101], and

a number of algorithms match this bound both in the plane [101, 28, 29] and in three

dimensions [50, 40].

In higher dimensions, the problem is not quite so completely solved. Seidel's

\beneath-beyond" algorithm [132] constructs d-dimensional convex hulls in time O(ndd=2e).

After a ten-year wait, Chazelle [36] improved the running time to O(nbd=2c) by derandom-

izing a randomized incremental algorithm of Clarkson and Shor [50]; see also [136]. Since

an n-vertex polytope in IRd can have 
(nbd=2c) facets [87], Seidel's algorithm is optimal in

even dimensions, and Chazelle's algorithm is optimal in all dimensions, in the worst case.

Several faster algorithms are known when the output size is also considered.

In 1970, Chand and Kapur [30] described an algorithm that constructs convex hulls in

time O(nf), where f is the number of facets in the output. An algorithm of Chan,

Snoeyink, and Yap [28] constructs four-dimensional hulls in time O((n + f) log2 f), and
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a recent improvement by Amato and Ramos [6] constructs �ve-dimensional hulls in time

O((n + f) log3 f). The fastest algorithm in higher dimensions, due to Chan [29], runs in

time O(n log f+(nf)1-1=(bd=2c+1) polylog n); this algorithm is optimal when f is su�ciently

small. For related results, see [10, 30, 49, 50, 101, 134]. There are still large gaps between

these upper bounds and the lower bound
(n log f+ f). Avis, Bremner, and Seidel [11, 12]

describe families of polytopes on which current convex hull algorithms perform quite badly,

sometimes requiring exponential time (in d) even when the output size is only polynomial.

In this chapter, we consider convex hull problems for which the output size is a

single integer, or even a single bit, although the convex hull itself may be large. We show

that in the worst case,
(ndd=2e-1+n log n) sidedness queries are required to decide whether

the convex hull of n points in IRd is simplicial, or to determine the number of convex hull

facets. This matches known upper bounds when d is odd [36]. The only lower bound

previously known for either of these problems is 
(n logn), following from the techniques

of Yao [154] and Ben-Or [16]. When the dimension is allowed to vary with the input size,

deciding if a convex hull is simplicial is coNP-complete [31], and counting the number of

facets is #P-hard in general, and NP-hard for simplicial polytopes [61]. Our results apply

when the dimension d is �xed.

Our lower bounds follow from a generalization of the previous chapter's adversary

argument. We start by constructing a set whose convex hull contains a large number of

independent degenerate facets. To obtain the adversary con�guration, we perturb this set

to eliminate the degeneracies, but in a way that the degeneracies are still \almost there".

An adversary can reintroduce any one of the degenerate facets, by moving its vertices back

to their original position.

3.1 Preliminaries

For a more detailed introduction to the theory of convex polytopes, we refer the

reader to Ziegler [161] or Gr�unbaum [95].

The convex hull of a set of points is the smallest convex set that contains it. A

(convex) polytope is the convex hull of a �nite set of points. A hyperplane h supports a

polytope if the polytope intersects h and lies in a closed halfspace of h. The intersection of

a polytope and a supporting hyperplane is called a face of the polytope. The dimension
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of a face is the dimension of the smallest a�ne space that contains it; a face of dimension

k is called a k-face. The faces of a polytope are also polytopes. Given a d-dimensional

polytope, its (d - 1)-faces are called facets , its (d - 2)-faces are called ridges , its 1-faces

are edges , and its 0-faces are vertices .

A polytope is simplicial if all its facets, and thus all its faces, are simplices. The

convex hull of any a�nely nondegenerate set of points is simplicial, but the converse is

not true in general, as witnessed by the regular octahedron in IR3. A polytope is quasi-

simplicial if all of its ridges are simplices, or equivalently, if its facets are simplicial poly-

topes. A degenerate facet of a quasi-simplicial polytope is any facet that is not a simplex.

Note that the vertices of a degenerate facet are also the vertices of a degenerate simplex.

3.2 The Lower Bound

Our adversary construction will consist of a set of points on the weird moment

curve !d(t) = (t; t2; : : : ; td-1; td+1) introduced in Section 2.2. Since any collection of

points on the standard moment curve is in convex position, so is any collection of points on

the weird moment curve in dimensions 3 and higher. Moreover, the convex hull of any set

of points on the weird moment curve is quasi-simplicial, since no d points lie on a common

(d - 2)-
at. However, degenerate facets are possible. The following lemma characterizes

degenerate convex hull facets on the weird moment curve. The result is quite similar to

Gale's evenness condition [87], which describes which vertices of a cyclic polytope form its

facets.

Lemma 3.1. Let X be a set of real numbers, and let x0; x1; : : : ; xd be elements of X whose

sum is zero. The points !d(x0); !d(x1); : : : ; !d(xd) are the vertices of a degenerate facet

of conv(!d(X)) if and only if for any two elements y; z 2 X n fx0; x1; : : : ; xdg, the number

of elements of fx0; x1; : : : ; xdg between y and z is even.

Proof: Let h be the hyperplane passing through the points !d(x0); !d(x1); : : : ; !d(xd).

Such a hyperplane exists by Lemma 2.3. Expanding the appropriate sidedness determinant,

we �nd that an arbitrary point !d(x) lies above, on, or below h according to the sign of

the polynomial

f(x) =

 
x+

dX
i=1

xi

!
dY
i=1

(x- xi) =

dY
i=0

(x- xi):
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The hyperplane h supports conv(!d(X)) if and only if f(x) has the same sign for all x 2
X n fx0; x1; : : : ; xdg.

The polynomial f(x) has degree d + 1, and vanishes at each xi. Thus, the sign

of f(x) changes at each xi. In more geometric terms, the weird moment curve crosses the

hyperplane h at each of the points !d(xi). It follows that f(y) and f(z) both have the same

sign if and only if an even number of xi's lie between y and z. 2

The main result of this chapter is based on the following combinatorial construc-

tion.

Lemma 3.2. For all n and d, there is a quasi-simplicial polytope in IRd with O(n) vertices

and 
(ndd=2e-1) degenerate facets.

Proof: First consider the case when d is odd, and let r = (d - 1)=2. Without loss of

generality, we assume that n is a multiple of r. Let X denote the following set of n+2n=r =

O(n) integers.

X = f-rn;-rn+ r; : : : ;-r; r; r+ 1; 2r; 2r+ 1; : : : ; n; n+ 1g

We can specify a degenerate facet of !d(X) as follows. Arbitrarily choose r elements

a1; a2; : : : ; ar 2 X, all positive multiples of r. Let a0 = -
Pr

i=1 ai, let b0 = a0 - r, and for

all i > 0, let bi = ai+ 1. Each ai and bi is a unique element of X, and no element of X lies

between ai and bi for any i. The points !d(ai) and !d(bi) all lie on a single hyperplane

by Lemma 2.3, since

rX
i=0

(ai + bi) = 2

rX
i=0

ai = 0:

Moreover, since any pair of elements of X n fai; big has an even number of elements of

fai; big between them, Lemma 3.1 implies that these points are the vertices of a single facet

of conv(!d(X)). There are at least
�
n=r
r

�
= 
(nr) ways of choosing such a degenerate facet.

When d is even, let r = d=2 - 1, and assume without loss of generality that n is

a multiple of r. Let X be the following set of n + 2n=r+ 1 = O(n) integers.

X = f-n- rn;-n- rn+ r; : : : ;-n- r; r; r+ 1; 2r; 2r+ 1; : : : ; n; n+ 1; 2ng :

Using similar arguments as above, we easily observe that the polytope conv(!d(X)) has


(nr) degenerate facets, each of which has !d(2n) as a vertex. 2
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This result is the best possible when d is odd, since an odd-dimensional n-vertex

polytope has at most O(n(d-1)=2) facets [161]. In the case where d is even, the best known

upper bound is O(nd=2), which is a factor of n bigger than the result we prove here. The

convex hull of any set of n points on !d has at most O(ndd=2e-1) degenerate facets, so the

lower bound is tight for points on the weird moment curve. We conjecture that our lower

bound is tight in general, up to constant factors.

Theorem 3.3. Any decision tree that decides whether the convex hull of a set of n points

in IRd is simplicial, using only sidedness queries, must have depth 
(ndd=2e-1 + n logn).

Proof: Let X be the set of numbers described in the proof of Lemma 3.2, and let X 0 =

X+ 1=(2d+ 2). Initially, the adversary presents the set of points !d(X
0). Since

Pd
i=0 x

0

i is

always a half-integer, this point set is a�nely nondegenerate, so its convex hull is simplicial.

It su�ces to consider the case where d is odd. Let r = (d - 1)=2. Choose

a 00; b
0

0; a
0

1; b
0

1; : : : ; a
0
r; b

0
r 2 X 0 so that

Pr
i=0(a

0

i + b 0i) = 1=2 and no other elements of X 0 lie

between a 0i and b 0i for any i. The corresponding points !d(a
0

i); !d(b
0

i) form a collapsible

simplex. To collapse it, the adversary simply moves the points back to their original posi-

tions in !d(X). Lemmas 2.3 and 3.2 imply that the collapsed simplex forms a degenerate

facet of the new convex hull. Since the sum of any other (d+ 1)-tuple changes by at most

1=2- 1=(2d+ 2), no other simplex changes orientation. In other words, the only way for an

algorithm to distinguish between the original con�guration and the collapsed con�guration

is to perform a sidedness query on the collapsible simplex.

Thus, if an algorithm does not perform a separate sidedness query on every col-

lapsible simplex, then the adversary can introduce a degenerate facet that the algorithm

cannot detect. There are 
(ndd=2e-1) collapsible simplices, one for each degenerate facet

in conv(!d(X)).

Finally, the n logn term follows from the algebraic decision tree lower bound of

Ben-Or [16]. 2

A three-dimensional version of our construction is illustrated in Figure 3.1. (See

also the proof of Theorem 4.3!)

Our lower bound matches known upper bounds when d is odd [36]. We emphasize

that if the points are known in advance to lie on the weird moment curve, this problem

can be solved in O(ndd=4e) time if dd=2e is odd, and in O(ndd=4e logn) time if dd=2e is even,
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(a) (b) (c)

Figure 3.1. The convex hull adversary construction in three dimensions. Bottom views of (a) a quasi-

simplicial polytope with 
(n) degenerate facets, (b) the simplicial adversary polytope with one collapsible

simplex highlighted, and (c) the corresponding collapsed polytope.

by an algorithm that uses more complicated queries, similar to the algorithm described in

[73].

The convex hull of the adversary con�guration !d(X
0) has dd=2e- 1 more facets

than the convex hull of any collapsed con�guration. Thus, we immediately have the follow-

ing lower bound.

Theorem 3.4. Any decision tree that computes the number of convex hull facets of a set

of n points in IRd, using only sidedness queries, must have depth 
(ndd=2e-1 + n logn).

A simple modi�cation of our argument implies the following \output-sensitive"

version of our lower bound.

Theorem 3.5. Any decision tree that decides whether the convex hull of a set of n points

in IRd is simplicial or computes the number of convex hull facets, using only sidedness

queries, must have depth 
(f) when d is odd, and 
(f1-2=d) when d is even, where f is

the number of faces of the convex hull.

Proof: We construct a modi�ed degenerate polytope as follows. We start by constructing

a degenerate polytope with f faces, exactly as described in the proof of Lemma 3.2. When

d is odd, this polytope is the convex hull of �(f2=(d-1)) points on the wired moment curve,

and has 
(f) degenerate facets. When d is even, the polytope is the convex hull of �(f2=d)

points and has 
(f1-2=d) degenerate facets.

By introducing a new vertex extremely close to the relative interior of any facet

of a simplicial polytope, we can split that facet into d smaller facets. Each such split
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increases the number of polytope faces by 2d - 2. To bring the number of vertices of our

adversary polytope up to n, we choose some facet and repeatedly split it in this fashion,

being careful not to introduce any new degenerate simplices. The augmented polytope has

at most f+ (2d - 2)n = O(f) faces.

To get a modi�ed adversary polytope, we slide the original vertices of the de-

generate polytope along the weird moment curve, just enough to remove the degeneracies,

leaving the new vertices in place. Each of the degenerate facets becomes a collapsible sim-

plex. As long as we don't slide the vertices too far, collapsing a simplex will not change

the orientation of any simplex involving a new vertex. (In e�ect, we are treating sidedness

queries involving new vertices as \allowable" queries; see below.) The lower bound now

follows from the usual adversary argument. 2

Finally, we note that our convex hull lower bounds still hold if we augment our

model of computation with extra queries as in Section 2.3. Let X be the set of numbers

described in the proof of Lemma 3.2. We call an algebraic query allowable if for some

projective transformation �, the con�guration �(!d(X)) is nondegenerate with respect to

that query.

Theorem 3.6. Any decision tree that decides whether the convex hull of a set of n points

in IRd is simplicial, using only sidedness queries and a �nite number of allowable queries,

requires 
(ndd=2e-1 + n logn) sidedness queries in the worst case.

The proof of this theorem follows the proof of Theorem 2.6 almost exactly. The

only di�erence is that we must consider only projective transformations that preserve the

convex hull structure of !d(X). Alternately, we can use Stol�'s two-sided projective model,

in which projective maps preserve (or reverse) the orientation of every simplex in IRd, and

thus always preserve the combinatorial structure of convex hulls; see [140, Chapter 14].

3.3 Real Convex Hull Algorithms

A large number of convex hull algorithms rely (or can be made to rely) exclusively

on sidedness queries. These include the \gift-wrapping" algorithms of Chand and Kapur

[30] and Swart [142], the \beneath-beyond" method of Seidel [132], Clarkson and Shor's

[50] and Seidel's [136] randomized incremental algorithms, Chazelle's worst-case optimal

algorithm [36], and the recursive partial-order algorithm of Clarkson [49].
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Seidel's \shelling" algorithm [134] and the space-e�cient gift-wrapping algorithms

of Avis and Fukuda1 [10] and Rote [130] require only sidedness queries and \second-order"

coordinate comparisons between vertices of the dual hyperplane arrangment. Matou�sek

[110] and Chan [29] improve the running times of these algorithms (in an output-sensitive

sense), by �nding the extreme points more quickly. Clarkson [49] describes a similar im-

provement to a randomized incremental algorithm. Since every point in our adversary

con�guration is extreme, our lower bound still holds even if the extremity of a point can

be decided for free. We are not suggesting that the computational primitives used by these

algorithms cannot be used to break our lower bounds; only that the ways in which these

primitives are currently applied are inherently limited.

Chan [29] describes an improvement to the gift-wrapping algorithm, using ray

shooting data structures of Agarwal and Matou�sek [4] and Matou�sek and Schwarzkopf [108]

to speed up the pivoting step. In each pivoting step, the gift-wrapping algorithm �nds a

new facet containing a given ridge of the convex hull. In the dual, this is equivalent to

shooting a ray from a vertex of the dual polytope along one of its outgoing edges. The dual

vertex that the ray hits corresponds in the primal to the new facet. A single pivoting step

tells us the orientation of n-d simplices, all of which share the d vertices of the new facet.

However, at most one of these simplices can be collapsible, since two collapsible simplices

share at most d=2 vertices. Thus, even if we allow a pivoting step to be performed in

constant time, our lower bound still holds.

There are a few convex hull algorithms which seem to fall outside our framework,

most notably the divide-prune-and-conquer algorithm of Chan, Snoeyink, and Yap [28] and

its improvement by Amato and Ramos [6]. The two-dimensional version of their algorithm

uses sidedness queries, along with �rst-, second-, and even third-order comparisons; higher-

dimensional versions use even more complex primitives.

3.4 Open Problems

Several open problems remain to be answered. While our lower bounds match

existing upper bounds in odd dimensions, there is still a gap when the dimension is even.

A �rst step in improving our lower bounds might be to improve the combinatorial bounds

in Lemma 3.2. Is there a quasi-simplicial 4-polytope with n vertices and 
(n2) degenerate

1at least if Bland's pivoting rule is used
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facets? Simple variations on the weird moment curve will not su�ce, since an \evenness

condition" like Lemma 3.1 always forces the number of degenerate facets to be linear.

Arguments based on merging facets of cyclic or product polytopes also fail, as do variations

of Amenta and Ziegler's deformed products [7, 8]. I conjecture that the answer is no, even

for polyhedral 3-spheres.

A common application of convex hull algorithms is the construction of Delaunay

triangulations and Voronoi diagrams. Are 
(ndd=2e) in-sphere queries required to decide

if the Delaunay triangulation is simplicial (i.e., really a triangulation)? Again, a �rst step

might be to construct a three- or four-dimensional Delaunay triangulation with 
(n2)

independent degenerate features. I conjecture, however, that no such triangulations exist.

Another similar problem is deciding, given a set of points, which ones are vertices

of the set's convex hull. This problem can be decided in O(n2) time (using only sidedness

queries!) by invoking a linear programming algorithm once for each point [48, 109, 113, 136].

This upper bound can be improved to O(n2bd=2c=(bd=2c-1) polylogn) using an algorithm

due to Chan [29]. Except for the polylogarithmic term, this algorithm is almost certainly

optimal. It seems unlikely that a collapsible simplex argument could be used to imply a

reasonable lower bound for this problem. Perhaps the techniques we describe in Part II are

more applicable.

The suggestions described at the end of the previous chapter apply to convex hull

problems as well. Richter-Gebert's universality theorem for 4-polytopes [127, 129] implies

that it is NP-hard to decide if a given combinatorial 3-sphere is realizable as a 4-polytope.

(In contrast, Steinitz' Theorem [161, Chapter 4] implies that every 2-sphere is realizable as

a 3-polytope.) Perhaps deciding if a 4-polytope is simplicial requires 
(n2) time because

(1) deciding if a combinatorial 3-sphere is simplicial requires quadratic time, and (2) it is

not possible for an e�cient algorithm to know that its input is a 4-polytope and not an

arbitrary combinatorial 3-sphere. Again, this suggestion needs to be formalized before there

is any hope of proving or disproving it.

Everything should be made as simple as possible,
but no simpler.

| Albert Einstein
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Chapter 4

Spherical Degeneracies

The spherical degeneracy problem asks, given n points in IRd, if any d+ 2 lie on

the same sphere. This problem can be transformed into the a�ne degeneracy problem one

dimension higher by projecting the input vertically onto the paraboloid xd+1 = x21 + � � �+ x2d.

The images of cospherical points in IRd under this projection lie on a single hyperplane in

IRd+1. Furthermore, if the point q lies inside (resp. outside) the sphere de�ned by d + 1

points p0; : : : ; pd in IR
d, then the image of q lies below (resp. above) the hyperplane in IRd+1

de�ned by the images of p0; : : : ; pd [62]. Sidedness queries on the lifted point set are thus

equivalent to insphere queries in the original d-dimensional point set. Two-dimensional

insphere queries are also called incircle queries. Algebraically, the result of an insphere

query is given by the sign of the following determinant.��������������

1 p01 p02 � � � p0d
P

i p
2
0i

1 p11 p12 � � � p1d
P

i p
2
1i

...
...

...
. . .

...
...

1 pd1 pd2 � � � pdd
P

i p
2
di

1 q1 q2 � � � qd
P

i q
2
i

��������������
A special case of the spherical degeneracy problem ignores (d+2)-tuples that lie on spheres

of in�nite radius (i.e., hyperplanes). We refer to any (d+ 2)-tuple that lies on a sphere of

�nite radius as a proper spherical degeneracy.

In this chapter, we show that
(n3) incircle queries are required to detect circular

degeneracies in the plane, and 
(nd+1) insphere queries are required to detect proper

spherical degeneracies in IRd. Both lower bounds are tight [65, 68, 69]. Like our previous
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results, the lower bounds in this chapter are based on adversary arguments using \collapsible

tuples".

4.1 Circular Degeneracies

Theorem 4.1. Any decision tree algorithm that detects proper circular degeneracies, using

only incircle queries, must have depth 
(n3).

Proof: The adversary presents the following set of points:

S
4

=

n=6[
i=1


�
25i+2; 0

�
;
�
25i-2; 0

�
;
�
0; 25i

�� [ n=2[
i=1


�
0; 25(i-n=6)+1

��
The set consists of four subsets of points, two contained in each positive coordinate axis.

We easily verify that this set contains no proper circular degeneracies, using the fact that

four points (a; 0), (b; 0), (0; c), and (0; d) are cocircular if and only if ab = cd.

For each 1 � i; j; k � n=6, the following points are \almost" cocircular.�
25i+2; 0

�
;
�
25j-2; 0

�
;
�
0; 25k

�
;
�
0; 25(i+j-k)+1

�
Each such set of points is a collapsible 4-tuple . The adversary can collapse any such tuple

by changing the four points to the following.�
25i+3=2; 0

�
;
�
25j-3=2; 0

�
;
�
0; 25k-1=2

�
;
�
0; 25(i+j-k)+1=2

�
We easily verify that this change does not introduce any other new circular degeneracies

or change the result of any other incircle query. There are n3=216 = 
(n3) collapsible

4-tuples, each of which must be checked by the algorithm. 2

Since collapsing a 4-tuple preserves both the coordinate orders of the points and

their order type, we immediately have the following stronger theorem.

Theorem 4.2. Any decision tree algorithm that detects proper circular degeneracies, using

only incircle queries, sidedness queries, and coordinate comparisons, must perform 
(n3)

incircle queries in the worst case.

A lower bound for the general problem follows from a very simple argument,

similar to the weird moment curve argument used throughout the last two chapters. In this

case, the \weird" curve we need is a parabola.
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Theorem 4.3. Any decision tree that decides whether n points in IR2 is circularly degen-

erate, using only incircle queries, must have depth 
(n3).

Proof: Four points (a; a2); (b; b2); (c; c2); (d; d2) on the unit parabola are cocircular if and

only if a+b+c+d = 0. (Indeed, the paraboloid lifting function (x; y) 7! (x; y; x2+y2)maps

the unit parabola to a skewed three-dimensional weird moment curve; see Figure 3.1!) Let

X be the set of integers from -n to n. There are clearly �(n3) 4-tuples in X whose sums are

zero. The adversary presents a set of points on the unit parabola with x-coordinates taken

from the set X + 1=8. This set is nondegenerate and has 
(n3) collapsible 4-tuples. 2

We can extend the model of computation in a similar fashion as in Section 2.3, but

with a di�erent set of primitives. A linear fractional transformation of the plane (or more

formally, of the Riemann sphere (CIP1) is any transformation that maps circles to circles.

If we represent the points of IR2 in complex homogeneous coordinates | representing

(x; y) 2 IR2 by any complex multiple of (1 + 0i; x + yi) 2 (C2 | then a linear fractional

transformation is equivalent to a linear transformation of (C2.

We say that a query is circularly allowable if some linear fractional transformation

of the set (X; X2) is nondegenerate with respect to that query, where X = f-n; 1-n; : : : ; ng

is the set of numbers described in the proof of Theorem 4.3. Circularly allowable queries

include �rst- and second-order coordinate comparisons and sidedness queries, but do not

include comparisons between arbitrary incircle determinants.

Arguments similar to those in Section 2.3 give us the following theorem.

Theorem 4.4. Any decision tree that decides whether n points in IR2 is circularly degen-

erate, using only incircle queries and a �nite number of circularly allowable queries, requires


(n3) incircle queries in the worst case.

4.2 Proper Spherical Degeneracies

In order to extend Theorem 4.1 to the d-dimensional case, we exhibit a set S

of O(n) points in IRd that contains 
(nd+1) collapsible (d + 2)-tuples : sets of d + 2

non-cospherical points in S that can be moved so that they become cospherical, without

changing the result of any other insphere query. The following construction is primarily

due to Raimund Seidel [73].
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The point set S in question is the union of d + 1 smaller sets, S1 [ � � � [ Sd [D,
where each Si consists of n=2 even integer points on the positive xi-axis, and D consists of

about (d + 1)n=2 \odd" points on the main diagonal (t; : : : ; t). At the risk of confusing

the reader, we let each subscripted variable ti refer simultaneously to a point on the xi-

axis and that point's non-zero coordinate. Similarly, each unsubscripted variable t refers

simultaneously to a point on the main diagonal and the value of all its coordinates.

To make our construction precise, the sets Si include points ti such that ti is even

and

ai < ti � ai + n;

where a1 = 0, ai is large for all 1 < i < d (say ai = n3+ in), and ad is huge (say ad = 2n).

The set D includes points t such that dt is odd and

A < dt � A+ (d+ 1)n;

where A =
Pd

i=1 ai.

Lemma 4.5. The set S contains no proper spherical degeneracies.

Proof: For all 1 � i � d, let ti and t 0i be two distinct points in Si, and let t and t 0 be

two distinct points in D. Note that with our choice of values for ai we have the following

bounds.

-(d + 1)n < t1 + � � �+ td - dt < dn

1=n <
1

t1
+ � � �+ 1

td
-
1

t
< 1

d- 2

n3
- o

�
1

n3

�
<

1

t2
+ � � �+ 1

td
-
1

t
<

d- 2

n3

By examining the appropriate insphere determinants, we �nd that the cosphericity

of any set of d+2 points from S is expressed by the vanishing of one of the following algebraic

expressions.

� Two points from the xi-axis, one from each of the other axes, and one from the main

diagonal:

t1 + � � �+ td - dt+ tit
0

i

�
1

t1
+ � � �+ 1

td
-
1

t

�
(4.1)
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� Two points from the main diagonal, and one from each axis:

t1 + � � �+ td - dt+ dtt 0
�
1

t1
+ � � �+ 1

td
-
1

t

�
(4.2)

� Two points from the xi axis, two points from the xj axis, and d- 2 points elsewhere:

tit
0
i - tjt

0
j (4.3)

� Two points from the xi axis, two points from the main diagonal, and d - 2 points

elsewhere:

tit
0

i - dtt 0 (4.4)

With ti; t
0

i; t; t
0 chosen in the indicated ranges and with the indicated parities,

expression (4.1) never vanishes, since the last term dominates when i > 1, and the whole

expression di�ers from an odd integer by less than d=n when i = 1. Expression (4.2) never

vanishes, since the last term always dominates. Expression (4.3) never vanishes, since the

xi-range and the xj-range are disjoint. Finally, expression (4.4) never vanishes, since the

second term dominates when i < d, and the �rst term dominates when i = d. 2

Lemma 4.6. The set S contains 
(nd+1) collapsible (d+ 2)-tuples.

Proof: For any choice of two distinct points t1; t
0

1 from S1 and one point ti from each of the

other Si, we can choose the point fromD with all coordinates equal to (t1+� � �+td+t 01-1)=d,
so that these points form a collapsible (d + 2)-tuple. To collapse the tuple, the adversary

decreases the non-zero coordinates of the axis points by 1=(2d + 2) and increases each

coordinate of the main diagonal point by just under 1=2d+ 1=n. 2

Our previous adversary argument immediately implies the following lower bound.

Theorem 4.7. Any decision tree algorithm that detects proper spherical degeneracies in

IRd, using only insphere queries, must have depth 
(nd+1).

As we did in the planar case, we can extend this lower bound to allow additional

computational primitives.

Theorem 4.8. Any decision tree algorithm that detects proper spherical degeneracies in

IRd, using only insphere queries, sidedness queries, and coordinate comparisons, must per-

form 
(nd+1) insphere queries in the worst case.
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Proof: It su�ces to show that collapsing a (d+ 2)-tuple does not change the result of any

coordinate comparison or sidedness query. Coordinate comparisons don't change, since the

order of the points is preserved within each subset, and the range of coordinates for the

points on the main diagonal is disjoint from the range of coordinates for the points on any

coordinate axis.

By examining the appropriate sidedness determinants, we �nd simple algebraic

expressions giving the orientation of any simplex in S, similar to the expressions (4.1){(4.4)

describing cosphericity. There are only three nontrivial cases.

� Two points on one axis, and no points on one axis or the main diagonal:

ti - t 0i (4.5)

� Two points on the main diagonal, and no points on one axis:

t- t 0 (4.6)

� One point on each axis, and one on the main diagonal:

1

t1
+ � � �+ 1

td
-
1

t
(4.7)

In every other case, the simplex is always degenerate.

In the �rst and second cases, sidedness queries reduce to coordinate comparisons.

In the original con�guration S, expression (4.7) is positive, and collapsing a tuple only

makes it bigger, since each ti is decreasing and t is increasing. Thus, no simplex in S

changes orientation. 2

4.3 Open Problems

We conjecture that 
(nd+1) insphere queries are required to detect arbitrary

spherical degeneracies. (I claimed this lower bound in [73], but my \proof" was incorrect.)

A proof of this conjecture would follow immediately from the construction of a set of

numbers having 
(nd+1) (d + 2)-tuples in the zeroset of a certain symmetric polynomial,

by applying the same \sliding adversary" argument used to prove many of our previous
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lower bounds. For example, in three dimensions, we need 
(n4) 5-tuples in the zeroset of

the polynomial

1+
X

1�i�j�5

titj:

Unlike all our previous constructions, the adversary set we used to prove Theorem

4.7 is not obtained by perturbing a highly degenerate point con�guration. Is there a set of

n points in IRd with
(nd+1) independent spherical degeneracies, for any d � 3? Such a set

might lead to a lower bound for the general spherical degeneracy problem, and it might also

allow us to de�ne a general class of \spherically allowable" queries, strengthening Theorem

4.8.

\ : : : In that blessed region of Four Dimensions, shall we linger on the threshold
of the Fifth, and not enter therein? Ah, no! Let us rather resolve that our
ambition shall soar with our corporal ascent. Then, yielding to our intellectual
onset, the gates of the Sixth Dimension shall 
y open; after that a Seventh, and
then an Eighth |"

How long I should have continued I know not. In vain did the Sphere, in his
voice of thunder, reiterate his command of silence, and threaten me with the
direst penalties if I persisted.

| Edwin Abbott, Flatland, 1884
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Chapter 5

Linear Satis�ability Problems

Many computational decision problems, particularly in computational geometry,

can be reduced to questions of the following form: For some �xed multivariate polynomial �,

given a set of n real numbers, is any subset in the zero-set of �? Examples include element

uniqueness (� = x-y) and 3sum (� = x+y+z). Higher dimensional examples include the

a�ne and spherical degeneracy problems considered in Chapters 2 and 4, and Hopcroft's

point-line incidence problem, which we will consider in Chapter 6.

In this chapter, we develop general techniques for proving lower bounds on the

complexity of deciding problems of this type. In particular, we examine linear satis�ability

problems, in which the polynomial � is linear. Any r-variable linear satis�ability problem

can be decided in O(n(r+1)=2) time when r is odd, or O(nr=2 logn) time when r is even.

These are the best known upper bounds; the algorithms that achieve them were described

in Section 2.1.3 (with r = d + 1).

We consider these problems under two models of computation, both restrictions

of the linear decision tree model. In the direct query model, each decision is based on

the sign of an assignment to � by r of the input variables. In the r-linear decision tree

model, each decision is based on the sign of an arbitrary a�ne combination of at most r

input variables. We show that in these models, any algorithm that solves any r-variable

linear satis�ability problem must perform 
(ndr=2e) direct queries in the worst case. This

matches known upper bounds when r is odd, and is within a logarithmic factor when r is

even. Moreover, results of Fredman [80] establish the existence of nonuniform algorithms

whose running times match our lower bounds exactly.

The adversary arguments we use to establish lower bounds for these require two
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new tricks. The �rst trick is to allow our adversary con�gurations to contain formal in-

�nitesimals, instead of just real numbers. Tarski's Transfer Principle implies that for any

algorithm, if there is a hard con�guration with in�nitesimals, then a corresponding real

con�guration exists with the same properties. Previously, Dietzfelbinger and Maass [56, 55]

used a similar technique to prove lower bounds, using \inaccessible" numbers, or numbers

having \di�erent orders of magnitude". Unlike their technique, using in�nitesimals makes

it possible, and indeed su�cient, to derive a single adversary con�guration for any problem,

rather than explicitly constructing a di�erent con�guration for every algorithm.

The second trick is allowing our adversary con�gurations to be degenerate. That

is, both the original con�guration and the collapsed con�guration contain tuples in the

zero-set of �. We show that such a con�guration can always be perturbed into general

position, so that the new con�guration has just as many collapsible tuples as the original.

An
(n logn) lower bound for any linear satis�ability problem follows easily from

techniques of Dobkin and Lipton in the linear decision tree model [58], Steele and Yao

in the algebraic decision tree model [138], and Ben-Or in the algebraic computation tree

model [16]. The �rst better lower bound is due to Fredman [80], who proved an 
(n2)

lower bound on the number of comparisons required to detect duplicate elements in the

Minkowski sum X + Y of two sets of real numbers; his proof relies on a simple adversary

argument. Fredman's result was generalized by Dietzfelbinger [55], who derived an 
(nr=2)

lower bound on the depth of any comparison tree algorithm that determines, given a set

of n reals, whether any two subsets of size r=2 have the same sum. In our terminology, he

proves a lower bound for the speci�c r-variable linear satis�ability problem with

� =

r=2X
i=1

ti -

r=2X
i=1

ti+r=2

in the direct query model, for all even r. Dietzfelbinger's results imply a lower bound in

the more general r-linear decision tree model as well.

Our lower bounds should be compared with the following result of Meyer auf der

Heide [114]: For any �xed n, there exists a linear decision tree of depth O(n4 log n) that

decides the n-dimensional knapsack problem. This nonuniform algorithm can be adapted to

solve any of the linear satis�ability problems we consider, in the same amount of time [56].

Thus, there is no hope of proving lower bounds bigger than 
(n4 logn) for any of these

problems in the linear decision tree model. We reiterate that our lower bounds apply only
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to linear decision trees where the number of terms in any query is bounded by a constant.

5.1 Preliminaries

An ordered �eld is a �eld with a strict linear ordering < compatible with the �eld

operations, or more abstractly, a �eld in which the equation
P

i a
2
1 = 0 has no nontrivial

solutions. A real closed �eld is an ordered �eld, no proper algebraic extension of which is

also an ordered �eld. The real closure eK of an ordered �eld K is the smallest real closed

�eld that contains it. We refer the interested reader to [22] or [124] for further details and

more formal de�nitions, and to [25, 26] for previous algorithmic applications of real closed

�elds.

An elementary formula1 is a �nite quanti�ed boolean formula, each of whose

clauses is a multivariate polynomial inequality with real coe�cients. An elementary formula

holds in an ordered �eld K if and only if the formula has no free variables, and the formula

is true if we interpret each variable as an element of K and addition and multiplication as

�eld operations in K.

The following principle was originally proven by Tarski [146], in a slightly di�erent

form. See [22] for a more recent proof.

The Transfer Principle: Let eK and fK 0 be two real closed �elds. An elementary formula

holds in eK if and only if it holds in fK 0.

In particular, this implies that if an elementary formula holds in any real closed

�eld, then it must hold in the reals.

For any ordered �eld K, we let K(") denote the ordered �eld of rational functions

in " with coe�cients in K, where " is positive but less than every positive element of K.

In this case, we say that " is in�nitesimal in K. We use towers of such �eld extensions.

In such an extension, the order of the in�nitesimals is speci�ed by the description of the

�eld. For example, in the ordered �eld IR("1; "2; "3), "1 is in�nitesimal in the reals, "2

is in�nitesimal in IR("1), and "3 is in�nitesimal in IR("1; "2). An important property of

such a �eld (in fact, the only property we really need) is that the sign of any element

a0+a1"1 +a2"2+ a3"3 2 IR("1; "2; "3), where each of the coe�cients ai is real, is given by

the sign of the �rst nonzero coe�cient; in particular, the element is zero if and only if every

1or more formally, a formula in the �rst-order language of ordered �elds with parameters in IR [22]
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ai is zero. In�nitesimals have been used extensively in perturbation techniques [67, 71, 160],

in algorithms dealing with real semialgebraic sets [25, 26], and in at least one other lower

bound argument [93].

Let us now formally de�ne our model of computation. Recall that a linear decision

tree is a ternary tree in which each interior node v in the tree is labeled with a linear

query polynomial qv 2 IR[t1; : : : ; tn] and its branches labeled -1, 0, and +1. Each leaf

is labeled with some value; for our purposes, these values are all either \true" or \false".

We compute with such a tree as follows. Given an input X 2 IRn, the sign of qv(X) is

computed, where v is the root of the tree, and the computation proceeds recursively in

the appropriate subtree. When a leaf is reached, its label is returned as the output of the

algorithm. (Compare [58, 138].) An r-linear decision tree is a linear decision tree, each of

whose query polynomials has at most r terms.

Let K be any ordered �eld extension of the reals. Since K is ordered, and since any

real polynomial can be thought of as a function from K to K, it is reasonable to talk about

the behavior of any linear decision tree given input from Kn. (We emphasize that query

polynomials always have real coe�cients, even when we consider more general inputs.) For

any ordered �eld K, we will refer to the space Kn of possible inputs as the con�guration

space , and its individual elements as con�gurations .

5.2 The Lower Bound

In this section, we prove the following lower bound.

Theorem 5.1. Any r-linear decision tree that decides an r-variable linear satis�ability

problem must have depth 
(ndr=2e).

Throughout this section, let � denote a �xed linear expression in r variables. We

say that an r-tuple is degenerate if it lies in the zero-set of �, and that a con�guration

X is degenerate if it contains any degenerate r-tuples. For any con�guration X, we call an

r-tuple of elements of X collapsible if the following properties are satis�ed.

(1) The tuple is nondegenerate.

(2) There exists another collapsed con�guration �X, such that the corresponding tuple

in �X is degenerate, but the sign of every other real a�ne combination of r or fewer

elements is the same for both con�gurations.
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In other words, the only way for an r-linear decision tree to distinguish between X and �X

is to perform a direct query on the tuple. Our usual adversary argument implies that the

number of collapsible tuples in any nondegenerate con�guration is a lower bound on the

depth of any r-linear decision tree.

Unfortunately, this approach seems to be doomed from the start. For any two

sets X and Y of real numbers, there are an in�nite number of query polynomials that are

positive at X and negative at Y. It follows that real con�gurations cannot contain collapsible

tuples. Moreover, for any set X of n real numbers, there is an algorithm which requires

only n queries to decide whether X satis�es any �xed linear satis�ability problem. Thus,

no single real con�guration is hard for every algorithm.

To get around this problem, we allow our adversary con�gurations to contain

elements of an ordered �eld of the form K = IR("1; : : : ; "m). Allowing the adversary to use

in�nitesimals lets us construct a con�guration with several collapsible tuples (Lemma 5.3),

even though such con�gurations are impossible if we restrict ourselves to the reals.

The algorithms we consider are only required to behave correctly when they are

given real input. Therefore, before applying our adversary argument, we must �rst eliminate

the in�nitesimals. The second step in our proof (Lemma 5.4) is to derive, for each r-linear

decision tree, a corresponding real con�guration with several relatively collapsible tuples

(de�ned below). This step follows from our in�nitesimal construction by a straightforward

application of Tarski's Transfer Principle.

Finally, the adversary con�gurations we construct in the �rst step (and by impli-

cation, the real con�gurations we get by invoking the Transfer Principle) contain several

r-tuples in the zeroset of �. Thus, the collapsible tuples do not immediately give us the lower

bound, since both the original con�guration and the collapsed con�guration are degenerate.

In the �nal step of the proof (Lemma 5.5), we show that these degenerate con�gurations can

be perturbed into general position. The lower bound then follows from our usual adversary

argument.

5.2.1 The In�nitesimal Adversary Con�guration

Our construction relies on an integer matrix M satisfying the following lemma.

Lemma 5.2. There exists an r� br=2c integer matrix M satisfying the following two con-

ditions.



52

(1) There are 
(ndr=2e) vectors v 2 f1; 2; : : : ; ngr such that M>v = 0.

(2) Every set of br=2c rows of M forms a nonsingular matrix.

Proof: Let M = (mij) be the r � br=2c integer matrix whose �rst dr=2e rows form a

Vandermonde matrix with mij = ij-1, and whose last br=2c rows form a negative identity

matrix. We claim that this matrix satis�es conditions (1) and (2).

We construct a vector v = (v1; v2; : : : ; vr) 2 f1; 2; : : : ; ngr such that M>v = 0 as

follows. Let mmax = dr=2ebr=2c-1 denote the largest element in M. Fix the �rst dr=2e
coordinates of v arbitrarily in the range

1 � vi �
�

n

dr=2emmax

�
:

Now assign the following values to the remaining br=2c coordinates:

vj =

dr=2eX
i=1

mi;j-dr=2evi:

Since eachmij is a positive integer, the vj are all positive integers in the range dr=2e � vj � n.

We easily verify that M>v = 0. There are�
n

dr=2emmax

�dr=2e
=

�
n

dr=2ebr=2c
�dr=2e

= 
(ndr=2e)

di�erent ways to choose the vector v. Thus,M satis�es condition (1).

Let M 0 be a matrix consisting of br=2c arbitrary rows of M. Using elementary

row and column operations, we can write

M 0 = W

24V 0

0 -I

35 ;
where W is a matrix with determinant �1, V is a square minor of a nonnegative Vander-

monde matrix, and I is an identity matrix. Since W, V 0, and I are all nonsingular, so isM 0.

Thus,M satis�es condition (2). 2

Lemma 5.3. There exists a con�guration X 2 Kn with 
(ndr=2e) collapsible tuples, for

some ordered �eld K.

Proof: We explicitly construct a con�gurationX 2 IR(�1; : : : ; �r-1; �1; : : : ; �br=2c; "1; : : : ; "r)

that satis�es the lemma. We assume without loss of generality that n is a multiple of r.
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Write � =
Pr

i=1 aiti with real coe�cients ai and formal variables ti. Let the

matrix M = (mij) be given by the previous lemma. Our con�guration X is the union of

r smaller sets Xi, each containing n=r elements xij de�ned as follows.

xij =
1

ai

0@(-1)i(�i-1 + �i) +

br=2cX
k=1

mik�kj+ "ij
2

1A
For notational convenience, we de�ne �0 = �r = 0.

We claim that any tuple (x1p1; : : : ; xrpr) satisfying the equationM
>(p1; : : : ; pr) = 0

is collapsible. By condition (1), there are 
((n=r)dr=2e) = 
(ndr=2e) such tuples. The ad-

versary collapses the tuple by replacing X with �X, with elements

�xij =
1

ai

0@(-1)i(�i-1 + �i) +

br=2cX
k=1

mik�kj+ "i(j- pi)
2

1A ;

or more succinctly, �xij = xij + "i(p
2
i - 2jpi)=ai.

For example, in the simplest nontrivial case r = 3, our adversary con�guration X

lies in the �eld IR(�1; �2; �1; "1; "2; "3). If we take M = (1; 1;-1)>, then X contains the

following elements, for all 1 � j � n=3:

x1j = (-�1 + �1j+ "1j
2)=a1;

x2j = ( �1 + �2 + �1j+ "2j
2)=a2;

x3j = ( - �2 + �1j+ "3j
2)=a3;

The indices of each allegedly collapsible tuple satisfy the equation p1 + p2 = p3, and the

corresponding collapsed con�guration �X has the following elements:

�x1j = (-�1 + �1j+ "1(j- p1)
2)=a1;

�x2j = ( �1 + �2 + �1j+ "2(j- p2)
2)=a2;

�x3j = ( - �2 + �1j+ "3(j- p3)
2)=a3:

Fix a tuple (x1p1 ; : : : ; xrpr) where M>(p1; : : : ; pr) = 0, and let �X be the corre-

sponding collapsed con�guration. We easily con�rm that the collapsed tuple (�x1p1; : : : ; �xrpr)

is degenerate. It remains to show that every other r-linear query expression has the same

sign in both X and �X.

To distinguish between the query polynomials and their value at a particular input,

let tij be the formal variable corresponding to each element xij in the con�guration X above.
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Consider the query polynomial Q =
Pr

i=1Qi, where for each i,

Qi = ai

n=rX
j=1

�ijtij;

and at most r of the coe�cients �ij are not zero. We refer to tij as a query variable if its

coe�cient �ij is not zero. We de�ne Ai and Ji as

Ai =

n=rX
j=1

�ij and Ji =

n=rX
j=1

�ijj:

We can rewrite the query expression Q(X) as a real linear combination of the

in�nitesimals as follows.

Q(X) =

rX
i=1

n=rX
j=1

�ij

�
(-1)i(�i-1 + �i) +

br=2cX
k=1

mik�kj+ "ij
2

�

=

rX
i=1

0@� n=rX
j=1

�ij

�
(-1)i(�i-1 + �i) +

� n=rX
j=1

�ijj

�� br=2cX
k=1

mik�k

�
+

� n=rX
j=1

�ijj
2

�
"i

1A
=

r-1X
i=1

(-1)i(Ai -Ai+1)�i +

br=2cX
k=1

� rX
i=1

mikJi

�
�k +

rX
i=1

� n=rX
j=1

�ijj
2

�
"i

Let us de�ne

Di = (-1)i(Ai -Ai+1); dk =

rX
i=1

mikJi; and ei =

n=rX
j=1

�ijj
2;

for each i and k, so that

Q(X) =

r-1X
i=1

Di�i +

br=2cX
k=1

dk�k +

rX
i=1

ei"i:

The sign of Q(X) is the sign of the �rst nonzero coe�cient in this expansion; in particular,

Q(X) = 0 if and only if every coe�cient is zero. Similarly, we can write

Q(�X) =

r-1X
i=1

Di�i +

br=2cX
k=1

dk�k +

rX
i=1

�ei"i;

where for each i,

�ei =

n=rX
j=1

�ij(j- pi)
2 = ei - 2piJi + p2iAi:
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If any of the coe�cients Di or dk is nonzero, then the �rst such coe�cient deter-

mines the sign of both Q(X) and Q(�X). Thus, it su�ces to consider only queries for which

every Di = 0 and every dk = 0. Note that in this case, all the Ai's are equal. There are

three cases to consider.

Case 1. Suppose no subset Xi contains exactly one of the query variables. (This

includes the case where all query variables belong to the same subset.) Then at most br=2c
of the Qi's are not identically zero, and it follows that Ai = 0 for all i. The vector J

consisting of the br=2c (or fewer) nonzero Ji's must satisfy the matrix equation (M 0)>J = 0,

whereM 0 is a square minor of the matrix M. By condition (2) above,M 0 is nonsingular, so

all the Ji's must be zero. It follows that �ei = ei for all i, which implies that Q(X) = Q(�X).

Case 2. Suppose some subset Xi contains exactly one query variable tij and some

other subset Xi 0 contains none. Then Ai = �ij and Ai 0 = 0. Since Ai and Ai 0 are equal, we

must have �ij = 0, but this contradicts the assumption that xkj is a query variable. Thus,

this case never happens.

Case 3. Finally, suppose each query variable comes from a di�erent subset. (This

includes the case of a direct query on what we claim is a collapsible tuple.) Recall that all

the Ai's are equal. Since we are only interested in the sign of the query, we can assume

without loss of generality that Ai = �ij = 1 for each query variable tij. Thus, each of

the coe�cients ei is positive, which implies that Q(X) is positive. Furthermore, unless the

query variables are exactly xipi for all i, each of the coe�cients �ei is also positive, which

means Q(�X) is also positive.

This completes the proof of Lemma 5.3. 2

5.2.2 Moving Back to the Reals

The con�gurations we construct are not directly usable in an adversary argument,

because the algorithms we consider are only required to be correct when given real input.

Thus, before we can apply our adversary argument, we must eliminate the in�nitesimals.

Since we know that a single real con�guration cannot be hard for every algorithm, we are

forced to derive, for each algorithm, a corresponding real con�guration that is hard for

that particular algorithm. Rather than constructing such con�gurations explicitly in terms
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of the coe�cients of the query polynomials, as was done in [56, 55], we nonconstructively

derive their existence from our in�nitesimal construction.

Let QA denote the set of query polynomials used by any r-linear decision tree A.

(We assume, without loss of generality, that QA includes all �(nr) direct queries, since

otherwise the algorithm cannot correctly detect all possible degenerate tuples.) For any

input con�guration X, we call an r-tuple of elements in X relatively collapsible if the

following properties are satis�ed.

(1) The tuple is nondegenerate.

(2) There exists another collapsed con�guration �X, such that the corresponding tuple in

�X is degenerate, but the sign of every other polynomial in QA is the same for both

con�gurations.

Clearly, any collapsible tuple is also relatively collapsible. To prove a lower bound, it su�ces

to prove, for each r-linear decision tree A, the existence of a corresponding nondegenerate

input con�guration with a large number of relatively collapsible tuples.

Lemma 5.4. For any r-linear decision tree A, there exists a real con�guration XA 2 IRn

with 
(ndr=2e) relatively collapsible tuples.

Proof: Fix A, and let X 2 Kn be the con�guration given by Lemma 5.3. Each of the

collapsible tuples in X is clearly also relatively collapsible. Each relatively collapsible tuple

Y in X corresponds to a polynomial �Y, such that �Y(X) = �(Y). Call the set of these

polynomials �.

It follows directly from the de�nitions that the following elementary formula holds

in K.

9X
^

�Y2�

�
�Y(X) 6= 0 ^ 9�X

�
�Y(�X) = 0 ^

^
q2QAnf�Yg

sgnq(X) = sgnq(�X)

��
This is just a convenient shorthand for the actual formula. Each reference to �Y(X) or

q(X) should be expanded into an explicit polynomial in X. The equation sgna = sgnb into

the boolean formula ((ab > 0)_ (a = 0^ b = 0)). Since the sets � and QA are �nite, the

expanded formula is also �nite and therefore elementary.

Since K is a subset of its real closure eK, and the formula is only existentially

quanti�ed, the formula also holds in eK. Thus, by the Transfer Principle, it also holds in IR.

The lemma follows immediately. 2
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With a little more care, we can show that the real con�gurations are derived by

replacing the in�nitesimals by su�ciently small and su�ciently well-separated real values,

but this is not necessary to prove our lower bounds.

5.2.3 Perturbing into General Position

One �nal problem remains. The adversary con�gurations we construct (and by

implication, the real con�gurations we get by invoking the previous lemma) are degenerate.

In simple cases, we can construct nondegenerate adversary con�gurations, but this becomes

considerably more di�cult as we consider larger values of r. Instead, we show nonconstruc-

tively that the existing degenerate con�gurations can be perturbed into general position.

Lemma 5.5. For any r-linear decision tree A, there exists a nondegenerate real con�gura-

tion X�A 2 IRn with 
(ndr=2e) relatively collapsible tuples.

Proof: As before, let QA denote the set of query polynomials used by A. Each query in

QA induces a hyperplane in the con�guration space IRn, and these hyperplanes de�ne a cell

complex, called the arrangement [62]. Color each hyperplane \red" if it corresponds to a

direct query, and \green" otherwise.

Each input con�guration corresponds to a point in some cell C in this arrangement.

Nondegenerate con�gurations correspond to points in n-dimensional cells; degenerate con-

�gurations correspond to points in cells of lower dimension. As long as we never change the

result of any query in QA, changing the entries in a con�guration corresponds to moving

the con�guration point within C. Collapsing a collapsible tuple moves the con�guration

point onto a boundary facet of C uniquely spanned by a red hyperplane. (That is, the red

hyperplane is the only hyperplane that contains the facet but not the entire cell.) To prove

the lemma, it su�ces to �nd a full-dimensional cell with 
(ndr=2e) red boundary facets.

Let C be an arbitrary cell, and let C 0 be one of the cells in its boundary. Any

hyperplane that uniquely spans a facet of C 0 also uniquely spans a facet of C. Thus, if

there is a cell of any dimension with 
(ndr=2e) red boundary facets, then there must be an

n-dimensional cell with 
(ndr=2e) red boundary facets. Since relatively collapsible tuples

correspond to red boundary facets, it su�ces to show that there exists a (possibly degen-

erate) real con�guration with 
(ndr=2e) relatively collapsible tuples. Such a con�guration

is guaranteed by Lemma 5.4. 2
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This lemma, together with our usual adversary argument, completes the proof of

Theorem 5.1.

5.3 Matching Nonuniform Upper Bounds

Our lower bound matches known upper bounds when r is odd, but is a logarithmic

factor away when r is even and greater than 2. We use the following result of Fredman [80]

to show that our lower bounds cannot be improved in this case.

Lemma 5.6 (Fredman). Let � be a subset of the n! orderings of f1; : : : ; ng for some

�xed n. There exists a comparison tree of depth at most log2(j�j) + 2n that sorts any

sequence of n numbers with order type in �.

Theorem 5.7. For any n and r > 2, there exists an r-linear decision tree with depth

O(ndr=2e) that solves any r-linear satis�ability problem with n inputs.

Proof: It su�ces to consider the case when r is even, since for any odd r there is a

simple uniform algorithm with running time O(n(r+1)=2). Suppose we are trying to satisfy

the equation
Pr

i=1 aiti = 0 for some �xed coe�cients ai 2 IR. Given a con�guration X =

(x1; : : : ; xn) 2 IRn, we (implicitly) construct sets J and K of nr=2 real numbers each2, as

follows:

J =

8<
:

r=2X
i=1

aixji

����� fj1; j2; : : : ; jr=2g � f1; 2; : : : ; ng

9=
;

K =

8<
:

r=2X
i=1

-ai+r=2xki

����� fk1; k2; : : : ; kr=2g � f1; 2; : : : ; ng

9=
;

Then X is degenerate if and only if the sets J and K share an element de�ned by tuples

whose index sets fjig and fkig are disjoint. We can detect this condition by sorting J [ K
using Fredman's \comparison" tree, which is really a r-linear decision tree.

Every pair of elements of J [ K induces a hyperplane in the con�guration space IRn.

There is a one-to-one correspondence between the cells in the resulting hyperplane ar-

rangement and the possible orderings of J [ K. Since an arrangement of N hyperplanes

2For any integer a � 0, the falling factorial power na is de�ned as n(n- 1) � � � (n- a+ 1) = n!=(n- a)!

[92].
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in IRD has at most
PD

i=0

�
N
i

�
= O(ND) cells [62], there are at most O((2nr=2)2n) =

O((2n)rn) possible orderings. It follows that the depth of Fredman's decision tree is at

most 4nr=2 +O(rn logn) = O(nr=2). 2

Of course, this result does not imply the existence of a single O(ndr=2e)-time

algorithm that works for all values of n. Closing the logarithmic gap between these upper

and lower bounds, even for the special case of sorting the Minkowski sum X+Y of two sets,

is a long-standing and very di�cult open problem. The closest result is an algorithm of

Steiger and Streinu [139] that sorts X+Y in O(n2 log n) time using only O(n2) comparisons.

5.4 Conclusions and Open Problems

We have developed a new general technique for proving lower bounds in decision

tree models of computation. We show that it su�ces to construct a single input con-

�guration, possibly degenerate and possibly containing in�nitesimals, containing several

collapsible tuples. Using this technique, we have proven 
(ndr=2e) lower bounds on the

depth of any r-linear decision tree that decides an r-variable linear satis�ability problem.

This is the best possible lower bound in this model.

An immediate open problem is to improve our lower bounds to stronger models of

computation. It seems \obvious" that linear queries with more variables or higher-degree

queries almost never give us useful information, and therefore can almost always be added

to our model of computation with impunity. Can we de�ne a general class of \allowable"

queries for linear satis�ability problems, as we did in the previous chapters?

Can the techniques developed in this chapter be applied to higher-order polynomial

satis�ability problems?

There are simple reductions from linear satis�ability problems to many other

higher-dimensional geometric problems. For example, �nding a d-tuple in the zeroset of

the polynomial
Pd

i=1 ti can be reduced to the d-dimensional a�ne degeneracy problem.

(See Lemma 2.3.) Several more good examples can be found in Gajentaan and Overmars'

collection of 3sum-hard problems [86]. Unfortunately, these reductions use primitives dis-

allowed by the models of computation in which our lower bounds hold. Consequently, our

linear satis�ability lower bounds do not imply lower bounds for these geometric problems.
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Can the techniques of this chapter be applied directly to higher-dimensional problems?

(My original presentation of these results [74] claimed to do just that, but the proofs were


awed; Lemma 4.1 in [74] is actually false.)

Ultimately, we would like to prove a lower bound larger than 
(n logn) for any

non-NP-hard polynomial satis�ability problem, in some general model of computation such

as linear decision trees, algebraic decision trees, or even algebraic computation trees. Linear

satis�ability problems seem to be good candidates for study.

\Now, even though their jumping is blind and wholly random, there are billions
upon billions of atoms in every interstice, and as a consequence of this great
number, their little skips and scamperings give rise to, among other things|
and purely by accident|to signi�cant con�gurations.... Do you know what a
con�guration is, blockhead?"

\No insults, please!" said Pugg. \For I am not your usual uncouth pirate, but
re�ned and with a Ph.D., and therefore extremely high-strung."

| Stanislaw Lem (translated by Michael Kandel), \The Sixth Sally, or How
Trurl and Klapaucius Created a Demon of the Second Kind to Defeat the

Pirate Pugg", The Cyberiad, 1974
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Part II

Divide-and-Conquer Lower Bounds

He who can properly de�ne and divide is to be considered a god.

| Plato, c. 400 BC

Great wits are sure to madness near allied,
And thin partitions do their bounds divide.

| John Dryden, Absalom and Achitophel, 1681
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Chapter 6

Hopcroft's Problem

In the early 1980's, John Hopcroft posed the following problem to several members

of the computer science community.

Given a set of n points and n lines in the plane, does any point lie on a line?

Hopcroft's problem arises as a special case of many other geometric problems, including

collision detection, ray shooting, and range searching.

The earliest sub-quadratic algorithm for Hopcroft's problem, due to Chazelle [32],

runs in time O(n1:695). (Actually, this algorithm counts intersections among a set of n

line segments in the plane, but it can easily be modi�ed to count point-line incidences

instead.) A very simple algorithm, attributed to Hopcroft and Seidel [51], described in

[62, p. 350], runs in time O(n3=2 log1=2 n). Cole, Sharir, and Yap [51] combined these two

algorithms, achieving a running time of O(n1:412). Edelsbrunner, Guibas, and Sharir [66]

developed a randomized algorithm with expected running time O(n4=3+") 1 ; see also [64].

A somewhat simpler algorithm with the same running time was developed by Chazelle,

Sharir, and Welzl [43]. Further research replaced the n" term in this upper bound with

a succession of smaller and smaller polylogarithmic factors. The running time was im-

proved by Edelsbrunner, Guibas, Hershberger, Seidel, Sharir, Snoeyink, and Welzl [63] to

O(n4=3 log4n) (expected); then by Agarwal [1] toO(n4=3 log1:78 n); then by Chazelle [35] to

O(n4=3 log1=3n); and most recently by Matou�sek [111] to n4=32O(log
�n). This is currently

the fastest algorithm known. Matou�sek's algorithm can be tuned to detect incidences among

1In time bounds of this form, " refers to an arbitrary positive constant. For any �xed value of ", the

algorithm can be tuned to run within the stated time bound. However, the multiplicative constants hidden
in the big-Oh notation depend on ", and tend to in�nity as " approaches zero.



63

n points andm lines in the plane in time O(n logm+n2=3m2=32O(log
�(n+m))+m logn) [54],

or more generally among n points and m hyperplanes in IRd in time

O
�
n logm+ nd=(d+1)md=(d+1)2O(log

�(n+m)) +m logn
�
:

The lower bound history is much shorter. The only previously known lower bound

is 
(n logm+m logn), in the algebraic decision tree and algebraic computation tree mod-

els, by reduction from the problem of detecting an intersection between two sets of real

numbers [138, 16].

In this chapter, we establish new lower bounds on the complexity of Hopcroft's

problem. We formally de�ne a general class of partitioning algorithms, which includes most

(if not all) of the algorithms mentioned above, and prove that any partitioning algorithm can

be forced to take time 
(n logm+n2=3m2=3+m logn) in two dimensions, or 
(n logm+

n5=6m1=2+n1=2m5=6+m logn) in three or more dimensions. We improve this lower bound

slightly in dimensions four and higher for the counting version of Hopcroft's problem, where

we want to know the number of incident point-hyperplane pairs.

Informally, a partitioning algorithm covers space with a constant number of (not

necessarily disjoint) connected regions, determines which points and hyperplanes intersect

each region, and recursively solves each of the resulting subproblems. The algorithm may

apply projective duality to reverse the roles of the points and hyperplanes, that is, to par-

tition the input according to which dual hyperplanes and dual points intersect each region.

The algorithm is also allowed to merge subproblems arbitrarily before partitioning. For

purposes of proving lower bounds, we assume that partitioning the points and hyperplanes

requires only linear time, regardless of the complexity of the regions or how they depend

on the input. We give a more formal de�nition of partitioning algorithms in Section 6.3.

To develop lower bounds in this model, we �rst de�ne a combinatorial representa-

tion of the relative order type of a set of points and hyperplanes, called a monochromatic

cover, and derive lower bounds on its worst case complexity. A monochromatic cover is a

partition of the sign matrix induced by the relative orientations of the points and hyper-

planes into (not necessarily disjoint) minors, such that all entries in each minor are equal.

The size of a cover is the total number of rows and columns in the minors. The main result

of this chapter (Theorem 6.19) is that the running time of any partitioning algorithm is

bounded below by the size of some monochromatic cover of its input.
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Some related results deserve to be mentioned here. Erd}os constructed a set of n

points and n lines in the plane with
(n4=3) incident point-line pairs [62, p. 112]. It follows

immediately that any algorithm that reports all incident pairs requires time 
(n4=3) in

the worst case. Of course, we cannot apply this argument to either the decision version

or the counting version of Hopcroft's problem, since the output size for these problems is

constant. Our planar lower bounds are ultimately based on the Erd}os con�guration.

Chazelle [33, 38] has established lower bounds for the closely related simplex

range searching problem: Given a set of points and a set of simplices, how many points

are in each simplex? For example, any data structure of size s that supports triangular

range queries among n points in the plane requires 
(n=
p
s) time per query [33]. It

follows that answering n queries over n points requires 
(n4=3) time in the worst case.

For the o�ine version of the same problem, where all the triangles are known in advance,

Chazelle establishes a slightly weaker bound of 
(n4=3= log4=3 n) [38], although an 
(n4=3)

lower bound follows immediately from the Erd}os construction using Chazelle's methods. In

higher dimensions, Chazelle's results imply lower bounds of 
(n2d=(d+1)= logd=(d+1) n) and


(n2d=(d+1)= log5=2-
 n) in the online and o�ine cases, respectively, where 
 > 0 is a small

constant that depends on d. All these lower bounds hold in the Fredman/Yao semigroup

arithmetic model; see Section 1.3. For related results, see also [23, 44].

Lower bounds in the semigroup model are based on the existence of con�gura-

tions of points and ranges, such as the planar Erd}os con�guration, whose incidence graphs

have (a subgraph with) no large complete bipartite subgraphs. Our lower bounds have a

similar basis. In Section 6.2, we develop point-hyperplane con�gurations of this type, nat-

urally generalizing the Erd}os con�guration to arbitrary dimensions. These con�gurations

also allow us to extend Chazelle's o�ine lower bounds to a counting version of Hopcroft's

problem.

6.1 Easy Quadratic Lower Bounds

In light of the results of Part I, it is natural to ask whether we can prove lower

bounds for Hopcroft's problem in a model of computation that allows only simple queries.

The appropriate primitive to consider is the relative orientation query : Given a point

and a hyperplane, does the point lie above, on, or below the hyperplane? Algebraically,

the result of a relative orientation query is given by the inner product of the homogeneous
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(a) (b)

Figure 6.1. An easy adversary construction for Hopcroft's problem. (a) The original adversary con�gura-

tion. (b) A collapsed con�guration.

coordinate vectors of the point and the hyperplane [140]. Surprisingly, we can easily es-

tablish a quadratic lower bound for Hopcroft's problem if this is the only primitive we are

allowed.

Theorem 6.1. Any decision tree algorithm that decides Hopcroft's problem in IRd for any

d � 1, using only relative orientation queries, must have depth at least nm.

Proof: The lower bound follows from a simple adversary argument. The adversary presents

the algorithm with a set of n points and m hyperplanes in which every point is above every

hyperplane. If the algorithm does not perform a relative orientation query for some point-

hyperplane pair, the adversary can move that point onto that hyperplane without changing

the relative orientation of any other pair. See Figure 6.1. The algorithm cannot tell the

two con�gurations apart, even though one has an incidence and the other does not. Thus,

in order to be correct, the algorithm must perform a relative orientation query for every

point-hyperplane pair. 2

Obviously, this lower bound is tight.

In dimensions higher than one, we can considerably strengthen the model of com-

putation in which this quadratic lower bound holds. We will explicitly describe only the

two-dimensional case; generalization to higher dimensions is straightforward. Our new

model of computation is a decision tree with three types of primitives: relative orienta-

tion queries, point queries, and line queries. A point query is any decision that is based

exclusively on the coordinates the input points. Line queries are de�ned analogously. We

emphasize that point queries can combine information from any number of points, and line



66

P

Q

Figure 6.2. A harder adversary construction for Hopcroft's problem. The white point in Q is on the dark

line; otherwise, every point is above every line.

queries from any number of lines. We call a point query algebraic if the result is given by

the sign of a multivariate polynomial, not necessarily of bounded degree, evaluated at the

point coordinates.

Theorem 6.2. Any decision tree algorithm that solves Hopcroft's problem in the plane,

using only relative orientation queries, algebraic point queries, and (arbitrary) line queries,

must make at least nm relative orientation queries in the worst case.

Proof: For any real number x0, let P(x0) denote the set of n points


�
x0; x

2
0

�
;
�
x0 + 1; (x0+ 1)2

�
; : : : ;

�
x0 + n- 1; (x0+ n- 1)2

��
;

and let L(x0) denote the set of m lines tangent to the unit parabola y = x2 at the points


�
x0 + n; (x0 + n)2

�
;
�
x0 + 2n; (x0 + 2n)2

�
; : : : ;

�
x0 +mn; (x0 +mn)2

��
:

As before, our lower bound follows from an adversary argument. The adversary

initially presents the points P = P(x0) and the lines L = L(x0), for some real value x0

to be speci�ed later. If the algorithm does not perform a relative orientation query for

the ith point and the jth line, then the adversary replaces the points with the new set

Q = P(x0 + in - j + 1). We easily verify that in the new con�guration, the ith point and

the jth line are incident, but otherwise, every point is above every line. See Figure 6.2.
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Since the adversary does not change the lines, no line query can distinguish be-

tween the two con�gurations. It remains only to consider the point queries. The result of

any algebraic point query in P(x) is given by the sign of a polynomial in the single variable

x. Let rmax be the largest root of all the point query polynomials used by the algorithm,

ignoring those that are identically zero. If x1 and x2 are both larger than rmax, then every

point query polynomial has the same sign at both P(x1) and P(x2). Thus, if the adversary

�xes x0 > rmax, then the algorithm cannot distinguish between the original point set P and

any of the collapsed point sets Q using point queries.

It follows that the algorithm cannot be correct unless it performs a relative orien-

tation query for every pair. 2

Our restriction to algebraic point queries is actually stronger than the result re-

quires; it su�ces that for all x in some su�ciently large interval, the result of every point

query on the set P(x) is constant. If we rephrase this argument in the dual space, we get

a quadratic lower bound in a model that allows arbitrary point queries but requires line

queries to be algebraic.

These adversary arguments actually give us a quadratic lower bound for the much

easier halfspace emptiness problem \Is every point above every hyperplane?". We consider

this problem in greater detail in the next chapter. Our arguments can easily be modi�ed to

apply to almost any range searching problem, and a wide range of other related problems;

see [78]. We leave the details and further generalizations as exercises for the reader.

Of course, none of the sub-quadratic algorithms listed previously follow the models

of computation considered in this section. Unlike the degeneracy problems considered in

Part I, there does not appear to be a small �xed set of primitives that are used by all known

algorithms for Hopcroft's problem. Many algorithms de�ne several levels of higher-order

geometric objects, and some of their decisions are based on large fractions of the input.

In light of our results, it is clear that higher-order primitives that involve both

points and lines, such as \Is this point to the left or right of the intersection of these two

lines?", are necessary to achieve nontrivial upper bounds. If we allow any primitives of

this type, however, it seems unlikely that our earlier adversary techniques can be used to

derive nontrivial lower bounds, either for Hopcroft's problem or for other range searching

problems. We leave the development of such lower bounds as an interesting open problem.
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6.2 Incidences and Monochromatic Covers

Let P = fp1; p2; : : : ; png be a set of points and H = fh1; h2; : : : ; hmg be a set

of hyperplanes in IRd. These two sets naturally induce a relative orientation matrix

M(P;H) 2 f+; 0;-gn�m. Each row of M(P;H) corresponds to one of the points in P; each

column corresponds to a hyperplane in H; and the (i; j)th entry denotes whether the point

pi is above (+), on (0), or below (-) the hyperplane hj. Any minor of the matrix M(P;H)

is itself a relative orientation matrix M(P 0; H 0), for some P 0 � P and H 0 � H.

We call a sign matrix monochromatic if all its entries are equal. A minor cover

of a matrix is a set of minors whose union is the entire matrix. If every minor in the cover

is monochromatic, we call it a monochromatic cover. The size of a minor is the number of

rows plus the number of columns, and the size of a minor cover is the sum of the sizes of the

minors in the cover. Given a set of points and hyperplanes, a monochromatic cover of its

relative orientation matrix provides a succinct combinatorial representation of its relative

order type.

We similarly de�ne a succinct representation for the incidence structure of a set of

points and hyperplanes. A zero cover of P and H is a collection of monochromatic minors

that covers all (and only) the zeros in the relative orientation matrix M(P;H). A zero cover

can also be interpreted as a partition of the incidence graph induced by P and H into (not

necessarily disjoint) complete bipartite subgraphs.

Monochromatic covers for 0-1 matrices have been previously used to prove lower

bounds for communication complexity problems [106]. Typically, however, these results

make use of the number of minors in the cover, not the size of the cover as we de�ne it here.2

Covers of bipartite graphs by complete subgraphs were introduced by Tarj�an [145] in the

context of switching theory. Tuza [149], and independently Chung, Erd}os, and Spencer [45],

showed that every n �m bipartite graph has such a cover of size O(nm= log(max(m;n)))

and that this bound is tight in the worst case, up to constant factors. These results apply

immediately to monochromatic covers of arbitrary sign matrices. See also [2] for a geometric

application of bipartite clique covers.

Relative orientation matrices are de�ned in terms of a �xed (projective) coordinate

system, which determines what it means for a point to be \above" or \below" a hyperplane.

2Since any row or column can be split into three or fewer monochromatic minors, any sign matrix can

be covered by 3min(m;n) such minors. Furthermore, there are sets of n points and m lines in the plane
whose relative orientation matrices require 3min(m;n) monochromatic minors to cover them.
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Figure 6.3. Collections of points and lines with simple relative orientation matrices.

This coordinate system determines which minors of the relative orientation matrix are

monochromatic, and therefore determine the minimum monochromatic cover size. However,

we easily observe that the minimum monochromatic cover size is independent of any choice

of coordinate system, up to a factor of two, as follows. Call a relative orientation matrix

simple if it can be changed into a monochromatic matrix by inverting some subset of the

rows and columns. Projective transformations preserve simple minors. See Figure 6.3.

Every monochromatic minor is simple, and every simple minor can be partitioned into four

monochromatic minors, whose total size is twice that of the original minor.

We will use the following notation throughout the rest of the chapter. Given a

set P of points and H of hyperplanes, let I(P;H) denote the number of point-hyperplane

incidences, �(P;H) the minimum size of their smallest zero cover, and �(P;H) the size of

their smallest monochromatic cover. Let Id(n;m) denote the maximum of I(P;H) over all

sets P of n points and all sets H ofm hyperplanes in IRd, and de�ne �d(n;m) and �d(n;m)

similarly. Finally, let ��d(n;m) denote the maximum of �(P;H) over all sets of n points

and m hyperplanes in IRd with no incidences. In the remainder of this section, we develop

asymptotic lower bounds for ��d(n;m) and �d(n;m), which in turn imply lower bounds

for �d(n;m).

6.2.1 One Dimension

In one dimension, points and hyperplanes are both just real numbers. We can

always permute the rows and columns of the relative orientation matrix of two sets of

numbers, by sorting the sets, so that the number of + (resp. -) entries in successive rows
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or columns is nonincreasing (resp. nondecreasing). The matrix can then be split into two

\staircase" matrices, one positive and one negative, and a collection of zero minors of total

size at most n+m. We immediately observe that �1(n;m) = n +m.

Theorem 6.3. ��1(m;n) =

8>>>><
>>>>:

�(n logn=mm) if n > m

�(n log n) if n = m

�(m logm=n n) if n < m

Proof: Without loss of generality, we assume n and m are both powers of two. It su�ces

to bound the cover size of a monochromatic staircase with n rows and m columns.

First consider the simplest case, n = m. To prove the upper bound, we construct

a cover of an arbitrary n�n staircase matrix by partitioning the staircase into an n=2� k

monochromatic minor and two smaller staircases, where k is the number of entries in the

n=2th row of the original matrix. The total size C(n; n) of this cover is bounded by the

recurrence

C(n; n) � max
0�k�n

(n=2+ k + C(n=2; k) + C(n=2; n- k))

whose solution is C(n; n) � (3n=2) lgn.

To prove the matching lower bound, it su�ces to consider a triangular matrix,

where for all i, the ith row has i entries. We claim that any cover for this matrix must have

size at least (n=2) lgn. Fix a cover. Partition the staircase into an n=2 � n=2 rectangle

and two n=2 � n=2 staircases. If a minor in the cover intersects the lower triangle, call it

a lower minor; otherwise, call it an upper minor. The upper (resp. lower) minors induce

a cover of the upper (resp. lower) triangle, of size at least (n=4) lg(n=2), by induction. It

remains to bound the contribution of the rectangle to the total cover size.

If some row in the rectangle is completely contained in lower minors, then those

lower minors have (altogether) n=2 more columns than we accounted for in the induction

step. Otherwise, every row contains an element of an upper minor, and those upper minors

have (altogether) n=2 more rows than we accounted for in the induction step. Thus, the

rectangle contributes at least n=2 to the total cover size. This completes the proof for the

case n = m.

Now suppose n > m. An explicit recursive construction gives us a cover of size

O(n logn=mm) for any n�m staircase. An inductive counting argument implies that any
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cover of the n�m triangular matrix, whose ith row has dim=ne entries, must have size at
least (n=2) logn=mm. In both arguments, we start by dividing the n rows of the matrix into

n=m slabs of m rows each, and cutting each slab into a maximal rectangle and a smaller

staircase. We leave the details as an easy exercise.

The �nal case n < m is handled symmetrically. 2

This bound simpli�es to �(n+m) when either n = O(mk) or m = O(nk) for any

constant k < 1, and to �(n log n) when n = �(m). In the special case n = m, our upper

bound proof is nothing more than an application of quicksort. The connection between the

size of the monochromatic cover and the running time of the divide-and-conquer algorithm

is readily apparent in this case. In Section 6.3, we generalize this connection to higher

dimensions.

6.2.2 Two Dimensions

To derive lower bounds for ��2(n;m) and �2(n;m), we use the following combina-

torial result of Erd}os. (See [82] or [62, p.112] for proofs.)

Lemma 6.4 (Erd}os). For all n andm, there is a set of n points andm lines in the plane

with 
(n+ n2=3m2=3 +m) incident pairs. Thus, I2(n;m) = 
(n+ n2=3m2=3 +m).

Fredman [82] uses Erd}os' construction to prove lower bounds for dynamic range

query data structures in the plane.3 This lower bound is asymptotically tight. The corre-

sponding upper bound was �rst proven by Szemer�edi and Trotter [143]. A simpler proof,

with better constants, was later given by Clarkson, Edelsbrunner, Guibas, Sharir, and

Welzl [46]. A completely elementary proof has recently discovered by Sz�ekely [119].

Theorem 6.5. �2(n;m) = 
(n+ n2=3m2=3 +m)

Proof: It is not possible for two distinct points to both be adjacent to two distinct lines;

any mutually incident set of points and lines has either exactly one point or exactly one

line. It follows that for any set P of points and H of lines in the plane, �(P;H) � I(P;H).

The theorem now follows from Lemma 6.4. 2

Theorem 6.6. ��2(n;m) = 
(n+ n2=3m2=3 +m)

3Perhaps it is more interesting that Chazelle's static lower bounds [33, 38] do not use this construction.



72

Proof: Consider any con�guration of n points and m=2 lines with 
(n+ n2=3m2=3 +m)

point-line incidences, as given by Lemma 6.4. Replace each line ` in this con�guration with

a pair of lines, parallel to ` and at distance " on either side, where " is chosen su�ciently

small that all point-line distances in the new con�guration are at least ". The resulting

con�guration of n points and m lines clearly has no point-line incidences. We call a point-

line pair in this con�guration close if the distance between the point and the line is ".

There are 
(n+ n2=3m2=3 +m) such pairs.

Now consider a single monochromatic minor in the relative orientation matrix of

these points and lines. Let P 0 denote the set of points and H 0 the set of lines represented

in this minor. We claim that the number of close pairs between P 0 and H 0 is small.

Without loss of generality, we can assume that all the points are above all the

lines. If a point is close to a line, the point must be on the convex hull of P 0, and the line

must support the upper envelope of H 0. Thus, we can assume that both P 0 and H 0 are in

convex position. In particular, we can order both the points and lines from left to right.

Either the leftmost point is close to at most one line, or the leftmost line is close to

at most one point. It follows inductively that the number of close pairs is at most jP 0j+ jH 0j,

which is exactly the size of the minor. The theorem follows immediately. 2

6.2.3 Three Dimensions

The technique we used in the plane does not generalize immediately to higher

dimensions. Even in three dimensions, there are collections of points and planes where

every points is incident to every plane. See Figure 6.4. In order to derive a lower bound

for either �3(m;n) or ��3(n;m), we need a con�guration of points and planes with many

incidences, but without large sets of mutually incident points and planes. In the following

lemma, we construct such a con�guration, naturally generalizing Erd}os' planar construction.

We use the notation [n] to denote the set of integers f1; 2; : : : ; ng; i ? j to mean

that i and j are relatively prime; and '(n) to denote the Euler totient function '(n), the

number of positive integers less than or equal to n that are relatively prime to n.

Our construction relies on the following lemma, whose (simple) proof we omit.

We refer the reader to [98] or [92] for relevant background.

Lemma 6.7.
Pn

i=1 i
k'(i) = �(nk+2) for any nonnegtive integer k.
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Figure 6.4. I3(n;m) =mn. Every point lies on every plane.

Lemma 6.8. For all n and m such that bn1=3c < m, there exists a set P of n points and

a set H of m planes, such that I(P;H) = 
(n5=6m1=2) and any three planes in H intersect

in at most one point.

Proof: Fix su�ciently large n and m such that bn1=3c < m. Let h(a; b; c; i; j) denote the

plane passing through the points (a; b; c), (a + i; b + j; c), and (a + i; b; c + i - j). Let

p = bn1=3c and q = b�(m=p)1=4c for some suitable constant � > 0. (Note that with n

su�ciently large and m in the indicated range, p and q are both positive integers.)

Now consider the points P = [p]3 = f(x; y; z) j x; y; z 2 [p]g and the hyperplanes

H =


h(a; b; c; i; j)

��� i 2 [q]; j 2 [i]; i ? j; a 2 [i]; b 2 [j]; c 2
h
bp=2c

i�
The number of planes in H is

jp
2

k qX
i=1

i

iX
j=1
j?i

j =
jp
2

k qX
i=1

i2'(i)

2
= O(pq4) = O(m):

By choosing the constant � appropriately and possibly adding in o(m) extra planes, we

can ensure that H contains exactly m planes. We claim that this collection of points and

planes satis�es the lemma.

Since any rational plane can be represented in the form h(a; b; c; i; j) in an in�nite

number of di�erent ways, we must �rst check that the planes in H are actually distinct!

Consider a single plane h = h(a; b; c; i; j) 2 H. Since i, j, and i - j are pairwise relatively

prime, h intersects exactly one point (x; y; z) such that x 2 [i] and y 2 [j], namely, the point

(a; b; c). Thus, for each �xed i and j we use, the planes h(a; b; c; i; j)2 H are distinct. Since

planes with di�erent \slopes" are clearly di�erent, H contains m distinct planes.
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For all k 2 [bp=2ic], the intersection of h(a; b; c; i; j) 2 H with the plane x = a+ ki

contains at least k points of P. It follows that

���P \ h(a; b; c; i; j)���� bp=2icX
k=1

k >
1

2

j p
2i

k2
:

Thus, the total number of incidences between P and H can be calculated as follows.

I(P;H) �
jp
2

k qX
i=1

i

iX
j=1
j?i

j

2

j p
2i

k2

�
jp
2

k3 qX
i=1

iX
j=1
j?i

j

2i

=
jp
2

k3 qX
i=1

'(i)

4

= 
(p3q2)

= 
(n5=6m1=2)

Finally, If H contains three planes that intersect in a line, the intersection of those

planes with the plane x = 0 must consist of three concurrent lines. It su�ces to consider

only the planes passing through the point (1; 1; 1), since for any other triple of planes in

H there is a parallel triple passing through that point. The intersection of h(1; 1; 1; i; j)

with the plane x = 0 is the line through (0; 1- j=i; 1) and (0; 1; j=i). Since i ? j, each such

plane determines a unique line. Furthermore, since all these lines are tangent to a parabola,

no three of them are concurrent. It follows that the intersection of any three planes in H

consists of at most one point. 2

Edelsbrunner, Guibas, and Sharir [64] prove an upper bound of O(n logm +

n4=5+2"m3=5-"+m) on the maximum number of incidences between n points andm planes,

where no three planes contain a common line. The probabilistic counting techniques of

Clarkson et al. [46] imply the better upper bound O(n+n4=5m3=5+m). We omit further

details.

Theorem 6.9. �3(n;m) = 
(n+ n5=6m1=2 + n1=2m5=6 +m)

Proof: Consider the case n1=3 < m � n. Fix a set P of n points and a set H of m

hyperplanes satisfying Lemma 6.8. Any mutually incident subsets of P and H contain
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either at most one point or at most two planes. Thus, the number of entries in any zero

minor of M(P;H) is at most twice the size of the minor. It follows that any zero cover of

M(P;H) must have size 
(I(P;H)) = 
(n5=6m1=2). The dual construction gives us a lower

bound of 
(n1=2m5=6) for all m in the range n � m < n3, and the trivial lower bound


(n+m) applies for other values of m. 2

Lemma 6.10. Let P be a set of n points and H a set of m planes in IR3, such that every

point in P is either on or above every plane in H, and any three planes in H intersect in at

most one point. Then I(P;H)� 2(m+ n).

Proof: Call any point (resp. plane) lonely if it is incident to less than three planes (resp.

points). Without loss of generality, we can assume that none of the points in P or planes

in H is lonely, since each lonely point and plane contributes at most two incidences.

No point in the interior of of the convex hull of P can be incident to a plane in H.

Any point in the interior of a facet of the convex hull can be on at most one plane in H.

Consider any point p 2 P in the interior of an edge of the convex hull. Any plane containing

p also contains the two endpoints of the edge. There cannot be more than two such planes

in H, so p must be lonely. It follows that every point in P is a vertex of the convex hull

of P.

No plane can contain a point unless it touches the upper envelope of H. Any plane

that only contains a vertex of the upper envelope must be lonely. For any plane h that

contains only an edge of the envelope, two other planes also contain that edge, and any

points on h must also be on the other two planes. Then h must be lonely, since any three

planes in H intersect in at most one point. It follows that every plane in H spans a facet of

the upper envelope of H. Furthermore, every point in P is a vertex of this upper envelope.

Construct a bipartite graph with vertices P and H and edges corresponding to

incident pairs. This bipartite graph is clearly planar, and thus has at most 2(m + n)

edges. 2

Theorem 6.11. ��3(n;m) = 
(n+ n5=6m1=2 + n1=2m5=6 +m)

Proof: Consider the case 2n1=3 < m � n. Fix a set P of n points and a set H of m=2

hyperplanes satisfying Lemma 6.8. Replace each plane h 2 H with a pair of parallel planes

at distance " on either side of h, for some suitably small constant " > 0. Call the resulting
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Figure 6.5. Comparison of lower bounds for ��2(n;m) and ��3(n;m). See Theorems 6.6 and 6.11.

set of m planes H". We say that a point is close to a plane if the distance between them

is exactly ". There are 
(n5=6m1=2) close pairs between P and H", and no incidences.

Call a sign matrix loosely monochromatic if either none of its entries is + or

none of its entries is -. For any subsets P 0 � P and H 0 � H, Lemma 6.10 implies that if

M(P 0; H 0) is loosely monochromatic, then I(P 0; H 0) = O(jP 0j+ jH 0j).

For every monochromatic minor of the matrix M(P;H"), the corresponding minor

of M(P;H) is loosely monochromatic. Furthermore, there is a one-to-one correspondence

between the close pairs in the �rst minor and the incident pairs in the second. It follows

that any monochromatic minor of M(P;H") orients only a linear number of close pairs.

Thus, any monochromatic cover for P and H" must have size 
(n5=6m1=2).

Similar arguments apply to other values of m. 2

For the special case m = �(n), this theorem does not improve the 
(n4=3) bound

we derived earlier for the planar case. For all other values ofm between
(n1=3) andO(n3),

however, the new bound is an improvement. See Figure 6.5.

6.2.4 Higher Dimensions

In order to generalize Lemma 6.8 to arbitrary dimensions, we need the following

rather technical lemma. Let us de�ne two series fi(t) and Fi(t) of polynomials as f1(t) = 1,

fi(t) = t+ i- 2 for all i > 1, and Fi(t) =
Qi-1

j=1 fj(t) for all i.
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Lemma 6.12. Let t1; t2; : : : ; td be distinct real numbers such that fj(ti) 6= 0 for all 1 �
i; j � d. The d � d matrix M, whose (i; j)th entry is 1=fj(ti), is nonsingular.

Proof: Let V be the d�d Vandermonde matrix whose (i; j)th entry is t
j-1
i . Since the ti are

distinct, V is nonsingular. We prove the lemma by converting M into V using elementary

row and column operations. We transform the matrix inductively, one column at a time.

Transforming the �rst column is trivial.

The inductive step is somewhat easier to understand if we focus on a single row

of M, and think of it as a vector of rational functions in some formal variable t, instead

of a vector of real numbers. Suppose we have already transformed the �rst d - 1 entries

inductively, and we are now ready to transform the last entry. The �rst step is to multiply

the entire vector by fd(t); this ensures that every entry in the vector is a polynomial. By

induction, the dth entry is now Fd(t), and for all j < d, the jth entry is now fd(t) � tj-1 =

tj + (d - 2)tj-1. It remains to show that we can transform this vector of polynomials into

the vector (1; t; t2; : : : ; td-1).

Write the coe�cients of the polynomials into a d � d matrix C, whose (i; j)th

entry ci;j is the coe�cient of ti-1 in the jth polynomial. The only nonzero entries in C

are the coe�cients of Fd(t) in the last column, (d - 2)'s in rest of the main diagonal, and

ones in the next lower diagonal. For example, when d = 4, our vector of polynomials is

(t+ 2; t2 + 2t; t3 + 2t2; t2 + t), and

C =

2666664
2 0 0 0

1 2 0 1

0 1 2 1

0 0 1 0

3777775 :

Recall that the determinant of C is de�ned as follows.

detC
4

=
X
�2Sd

 
sgn(�)

dY
i=1

ci;�(i)

!

The only permutations that contribute to the determinant are those that start down the

main diagonal, jump to the last column, and then �nish along the lower diagonal. It

follows that detC = (-1)dFd(2- d). Since 2- d is not a root of Fd(t), we conclude that C

is nonsingular.
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Thus, there is a series of column operations that convertC into the identity matrix.

Since each column of C contains the coe�cients of a polynomial in the corresponding column

of M, the same column operations complete the transformation of M into V. 2

Lemma 6.13. For any bn1=dc < m, there exists a set P of n points and a set H of m

hyperplanes in IRd, such that I(P;H) = 
(n1-2=d(d+1)m2=(d+1)) and any d hyperplanes in

H intersect in at most one point.

Proof (sketch): First consider the case d = 4. Let h(a; b; c; d; i; j) denote the hyperplane

passing through the four points

(a; b; c; d) (a+ i; b+ j; c; d) (a+ i; b; c+ i+ j; d) (a+ i; b; c; d+ 2i+ j):

Let p = bn1=4c and q = b�(m=p)1=5c for some suitable constant � > 0. Then P = [p]4 and

H is the set of hyperplanes h(a; b; c; d; i; j) satisfying the following set of conditions.

i 2 [q]; j 2 [i]; j is odd; i ? j

a 2 [i]; b 2 [j]; c 2 [i+ j]; d 2
h
bp=2c

i
Note that j is odd and relatively prime with i if and only if i, j, i+ j, and 2i+ j are pairwise

relatively prime. This condition is necessary to establish that the hyperplanes in H are

distinct. It follows from straightforward algebraic manipulation, similar to that used in the

proof of Lemma 6.8, that jHj = O(pq5) = O(m) and I(P;H) = 
(p4q2) = 
(n9=10m2=5).

To establish that no four hyperplanes in H intersect in a common line, we examine

the intersection of each hyperplane h(1; 1; 1; 1; i; j) 2 H with the hyperplane x1 = 0. This

intersection is the plane

1

i
+
x2 - 1

j
+
x3 - 1

i + j
+
x4 - 1

2i + j
= 0:

It follows from Lemma 6.12, by setting tk = jk=ik for all k, that no four of these planes are

concurrent.

Now consider the d-dimensional case. Let ei denote the unit vector whose ith

coordinate is 1 and whose other coordinates are 0. For any point x 2 IRd, let h(x; i; j)

denote the a�ne hull of x and the points x+ ie1 + ((k- 2)i + j)ek for all 2 � k � d. Let

p = bn1=dc and q = b�(m=p)1=(d+1)c for some suitable constant � > 0. Then P = [p]d; and

H is the set of hyperplanes h(x; i; j) such that i; j; i+ j; 2i+ j; : : : ; (d- 2)i+ j are pairwise

relatively prime; x1 2 [i]; xk 2 [(k- 2)i+ j] for all 2 � k � d; and xd 2 [bp=2c].
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The relative primality conditions on i and j imply that the hyperplanes in H are

distinct. The bounds jHj = O(pqd+1) = O(m) and

I(P;H) = 
(pdq2) = 
(n1-2=d(d+1)m2=(d+1))

follow from straightforward algebraic manipulation. Finally, Lemma 6.12 implies that any

d hyperplanes in H intersect in a unique point. We omit further details. 2

Note that the lower bound for dimension d only improves the bound for dimension

d - 1 when n = 
(m(d-1)=2). Again, using probabilistic counting techniques [46], we can

prove an upper bound of I(P;H) = O(n+n(2d-2)=(2d-1)md=(2d-1)+m) if any d hyperplanes

in H intersect in at most one point.

The previous lemma immediately gives us the following lower bound for �d(n;m).

Theorem 6.14. �d(n;m) = 


�
dP
i=1

�
n1-2=i(i+1)m2=(i+1) + n2=(i+1)m1-2=i(i+1)

��
Since our d-dimensional lower bound only improves our (d- 1)-dimensional lower

bound for certain values of n andm, we have combined the lower bounds from all dimensions

1 � i � d into a single expression. If the relative growth rates of n and m are �xed, the

entire sum can be reduced to a single term.

Unfortunately, we are unable to generalize Lemma 6.10 even into four dimensions.

Consequently, the best lower bound we can derive for ��d(n;m) for any d > 3 derives triv-

ially from Theorem 6.11. The best upper bound we can prove for the number of incidences

between n points and m hyperplanes in IR4, where every point is above or on every hy-

perplane and no four hyperplanes contain a line, is O(n + n2=3m2=3 + m). (See [70] for

the derivation of a similar upper bound.) No superlinear lower bounds are known in any

dimension, so there is some hope for a linear upper bound.

However, we can achieve a superlinear number of incidences in �ve dimensions,

under a weaker combinatorial general position requirement. Thus, unlike in lower dimen-

sions, some sort of geometric general position requirement is necessary to keep the number

of incidences small.

Lemma 6.15. For all n andm, there exists a set P of n points and a set H ofm hyperplanes

in IR5, such that every point is on or above every hyperplane, no two hyperplanes in H

contain more than one point of P in their intersection, and I(P;H) = 
(n+n2=3m2=3+m).
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Proof: De�ne the function � : IR3 ! IR6 as follows.

�(x; y; z) = (x2; y2; z2;
p
2xy;

p
2 yz;

p
2xz)

For any v;w 2 IR3, we have h�(v); �(w)i = hv;wi2, where h�; �i denotes the usual inner

product of vectors. In a more geometric setting, � maps points and lines in the plane,

represented in homogeneous coordinates, to points and hyperplanes in IR5, also represented

in homogeneous coordinates [140]. For any point p and line ` in the plane, the point �(p)

is incident to the hyperplane �(`) if and only if p is incident to `; otherwise, �(p) lies above

�(`). Thus, we can take P and H to be the images under � of any sets of n points and m

lines with 
(n+ n2=3m2=3 +m) incidences, as given by Lemma 6.4. 2

6.2.5 A Lower Bound in the Semigroup Model

Our results immediately imply a lower bound for a variant of the counting version

of Hopcroft's problem, in the Fredman/Yao semigroup arithmetic model. The lower bound

follows from the following result of Chazelle [38, Lemma 3.3]. (Chazelle's lemma only deals

with the case n = m, but his proof generalizes immediately to the more general case.)

Lemma 6.16 (Chazelle). If A is an n �m incidence matrix with I ones and no p � q

minor of ones, then the complexity of computing Ax over a semigroup is 
(I=pq- n=p).

Theorem 6.17. Given n weighted points and m hyperplanes in IRd,




 
dX
i=1

�
n1-2=i(i+1)m2=(i+1) + n2=(i+1)m1-2=i(i+1)

�!

semigroup operations are required to determine the sum of the weights of the points on

each hyperplane, in the worst case.

Proof: The lower bound follows immediately from Lemma 6.13. 2

As in Theorem 6.14, we have combined the best lower bounds from several dimen-

sions into a single expression. When m = �(n), this bound simpli�es to 
(n4=3), which

already follows immediately from Chazelle's lemma and the Erd}os construction. For all

other values of m between
(n1=d) and O(nd), however, the new bound is an improvement

over any previously known lower bounds for this problem. The best known upper bound

is given by Matou�sek's algorithm [111].
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6.3 Partitioning Algorithms

A partition graph is a directed acyclic graph, with one source, called the root,

and several sinks, or leaves. Associated with each non-leaf node v is a set Rv of query

regions , satisfying three conditions.

(1) The cardinality of Rv is at most some constant � � 2.

(2) Each region in Rv is connected.

(3) The union of the regions in Rv is IR
d.

(We do not require the query regions to be disjoint, convex, simply connected, semi-

algebraic, or of constant combinatorial complexity.) In addition, every non-leaf note v

is either a primal node or a dual node, depending on whether its query regions Rv should

be interpreted as a partition of primal or dual space. Each query region in Rv corresponds

to an outgoing edge of v. Thus, the outdegree of the graph is at most �.

Given sets P of points and H of hyperplanes as input, a partitioning algorithm

constructs a partition graph, which can depend arbitrarily on the input, and uses it to

drive the following divide-and-conquer process. The algorithm starts at the root and pro-

ceeds through the graph in topological order. At every node except the root, points and

hyperplanes are passed in along incoming edges from preceding nodes. For each node v,

let Pv � P denote the points and Hv � H the hyperplanes that reach v; at the root, we

have Proot = P and Hroot = H. At every non-leaf node v, the algorithm partitions the sets

Pv and Hv into (not necessarily disjoint) subsets by the query regions Rv and sends these

subsets out along outgoing edges to succeeding nodes. If v is a primal node, then for every

query region R 2 Rv, the points in Pv that are contained in R and the hyperplanes in Hv

that intersect R traverse the outgoing edge corresponding to R. If v is a dual node, then for

every query region R 2 Rv, the points p 2 Pv whose dual hyperplanes p
� intersect R and

the hyperplanes h 2 Hv whose dual points h
� are contained in R traverse the corresponding

outgoing edge. Note that a single point or hyperplane may enter or leave a node along

several di�erent edges.

For the purpose of proving lower bounds, the entire running time of the algorithm

is given by charging unit time whenever a point or hyperplane traverses an edge. In partic-

ular, we do not charge for the construction of the partition graph or its query regions, nor
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for the time that would be required in practice to decide if a point or hyperplane intersects

a query region. As a result, partitioning algorithms are e�ectively nondeterministic. In

principle, the algorithm has \time" to compute the optimal partition graph for its input,

and even very similar inputs might result in radically di�erent partition graphs.

To solve Hopcroft's problem, the algorithm reports an incidence if and only if

some leaf in the partition graph is reached by both a point and a hyperplane. It is easy to

see that if some point and hyperplane are incident, then there is at least one leaf in every

partition graph that is reached by both the point and the hyperplane. Thus, for any set P

of points and set H of hyperplanes, a partition graph in which no leaf is reached by both a

point and a hyperplane provides a proof that there are no incidences between P and H.

In this section, we derive lower bounds for the worst-case running time of parti-

tioning algorithms that solve Hopcroft's problem. With the exception of the basic lower

bound of 
(n logm+m logn), which in light of Theorem 6.3 we must prove directly, our

lower bounds are derived from the cover size bounds in Section 6.2. In the Section 6.4,

we will describe how existing algorithms for Hopcroft's problem �t into our computational

framework.

6.3.1 The Basic Lower Bound

Theorem 6.18. Any partitioning algorithm that solves Hopcroft's problem in any dimen-

sion must take time 
(n logm+m logn) in the worst case.

Proof: It su�ces to consider the following con�guration, where n is a multiple of m. P

consists of n points on some vertical line in IRd, say the xd-axis, and H consists of m

hyperplanes normal to that line, placed so that n=m points lie between each hyperplane

and the next higher hyperplane, or above the top hyperplane. (We implicitly used a one-

dimensional version of this con�guration to prove the lower bound in Theorem 6.3.) For

each point, call the hyperplane below it its partner . Each hyperplane is a partner of n=m

points.

Let G be the partition graph generated by some partitioning algorithm. Recall

that the out-degree of every node in G is at most �. The level of any node in G is the

length of the shortest path from the root to that node. There are at most �k nodes at

level k. We say that a node v splits a point-hyperplane pair if both the point and the

hyperplane reach v, and none of the outgoing edges of v is traversed by both the point and
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the hyperplane. In order for the algorithm to be correct, every point-hyperplane pair must

be split. Finally, we say that a hyperplane h is active at level k if none of the nodes in the

�rst k levels split h from any of its partners.

Suppose v is a primal node. For each hyperplane h that v splits from one of its

partner points p, mark some query region in Rv that contains p but misses h. The marked

region lies completely above h, but not completely above any hyperplane higher than h. It

follows that the same region cannot be marked more than once. Since there are at most �

regions, at most � hyperplanes become inactive. By similar arguments, if v is a dual node,

then v splits at most � points from their partners.

Thus, the number of hyperplanes that are inactive at level k is less than �k+2. In

particular, at level blog�mc- 3, at least m(1- 1=�) hyperplanes are still active. It follows

that at least n(1- 1=�) points each traverse at least blog�mc- 3 edges. We conclude that

the total running time of the algorithm is at least

n(1- 1=�)(blog�mc- 3) = 
(n logm):

Similar arguments establish a lower bound of 
(m logn) when n < m. 2

6.3.2 The Lower Bound for the Decision Problem

Let TA(P;H) denote the running time of an algorithm A that solves Hopcroft's

problem in IRd for some d, given points P and hyperplanes H as input.

Theorem 6.19. Let A be a partitioning algorithm that solves Hopcroft's problem, and let

P be a set of points and H a set of hyperplanes such that I(P;H) = 0. Then TA(P;H) =


(�(P;H)).

Proof: Recall that the running time TA(P;H) is de�ned in terms of the edges of the partition

graph as follows.

TA(P;H)
4

=
X
edge e

�
# points traversing e+# hyperplanes traversing e

�

We say that a point or hyperplane misses an edge from v to w if it reaches v but does not

traverse the edge. (It might still reach w by traversing some other edge.) For every edge
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that a point or hyperplane traverses, there are at most � - 1 edges that it misses.

� � TA(P;H)�
X
edge e

�
# points traversing e+# hyperplanes traversing e

+# points missing e+# hyperplanes missing e
�

Call any edge that leaves a primal node a primal edge, and any edge that leaves a dual

node a dual edge.

� � TA(P;H)�
X

primal edge e

�
# points traversing e+# hyperplanes missing e

�
+

X
dual edge e

�
# hyperplanes traversing e+# points missing e

�
Consider, for some primal edge e, the set Pe of points that traverse e and the

set He of hyperplanes that miss e. The edge e is associated with some query region R, such

that every point in Pe is contained in R, and every hyperplane in He is disjoint from R.

Since R is connected, it follows immediately that the relative orientation matrix M(Pe; He)

is simple. Similarly, for any dual edge e, the relative orientation matrix of the set of points

that miss e and hyperplanes that traverse e is also simple.

Now consider any point p 2 P and hyperplane h 2 H. Since A correctly solves

Hopcroft's problem, no leaf is reached by both p and h. It follows that some node v splits

p and h. If v is a primal node, then h misses the outgoing primal edges that p traverses. If

v is a dual node, then p misses the outgoing dual edges that h traverses.

Thus, we can associate a simple minor with every edge in the partition graph, and

this collection of minors covers the relative orientation matrix M(P;H). Furthermore, the

size of this simple cover is exactly the lower bound we have for � �TA(P;H) above. Splitting

each simple minor into monochromatic minors at most doubles the size of the cover. Since

the size of the resulting monochromatic cover must be at least �(P;H), we conclude that

TA(P;H)� �(P;H)=2�. 2

Corollary 6.20. The worst-case running time of any partitioning algorithm that solves

Hopcroft's problem in IRd is 
(n logm+ n2=3m2=3 +m logn) for d = 2 and 
(n logm +

n5=6m1=2 + n1=2m5=6 +m logn) for all d � 3.

Proof: Theorems 6.18 and 6.19 imply that the worst case running time is 
(n logm +

��d(n;m) + n logm). Thus, Theorem 6.6 gives the planar lower bound, and Theorem 6.11

gives us the lower bound in higher dimensions. 2



85

We emphasize that the condition I(P;H) = 0 is necessary for this lower bound

to hold. If there is an incidence, then the trivial partitioning algorithm \detects" it. The

partition graph consists of a single leaf, and since that leaf is reached by every point and

every hyperplane, the algorithm correctly reports an incidence.

6.3.3 The Lower Bound for the Counting Problem

Every partitioning algorithm assumes that a point and hyperplane are incident if

they reach the same leaf in its partition graph. Thus, the number of incidences associated

with a leaf is the product of the number of points that reach it and the number of hyper-

planes that reach it. To solve the counting version of Hopcroft's problem, a partitioning

algorithm returns as its output the sum of these products over all leaves in its partition

graph. In order for this output to be correct, the algorithm must ensure that every non-

incident point-hyperplane pair is separated and that every incident pair reaches exactly one

leaf. Since every incident point-hyperplane pair is guaranteed to reach at least one leaf, it

is not possible for a partitioning algorithm to count too few incidences.

Theorem 6.21. Let A be a partitioning algorithm that solves the counting version of

Hopcroft's problem, and let P be a set of points andH a set of hyperplanes. Then TA(P;H) =


(�(P;H)).

Proof: We follow the proof for the decision lower bound almost exactly. We associate a

simple minor with every edge just as before. We also associate a monochromatic minor

with every leaf, consisting of all points and hyperplanes that reach the leaf. Every non-

incident point-hyperplane pair is represented in some edge minor, and every incident pair

in exactly one leaf minor. Thus, the minors form a simple cover. The total size of the

leaf minors is certainly less than TA(P;H), since every point and hyperplane that reaches a

leaf must traverse one of the leaf's incoming edges. The total size of the edge minors is at

most � �TA(P;H), as established previously. Splitting each edge minor into monochromatic

minors at most doubles their size. Thus, we get a monochromatic cover of size at most

(2�+ 1)TA(P;H), which implies TA(P;H)� �(P;H)=(2�+ 1). 2
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Corollary 6.22. The worst-case running time of any partitioning algorithm that solves

the counting version of Hopcroft's problem in IRd is




 
n logm+

dX
i=2

�
n1-2=i(i+1)m2=(i+1) + n2=(i+1)m1-2=i(i+1)

�
+m logn

!
:

See the remark after Theorem 6.14.

We can prove the following stronger lower bound by only paying attention to

the minors induced at the leaves. We de�ne an unbounded partition graph to be just

like a partition graph except that we place no restrictions on the number of query regions

associated with each node. Call the resulting class of algorithms unbounded partitioning

algorithms. Note that such an algorithm can solve the decision version of Hopcroft's

problem in linear time.

Theorem 6.23. Let A be an unbounded partitioning algorithm that solves the counting

version of Hopcroft's problem, and let P be a set of points and H a set of hyperplanes. Then

TA(P;H) = 
(�(P;H)).

Proof: We associate a zero minor with every leaf, and these minors form a zero cover. The

total size of the leaf minors is less than TA(P;H), since every point and hyperplane that

reaches a leaf must traverse one of the leaf's incoming edges. 2

The following corollary is now immediate.

Corollary 6.24. The worst-case running time of any unbounded partitioning algorithm

that solves the counting version of Hopcroft's problem in IRd is




 
dX
i=1

�
n1-2=i(i+1)m2=(i+1) + n2=(i+1)m1-2=i(i+1)

�!
:

6.3.4 Containment Shortcuts Don't Help

We might consider adding the following containment shortcut to our model. Sup-

pose that while partitioning points and hyperplanes at a primal node, the algorithm dis-

covers that a query region R is completely contained in some hyperplane h. Then we know

immediately that any point contained in R is incident to h. Rather than sending h down

the edge corresponding to R, the algorithm could increment a running counter for each
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Figure 6.6. Eliminating containment shortcuts.

point in R. We can apply a symmetric shortcut at each dual node, potentially reducing

the number of points traversing each dual edge. In addition to charging for edge traversals,

we now also charge unit time whenever an algorithm discovers that a hyperplane (either

primal or dual) contains a query region.

Clearly, adding this shortcut can only decrease the running time of any partitioning

algorithm. However, for any algorithm that uses this shortcut, we can derive an equivalent

algorithm without shortcuts that is slower by only a small constant factor, as follows.

If a hyperplane h contains a query region R, then it must also contain a�(R), the

a�ne hull of R. We can reverse the containment relation by applying a duality transforma-

tion | the dual point h� is contained in the dual 
at (a�(R))�. Similarly, if a point p is

contained in R, then (a�(R))� 2 p�.

For each node v in the partition graph of the shortcut algorithm, and each query

region R 2 Rv, we modify the graph as follows. Let e(R) be the edge of the partition

graph corresponding to R, and let w be the destination of this edge. We introduce two new

nodes, a \test" node t(R) and a leaf `(R). If v is a primal node, then t(R) is a dual node,

and vice versa. The query subdivision Rt(R) consists of exactly two regions: (a�(R))� and

IRd n (a�(R))�, whose corresponding edges point to `(R) and w, respectively. Finally, we

redirect e(R) so that it points to t(R). See Figure 6.6. The new algorithm A 0 uses this

modi�ed partition graph, without explicitly checking for containments.

The new node t(R) separates the hyperplanes that contain R from the hyperplanes

that merely intersect it. Any point contained in R reaches both w and `(R). Thus, the new

algorithm reports or counts exactly the same incidences as the original shortcut algorithm.

We easily verify that the running time of the new algorithm is at most three times the

running time of the shortcut algorithm.
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6.4 Real Algorithms for Hopcroft's Problem

Real algorithms for Hopcroft's problem all employ roughly the same divide-and-

conquer strategy. Each algorithm divides space into a number of regions, determines which

points and hyperplanes intersect each region, and recursively solves the resulting subprob-

lems. In some cases [32, 66, 43], the number of regions used at each level of recursion is a

constant, and these algorithms �t naturally into the partitioning algorithm framework.

For most algorithms, however, the number of regions is a small polynomial function

of the input size, and not a constant as required by the de�nition of the partitioning model.

However, we can still model most, if not all, of these algorithms by partitioning algorithms.

In order to determine which points lie in which regions, each of these algorithms

constructs a (possibly trivial) point location data structure. Each node in this data structure

partitions space into a constant number of simple regions, and for each region, there is a

pointer to another node in the data structure. Each leaf in the data structure corresponds

to one of the high-level query regions. Composing all the point location data structures

used by the algorithm in all recursive subproblems gives us the algorithm's partition graph.

Many of these algorithms alternate between primal and dual spaces at various levels of

recursion [35, 111]. The data structures used in primal space give us the primal nodes in

the partition graph, and the data structures used in dual space give us the dual nodes.

What about the hyperplanes? Many algorithms also use the point location data

structures to determine the regions hit by each hyperplane. Algorithms of this type �t into

our model perfectly. In particular, Matou�sek's algorithm [111], which is based on Chazelle's

hierarchical cuttings [35] and is the fastest algorithm known, can be modeled this way.

Matou�sek's algorithm and Theorem 6.21 immediately give us the following theorem.

Theorem 6.25. �d(n;m) = O
�
m logn + nd=(d+1)md=(d+1)2O(log

�(n+m)) + n logm
�

However, other algorithms do not use the point location data structure to locate

hyperplanes, at least not at all levels of recursion. In these algorithms [63, 1], the query

regions form a decomposition of space into cells of constant complexity, typically simplices

or trapezoids. The algorithms determine which cells a given hyperplane hits by iteratively

\walking" through the cells. At each cell that the hyperplane intersects, the algorithm can

determine in constant time which of the neighboring cells are also intersected, by checking

each of the boundary facets.



89

In many cases, modifying such an algorithm to directly use the point location data

structure instead of the iterative procedure increases the running time by only a constant

factor. If the current point location data structure locates the hyperplanes too slowly,

we may be able to replace it with a di�erent data structure that supports fast hyperplane

location, again without increasing the asymptotic running time. We could use, for example,

the randomized incremental construction of Seidel [135] in the plane, or the hierarchical

cuttings data structure of Chazelle [35] in higher dimensions. The modi�ed algorithm can

then be described as a partitioning algorithm.

Other algorithms construct a point location data structure for the arrangement of

the entire set of hyperplanes [51, 66, 35]. Usually, this is done only when the number of

hyperplanes is much smaller than the number of points. In this case, the algorithm doesn't

need to locate the hyperplanes at all! Again, however, we can modify the algorithm so that

it uses a point location data structure that allows e�cient hyperplane location as well, and

arti�cially locates the hyperplanes. If we use an appropriate data structure, the running

time will only increase by a constant factor.

These arguments are admittedly ad hoc. Modifying the partitioning model to

naturally include algorithms that use di�erent strategies for point and hyperplane location,

or strengthening our lower bounds to a similar model that does not require constant-degree

partitioning, is an interesting open problem.

Finally, a few algorithms partition the points or the hyperplanes arbitrarily into

subsets, without using geometric information of any kind [62, p. 350],[51]. In this case,

every hyperplane becomes part of every subproblem. In order to take algorithms of this

kind into account, we must strengthen our model of computation by adding a new type

of node that partitions either the points or the hyperplanes (but not both!) into arbitrary

subsets at no cost. Lemmas 6.19 and 6.21 still hold in this stronger model, since the new

nodes cannot separate any point from any hyperplane. However, Theorem 6.18 does not

hold in this model; for example, we can solve Hopcroft's problem in IRd in time O(n+md+1)

by \arbitrarily" partitioning the points so that each subset is contained in a single cell of

the hyperplane arrangement.
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6.5 Conclusions and Open Problems

We have proven new lower bounds on the complexity of Hopcroft's problem that

apply to a broad class of geometric divide-and-conquer algorithms. Our lower bounds

were developed in two stages. First, we derived lower bounds on the minimum size of a

monochromatic cover in the worst case. Second, we showed that the running time of any

partitioning algorithm is bounded below by the size of some monochromatic cover of its

input.

A number of open problems remain to be solved. The most obvious is to improve

the lower bounds, in particular for the case n = m. The true complexity almost certainly

increases with the dimension, but the best lower bound we can achieve in higher dimensions

comes trivially from the two-dimensional case. Is there a con�guration of n points and n

planes in IR3 whose minimum monochromatic cover size is 
(n3=2)?

One possible approach is to consider restrictions of the partitioning model. Can

we achieve better bounds if we only consider algorithms whose query regions are convex?

What if the query regions at every node are distinct? What if the running time depends

on the complexity of the query regions? In the next chapter, we prove slightly better lower

bounds for Hopcroft's problem in higher dimensions by restricting the query regions to

convex polyhedra with constant complexity.

The class of partitioning algorithms is general enough to directly include many,

but not all, existing algorithms for solving Hopcroft's problem. The model requires that

a single data structure be used to determine which points and hyperplanes intersect each

query region, but many algorithms use a tree-like structure to locate the points and an

iterative procedure to locate the hyperplanes. We can usually modify such algorithms so

that they do �t our model, at the cost of only a constant factor in their running time, but

this is a rather ad hoc solution. Any extension of our lower bounds to a more general model,

which would explicitly allow di�erent strategies for locating points and hyperplanes, would

be interesting.

Our techniques imply lower bounds for several other problems similar to Hopcroft's

problem [78]. Unfortunately, the partitioning algorithm model is speci�cally tailored to

detect intersections or containments between pairs of objects, and there are a number of

similar geometric problems for which the model simply does not apply. We mention one

speci�c example, the cyclic overlap problem. Given a set of nonintersecting line segments
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in IR3, does any subset form a cycle with respect to the \above" relation? The fastest known

algorithm for this problem, due to de Berg, Overmars, and Schwarzkopf [53], runs in time

O(n4=3+"), using a divide-and-conquer strategy very similar to algorithms for Hopcroft's

problem. In the algebraic decision tree model, the cyclic overlap problem is at least as

hard as Hopcroft's problem [75]. Apparently, however, this problem cannot even be solved

by a partitioning algorithm, since the answer might depend on arbitrarily large tuples of

segments, arbitrarily far apart. Extending our lower bounds into more traditional models

of computation remains an important and very di�cult open problem.

\Here's to the new golden age of mathematics," Lord Vickers cried suddenly.
There was a chorus of approving remarks.
\That was the real thing!"
\Plenty of logic."
\And so many symbols!"
Lord Vickers smiled at me from across the room.
\There'll be a place for you at my new institute, Fletcher."
I took a glass of sherry.

| Rudy Rucker, \A New Golden Age", 1981
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Chapter 7

Halfspace Emptiness

The halfspace emptiness problem asks, given a set of points and a set of halfspaces,

whether any halfspace contains a point. In this chapter, we will consider the following

formulation of the problem: Given a set of points and hyperplanes, is every point above

every hyperplane? Using linear programming [48, 109, 113, 136], we can decide in linear

time whether the union of a set of halfspaces is IRd. If it is, then every input point must

lie in a halfspace; if not, then by an appropriate projective transformation, we can ensure

that the halfspaces miss the point (0; 0; : : : ; 0;1). If we use the duality transformation

(a1; a2; : : : ; ad)  ! Pd-1
i=1 aixi = ad + xd; then a point p is above a hyperplane h if and

only if the dual point h� is above the dual point p�. Thus, in this formulation, the halfspace

emptiness problem is self-dual.

The best known algorithms for this problem were developed for its online ver-

sion: Given a set of n points, preprocess it to answer halfspace emptiness (or reporting)

queries. In two and three dimensions, we can easily build a linear-size data structure, in

O(n logn) time, that allows halfspace emptiness queries to be answered in logarithmic time

[5, 39, 57]. In higher dimensions, a randomized algorithm due to Clarkson [47] answers half-

space emptiness queries in time O(logn) after O(nbd=2c+") preprocessing time. Matou�sek

[107] describes two halfspace emptiness data structures, one answering queries in time

O(n1-1=bd=2c polylogn) time after O(n logn) preprocessing time, and the other answering

queries in time O(n1-1=bd=2c2O(log
� n)) after O(n1+") preprocessing time. Combining Clark-

son's and Matou�sek's data structures, for a �xed parameter n � s � nbd=2c, one can answer

queries in time O((n logn)=s1=bd=2c) after O(s polylogn) preprocessing time [107, 3, 29].

For extensions and applications of halfspace range reporting, see [3, 4, 27, 29, 110, 108].
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Given n points and m halfspaces, we can solve the o�ine halfspace emptiness

problem in time

O
�
n logm+ (nm)bd=2c=(bd=2c+1)polylog(n+m) +m logn

�
;

using either Clarkson's data structure or one of Matou�sek's data structures, depending

on the relative growth rates of n and m. In two and three dimensions, the time bound

simpli�es to O(n logm+m logn). If n > m, we actually solve the problem in the dual, by

building a data structure to report if any halfspace contains a query point.

The only lower bound previously known for this problem is 
(n logm+m logn),

in the algebraic decision tree or algebraic computation tree models, by reduction from the

set intersection problem [138, 16]. Thus, the two- and three-dimensional algorithms are

optimal, but there is still a large gap in dimensions four and higher.

In this chapter, we develop a lower bound of 
(n logm+ n2=3m2=3 +m logn) on

the complexity of the halfspace emptiness problem in IR5, matching known upper bounds

up to polylogarithmic factors. We obtain marginally better bounds in dimensions 9 and

higher. Using similar techniques, we also prove slightly better bounds for Hopcroft's prob-

lem in dimensions four and higher. Our lower bounds apply to polyhedral partitioning

algorithms, a restriction of the class of partitioning algorithms introduced in the previ-

ous chapter. Informally, a polyhedral partitioning algorithm covers space with a constant

number of constant-complexity polyhedra, determines which points and halfspaces intersect

which polyhedra, and recursively solves the resulting subproblems.

The basic approach is the same as in the previous chapter. We �rst de�ne polyhe-

dral covers, and develop lower bounds on their combinatorial complexity. The main result

of this chapter (Theorem 7.9) states that the running time of a polyhedral partitioning

algorithm is bounded below by the polyhedral cover size of its input. The 
(n4=3) lower

bound then follows from the construction of a set of points and hyperplanes in IR5, with

all the points above all the hyperplanes, whose every polyhedral cover is that large.

7.1 Projective Polyhedra

Our lower bound argument relies heavily on certain properties of convex polytopes

and polyhedra. Many of these properties are more easily proved, and have fewer special

cases, if we state and prove them in projective space rather than a�ne Euclidean space. In
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particular, developing these properties in projective space allows us to more easily deal with

unbounded and degenerate polyhedra and duality transformations. Everything we describe

in this section can be formalized algebraically in the language of polyhedral cones and

linear subspaces one dimension higher; we will give a much less formal, purely geometric

treatment. For more technical details, we refer the reader to Chapters 1 and 2 of Ziegler's

lecture notes [161].

The projective space IRIPd can be de�ned as the set of lines through the origin

in IRd+1. Every k-dimensional linear subspace of IRd+1 induces a (k- 1)-dimensional 
at

f in IRIPd, and its orthogonal complement induces the dual 
at f�.

A projective polyhedron is a single closed cell, not necessarily of full dimension,

in the arrangement of a �nite number of hyperplanes in IRIPd. A projective polytope is

a simply-connected projective polyhedron, or equivalently, a projective polyhedron that is

disjoint from some hyperplane (not necessarily in its de�ning arrangement). Every projec-

tive polyhedron is (the closure of) the image of a convex polyhedron under some projective

transformation, and every projective polytope is the image of a convex polytope. Every


at is also a projective polyhedron.

The projective span (or projective hull) of any subset X � IRIPd, denoted span(X),

is the projective subspace of minimal dimension that contains it. The relative interior

of a projective polyhedron is its interior in the subspace topology of its projective hull.

A hyperplane supports a polyhedron if it intersects the polyhedron but not its relative

interior. A 
at has no supporting hyperplanes.

A proper face of a projective polyhedron is the intersection of the polyhedron and

one or more of its supporting hyperplanes. Every proper face of a polyhedron is a lower-

dimensional polyhedron. A face of a polyhedron is either a proper face or the polyhedron

itself. We write � � � to denote that a polyhedron � is a face of another polyhedron

�. The dimension of a face is the dimension of its projective hull. The dimension of the

empty set is taken to be -1. The faces of a polyhedron form a lattice under inclusion.

Every projective polyhedron has a face lattice isomorphic to that of a convex polytope,

possibly of lower dimension.

The apex of a polyhedron � is the intersection of all its supporting hyperplanes,

or equivalently, its unique face of minimum dimension. The apex is empty if and only if

the polyhedron is a polytope but not a single point; the apex is the whole polyhedron if

and only if the polyhedron is a 
at.
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Figure 7.1. The suspension and projection of a polygon by a point.

The dual of a polyhedron �, denoted ��, is de�ned to be the set of points whose

dual hyperplanes intersect � in one of its faces:

�� 4

= fp j (p� \ �) � �g:

In other words, h� 2 �� if and only if h either contains �, supports �, or completely misses

�. This de�nition generalizes both the polar of a convex polytope and the projective dual

of a 
at. We easily verify that �� is a projective polyhedron whose face lattice is the inverse

of the face lattice of �. In particular, � and �� have the same number of faces. See [161,

pp. 59{64] and [140, pp. 143{150] for similar de�nitions and more technical details.

For any subset X � IRIPd and any 
at f, the suspension of X by f, denoted

suspf(X), is formed by replacing each point in X by the span of that point and f:

suspf(X)
4

=
[
p2X

span(p [ f):

The suspension of a subset of projective space corresponds to an in�nite cylinder over

a subset of an a�ne space, at least when the apex of suspension is \at in�nity".1 The

projection of X by f, denoted projf(X), is the intersection the suspension and the dual


at f�:

projf(X)
4

= f� \ suspf(X);

In particular, suspf(X) is the set of all points in IRIPd whose projection by f is in projf(X).

The projection of a subset of projective space corresponds to the orthogonal projection of

a subset of a�ne space onto an a�ne subspace. See Figure 7.1.

1Ziegler [161, p. 33] calls this the elimination of X.
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7.2 Polyhedral Separation

Let P be a set of points, let H be a set of hyperplanes, and let � be a projective

polyhedron in IRIPd. We say that � separates P and H if � contains P and the dual

polyhedron �� contains the dual points H�; that is, any hyperplane in H either contains

�, supports �, or misses � entirely. Both P and H may intersect the relative boundary of

�. We say that P and H are r-separable if there is a polyhedron with at most r faces that

separates them.

The proofs of Theorems 6.6 and 6.11 implicitly relied on the following trivial ob-

servation: if we perturb a con�guration of points and hyperplanes just enough to remove

any incidences, and the resulting con�guration is monochromatic, then the original con�g-

uration must have been loosely monochromatic. The following technical lemma establishes

the corresponding, but no longer trivial, property of r-separable con�gurations. Informally,

if a con�guration is not r-separable, then arbitrarily small perturbations cannot make it

r-separable. First-time readers are encouraged to skip the proof.

Technical Lemma 7.1. Let H be a set of m hyperplanes in IRIPd. For all r, the set of

point con�gurations P 2 (IRIPd)n such that P and H are r-separable is topologically closed.

Proof: There are two cases to consider: either the hyperplanes in H do not have a common

intersection, or they intersect in a common 
at. The proof of the second case relies on the

�rst.

Case 1 (
T
H = ;):

Any polyhedron that separates P and H must be completely contained in a closed

d-cell C of the arrangement of H. Thus, it su�ces to show, for each cell C, that the set of

n-point con�gurations contained in C and r-separable from H is topologically closed. Our

approach is to show that this set is actually a compact semialgebraic set.

Fix a cell C. Since every hyperplane in H passes through the apex of C, both C and

any polyhedra it contains must be polytopes. By choosing an appropriate hyperplane \at

in�nity" that misses C, we can treat C and any polytopes it contains as convex polytopes

in IRd.

Let A = fa1; a2; : : : ; avg and B = fb1; b2; : : : ; bvg be two indexed sets of points in

IRd, for some integer v. We say that A is simpler than B, written A v B, if for any subset



97

of B contained in a facet of conv(B), the corresponding subset of A is contained in a facet

of conv(A).2 Equivalently, A v B if and only if for d+ 1 points in B, d of whose vertices lie

on a facet of conv(B), the corresponding simplex in A either has the same orientation or is

degenerate. Simpler point sets have less complex convex hulls | if A v B, then conv(A)

has no more vertices, facets, or faces than conv(B). If both A v B and B v A, then the

convex hulls of A and B are combinatorially equivalent.

If B is �xed, then the relation A v B can be encoded as the conjunction of at most

O(vbd=2c+1) algebraic inequalities of the form�����������

ai00 ai01 � � � ai0d

ai10 ai11 � � � ai1d
...

...
. . .

...

aid0 aid1 � � � aidd

�����������
� 0;

where (aij0; aij1; : : : ; aijd) are the homogeneous coordinates of the point aij 2 A, and � is

either �, =, or �. In every such inequality, the corresponding points bi1 ; bi0; : : : ; bid (but

not necessarily bi0) all lie on a facet of conv(B). For every d-tuple of points in B contained

in a facet of conv(B), there are v - d such inequalities, one for every other point. (If we

replace the loose inequalities �;� with strict inequalities <;>, the resulting expression

encodes the combinatorial equivalence of conv(A) and conv(B).)

We can encode the statement \P is contained in C and is r-separable from H" as

the following elementary formula:

r_
v=1

_
B2(IRd)v

conv(B) has at most r faces

8>>>>>><
>>>>>>:

9 a1; a2; : : : ; av 2 C :

9 �1; �2; : : : ; �n 2 [0; 1]v :

(A v B) ^

n̂

i=1

0@ vX
j=1

aj�ij = pi ^

vX
j=1

�ij = 1

1A

9>>>>>>=
>>>>>>;

(7.1)

Equivalently, in English:

For some integer v, and for some set B of v points whose convex hull has at

most r faces, there exists a set A of v points in C, such that A is simpler than B

(so conv(A) has at most r faces) and every point in P is a convex combination

of points in A (with barycentric coordinates �).

2Every set of points is simpler than itself. It would be more correct, but also unwieldier, to say \A is at
least as simple as B".
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Since there are only a �nite number of combinatorial equivalence classes of convex polytopes

with v vertices [89], the formula is �nite, and therefore de�nes a semi-algebraic set. It

remains only to show that this set is closed.

For any �xed v and B, the set of con�gurations P�A�� 2 (IRd)n�Cv� ([0; 1]v)n

that satisfy the subexpression

(A v B) ^

n̂

i=1

0@ vX
j=1

aj�ij = pi ^

vX
j=1

�ij = 1

1A
is the intersection of the closed convex polytope Cn+v � [0; 1]vn, at most (v - d)r closed

algebraic halfspaces, vn quadratic surfaces, and vn hyperplanes, and is therefore closed and

bounded. It follows that the set of point con�gurations P that satisfy the subexpression of

(7.1) in braces is the projection of a compact set, and is therefore also compact. Finally,

the set of con�gurations P satisfying the entire formula (7.1) is the union of a �nite number

of compact sets, and therefore must be compact.

This completes the proof of Case 1.

Case 2 (
T
H 6= ;):

The previous argument will not work in this case, because the cells in the arrange-

ment of H are not simply connected, and thus are not polytopes.

Let P be an arbitrary set of n points in IRIPd, such that P and H are not r-

separable. To prove the lemma, it su�ces to show that there is an open neighborhood

U 2 (IRIP)d with P 2 U, such that, for all Q 2 U, Q and H are not r-separable.

Let f =
T
H, and let f� be its dual 
at. Without loss of generality, suppose the

points p1; p2; : : : ; pm 2 P are disjoint from f, and the points pm+1; : : : ; pn 2 P are contained

in f. Denote these two subsets of P by P n f and P \ f, respectively. Either subset may be

empty. Note that projf(P) = projf(P n f), since by de�nition projf(f) is empty.

If any polyhedron � separates P and H, then its projection projf(�) separates the

projected points projf(P) and the lower dimensional hyperplanes H\ f�. Conversely, if any
polyhedron � � f� separates projf(P) and H \ f� then its suspension suspf(�) separates P

and H. Thus, P and H are r-separable if and only if projf(P) and H \ f� are r-separable.
Since P and H are not r-separable, neither are projf(P) and H \ f�. The lower-

dimensional hyperplanes H \ f� do not have a common intersection. Thus, Case 1 implies

that the set of con�gurations P 0 2 (f�)m such that P 0 and H\f� are r-separable is closed. It
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follows that there is an open set U 0 � (f�)m, with projf(P) 2 U 0, such that for all Q 0 2 U 0,

Q 0 and H\ f� are not r-separable.
Let U 00 � (IRIPd)m be the set of m-point con�gurations P 00 such that projf(P

00) 2
U 0. Clearly, U 00 is an open neighborhood of P n f, and no con�guration in Q 00 2 U 00 is

r-separable from H.

Finally, if Q 00 andH are not r-separable, then no superset ofQ 00 is r-separable from

H. Let U = U 00 � (IRIPd)n-m. Then U is an open subset of (IRIPd)n containing P. Since

every con�guration Q 2 U has a subset Q 00 that is not r-separable from H, we conclude

that no Q 2 U is r-separable from H, as claimed.

This completes the proof of Case 2, and thus the entire technical lemma. 2

The method we used to encode the condition \conv(A) has at most r faces" may

seem somewhat convoluted. If we replace A v B with \conv(A) is combinatorially equiva-

lent to conv(B)", we get exactly the same semi-algebraic set, without needing to de�ne the

partial order v. Unfortunately, testing whether two convex polytopes are combinatorially

equivalent requires strict inequalities, whose corresponding semi-algebraic sets are open.

7.3 Polyhedral Covers

A r-polyhedral cover of a set P of points and a set H of hyperplanes is an indexed

set of subset pairs f(Pi; Hi)g, where Pi � P and Hi � H for all i, such that

(1) For each index i, Pi and Hi are r-separable.

(2) For every point p 2 P and hyperplane h 2 H, there is some index i such that p 2 Pi

and h 2 Hi.

We emphasize that the subsets Pi are not necessarily disjoint, nor are the subsets Hi. We

refer to each subset pair (Pi; Hi) in an r-polyhedral cover as a r-polyhedral minor . The

size of a polyhedral cover is the sum of the sizes of the subsets Pi and Hi.

Let �r(P;H) denote the size of the smallest r-polyhedral cover of P and H. Let

��d;r(n;m) denote the maximum of �r(P;H) over all sets P of n points and H of m hyper-

planes in IRIPd with no incidences. When the subscript r is omitted, we take it to be a

constant. Finally, recall that I(P;H) denotes the number of point-hyperplane incidences

between P and H.
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Lemma 7.2. Let P be a set of n points and H a set of m hyperplanes, such that no subset

of s hyperplanes contains t points in its intersection. If P and H are r-separable, then

I(P;H)� r(s+ t)(n+m).

Proof: Let � be a polyhedron with r faces that separates P and H. For any point p 2 P

and hyperplane h 2 H such that p lies on h, there is some face f � � that contains p and is

contained in h. For each face f of �, let Pf denote the points in P that are contained in f,

and let Hf denote the hyperplanes in H that contain f.

Since no set of s hyperplanes can all contain the same t points, it follows that for

all f, either jPfj < t or jHfj < s. Thus, we can bound I(P;H) as follows.

I(P;H)�
X
f��

I(Pf; Hf) =
X
f��

(jPfj � jHfj) � (s+ t)
X
f��

(jPfj+ jHfj)

Since � has r faces, the last sum counts each point and hyperplane at most r times. 2

The next lemma shows that su�ciently small perturbations of a con�guration

cannot decrease its polyhedral cover size.

Lemma 7.3. Let P be a set of n points and H a set of m hyperplanes in IRIPd. For all

point con�gurations Q 2 (IRIPd)n su�ciently close to P, �r(Q;H) � �r(P;H).

Proof: Let P 0 be a subset of P, and for any other set Q of jPj points, let Q 0 be the

corresponding subset of Q. Let H 0 be a subset of H. Lemma 7.1 implies that there is an

open set U(P 0; H 0) � (IRIPd)n such that if Q 2 U(P;H) and Q 0 and H 0 are r-separable, then

P 0 and H 0 are r-separable.

Let U be the intersection of these 2n2m open sets:

U =
\
P 0�P

\
H 0�H

U(P 0; H 0):

For all Q 2 U, every r-polyhedral minor ofQ andH corresponds to a r-polyhedral minor of P

and H. Thus, for any r-polyhedral cover of Q and H, there is a corresponding r-polyhedral

cover of P and H with exactly the same size. 2

Theorem 7.4. ��2(m;n) = 
(n+ n2=3m2=3 +m).
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Proof: Let P be a set of n points and H a set of m lines in the plane with I(P;H) =


(n+ n2=3m2=3 +m), as described by Lemma 6.4.

Consider subsets Pi � P andHi � H such that Pi andHi are r-separable. Since two

distinct lines in the plane intersect in a single point, Lemma 7.2 implies that I(Pi; Hi) �
4r(jPij + jHij). It follows that any collection of r-polyhedral minors that includes every

incidence between P and H must have size at least I(P;H)=4r. Thus, �2;r(P;H) = 
(n +

n2=3m2=3 +m) for any constant r.

Finally, Lemma 7.3 implies that we can perturb P slightly, removing all the inci-

dences, without decreasing the polyhedral cover size. 2

A similar argument derives the following lower bound from Lemma 6.13. As usual,

the best lower bounds from each dimension have been combined into a single expression.

Theorem 7.5. ��d(n;m) = 


�
dP
i=1

�
n1-2=i(i+1)m2=(i+1) + n2=(i+1)m1-2=i(i+1)

��
.

Following the terminology in the previous chapter, we call say that a point-

hyperplane con�guration in IRd is monochromatic if every point lies above every hy-

perplane. Monochromatic con�gurations have no incidences. Let �̂d;r(m;n) denote the

maximum of �r(P;H) over all monochromatic con�gurations of n points and of m hyper-

planes in IRd � IRIPd.

Lemma 6.15 and the arguments in Theorem 7.4 immediately imply the following

lower bound.

Theorem 7.6. �̂5(n;m) = 
(n+ n2=3m2=3 +m).

We can improve this bound very slightly in higher dimensions. De�ne the family

of functions �d : IRd+1 ! IR(d+22 ) as follows.

�d(x0; x1; : : : ; xd)
4

= (x20; x
2
1; : : : ; x

2
d;
p
2x0x1;

p
2 x0x2; : : : ;

p
2xd-1xd)

For any two vectors u; v 2 IRd+1, we have h�d(u); �d(v)i = hu; vi2; where h�; �i is the

standard vector inner product. In a more geometric setting, �dmaps points and hyperplanes

in IRd, represented in homogeneous coordinates, to points and hyperplanes in IRD, also in

homogeneous coordinates, where D =
�
d+2
2

�
- 1 = d(d+ 3)=2. If the point p is incident to

the hyperplane h, then �d(p) is also incident to �d(h); otherwise, �d(p) is above �d(h).

Lemma 6.13 now immediately implies:
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Theorem 7.7. For all D � d(d+ 3)=2,

�̂D(n;m) = 


 
dX
i=1

�
n1-2=i(i+1)m2=(i+1) + n2=(i+1)m1-2=i(i+1)

�!
:

It is clear that �̂3(n;m) = �(n+m), since both the convex hull of any set of points

and the upper envelope of any set of planes have linear size triangulations. We conjecture

that �̂d(n; n) = 
(nbd=2c=(bd=2c+1)) for all d, but are unable to prove this when d = 4 or

d � 6.

7.4 Polyhedral Partitioning Algorithms

A polyhedral partition graph is a partition graph in which every query region is

a projective polyhedron with at most r faces, for some �xed constant r. A typical value

for r might be 2d+1 (every query region is a simplex) or 3d + 1 (every query region is a

combinatorial cube). We still do not require the query regions to be disjoint. A polyhedral

partitioning algorithm is a partitioning algorithm whose partition graph is polyhedral.

Given sets P of points and H of hyperplanes in IRd as input, a polyhedral par-

titioning algorithm for the halfspace emptiness problem constructs a polyhedral partition

graph and uses it to drive the following divide-and-conquer process, which is slightly di�er-

ent from that used to solve Hopcroft's problem. As before, the algorithm starts at the root

and proceeds through the graph in topological order, and at every node except the root,

points and hyperplanes are passed in along incoming edges from preceding nodes. For each

node v, let Pv � P denote the points and Hv � H the hyperplanes that reach v; at the root,

we have Proot = P and Hroot = H. If v is a primal node, then for every query region � 2 Rv,

the points in Pv that are contained in � and the hyperplanes in Hv whose lower halfspaces

intersect � traverse the corresponding outgoing edge. If v is a dual node, then for every

� 2 Rv, the points p 2 Pv whose dual hyperplanes p� intersect or lie above � and the

hyperplanes h 2 Hv whose dual points h� are contained in � traverse the corresponding

outgoing edge.3

3Alternately, we could let the points whose dual hyperplanes intersect � and the hyperplane whose
dual points intersect or lie below � traverse the edge. Using this alternate formulation has no e�ect on

our results. In fact, we can allow our partition graphs to have four types of non-leaf nodes | primal or

dual; point/halfspace or ray/hyperplane | without changing our results, or even signi�cantly altering their
proofs.
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Figure 7.2. Worst-case con�guration for halfspace emptiness. Tangent points are shown in white.

To solve the halfspace emptiness problem, a partitioning algorithm reports that all

the points are above the hyperplanes if and only if no leaf in the partition graph is reached

by both a point and a hyperplane. Clearly, if such an algorithm reports that every point is

above every hyperplane, it must be correct.

Theorem 7.8. Any polyhedral partitioning algorithm that solves the halfspace emptiness

problem in IRd, for any d � 2, must take time 
(n logm+m logn) in the worst case.

Proof: It su�ces to consider the following con�guration, where n is a multiple of m. P

consists of n points on the unit parabola xd = x21=2 in IRd, and H consists ofm hyperplanes

tangent to the parabola and orthogonal to the (x1; xd) plane, placed so that n=m points

lie between adjacent points of tangency. All the points in P are above all the hyperplanes

in H. The dual points H� also lie on the parabola xd = x21=2, and the dual hyperplanes P�

are also tangent to that parabola.

Following the proof of Theorem 6.18, for any point, we call the hyperplane whose

tangent point is closest in the positive x1-direction the point's partner . Every hyperplane

is the partner of n=m points. A node v splits a point-hyperplane pair if both the point and

the hyperplane reach v, and none of the outgoing edges of v is traversed by both the point

and the hyperplane. A hyperplane h is active at level k if no node in the �rst k levels

splits h from any of its partners.

Suppose v is a primal node. For each hyperplane h that v splits from one of its

partner points p, mark some query polyhedron � 2 Rv that contains p but misses h. Since

� has at most r faces, the intersection of � and the parabola consists of at most r arcs, so
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� can be marked at most r times. Since there are at most � polyhedra in Rv, at most r�

hyperplanes become inactive at v. Similarly, if v is a dual node, then v splits at most r�

points from their partners.

Thus, the number of hyperplanes that are inactive at level k is less than r�k+2.

In particular, at level blog�(m=r)c- 3, at least m(1- 1=�) hyperplanes are still active. It

follows that at least n(1 - 1=�) points each traverse at least blog�(m=r)c - 3 edges. We

conclude that the total running time of the algorithm is at least

n(1- 1=�)(blog�(m=r)c- 3) = 
(n logm):

Symmetric arguments establish a lower bound of 
(m logn) when n < m. 2

The restriction to polyhedral partitioning algorithms is necessary for the lower

bound to hold, since the problem can be solved in linear time in the generic partitioning

algorithm model. The partition graph consists of a single primal node with two query

regions: the convex hull of the points and its complement. If every point is above every

hyperplane, then no hyperplane intersects the convex hull of the points.

This lower bound is tight, up to constant factors, in two and three dimensions.

Theorem 7.9. Let A be a polyhedral partitioning algorithm that solves the halfspace

emptiness problem, and let P be a set of points and H a set of hyperplanes, such that every

point is above every hyperplane. Then TA(P;H) = 
(�(P;H)).

Proof: From the proof of Theorem 6.19, we immediately have the following inequality:

� � TA(P;H)�
X

primal edge e

�
# points traversing e+# hyperplanes missing e

�
+

X
dual edge e

�
# hyperplanes traversing e+# points missing e

�
For each primal edge e, let Pe be the set of points that traverse e, and let He be

the set of hyperplanes that miss e. The edge e is associated with a query polyhedron �.

Every point in Pe is contained in �, and every hyperplane in He is disjoint from �. Since

� has at most r faces, Pe and He are r-separable.

Similarly, for each dual edge e, let He be the hyperplanes that traverse it, and Pe

the points that miss it. The associated query polyhedron � separates the dual points H�
e

and the dual hyperplanes P�e. By the de�nition of dual polyhedra, �� separates Pe and He.
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For every point p 2 P and hyperplane h 2 H, there is node that splits them (since

otherwise the algorithm would return the wrong answer) and thus some edge e with p 2 Pe

and h 2 He. It follows that the collection of subset pairs f(Pe; He)g is an r-polyhedral cover

of P and H whose size is at least � � TA(P;H) and, by de�nition, at most �r(P;H). 2

We emphasize that every point must be above every hyperplane for this lower

bound to hold. If some point lies below a hyperplane, then the trivial partitioning algorithm,

whose partition graph consists of a single leaf, correctly \detects" the pair.

Corollary 7.10. The worst-case running time of any polyhedral partitioning algorithm

that solves the halfspace emptiness problem in IRD is 
(n logm+ n2=3m2=3 +m logn) for

all D � 5 and




 
n logm+

DX
i=2

�
n1-2=i(i+1)m2=(i+1) + n2=(i+1)m1-2=i(i+1)

�
+m logn

!

for all D � d(d + 3)=2.

Proof: Theorems 7.8 and 7.9 together imply that the worst case running time is
(n logm+

�̂d(n;m) + n logm). The lower bounds then follow immediately from Theorem 7.6 and

7.7. 2

Partitioning algorithms for the halfspace emptiness problem can (and do [47, 107])

apply a version of the \containment shortcut" described in Section 6.3.4. If some query

region lies entirely in a hyperplane's lower halfspace, then the hyperplane need not traverse

the corresponding edge. Instead, if any point lies in that region, we immediately halt and

report that some point is below a hyperplane. Although this shortcut decreases the running

time of the algorithm, we easily verify that Theorem 7.9 still applies in the faster model.

Our techniques also allow us to slightly improve earlier lower bounds for Hopcroft's

problem in higher dimensions, matching our lower bounds for the counting problem in

Corollary 6.22.

Theorem 7.11. Let A be a polyhedral partitioning algorithm that solves Hopcroft's prob-

lem, and let P be a set of points and H a set of hyperplanes such that I(P;H) = 0. Then

TA(P;H) = 
(�(P;H)).

Combining this theorem with Theorem 7.5, we conclude:
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Corollary 7.12. The worst-case running time of any polyhedral partitioning algorithm

that solves Hopcroft's problem in IRd is




 
n logm+

dX
i=2

�
n1-2=i(i+1)m2=(i+1) + n2=(i+1)m1-2=i(i+1)

�
+m logn

!
:

7.5 Conclusions and Open Problems

We have proven a lower bound of
(n4=3) on the complexity of the o�ine halfspace

emptiness problem in �ve dimensions. Our lower bounds apply to a broad class of geometric

divide-and-conquer algorithms that recursively partition their input by a division of space

into constant-complexity polyhedra.

The most obvious open problem is to improve our results. The correct complexity

in d dimensions is almost certainly �(n2-2=bd=2c), but we achieve this bound only when

d = 5. In particular, the four dimensional case is wide open. It is not even known whether

the four-dimensional halfspace emptiness problem is harder, or easier, than Hopcroft's prob-

lem in the plane [75].

The inner product doubling maps �d can be used to reduce Hopcroft's problem in

IRd to halfspace emptiness in IRd(d-3)=2 in linear time. Is there an e�cient reduction from

Hopcroft's problem to halfspace emptiness that only increases the dimension by a constant

factor (preferably two)?

Our lower bounds are ultimately based on the construction of point-hyperplane

con�gurations whose incidence graphs have several edges but no large complete bipartite

subgraphs. Better such con�gurations would immediately lead to better lower bounds.

Lower bounds in the Fredman/Yao semigroup arithmetic model have a similar basis. For

example, Chazelle's lower bounds for o�ine simplex range searching [38] is based on a

similar con�guration of points and slabs. (See also [44].) Can we derive better polyhedral

cover size bounds for points and hyperplanes from these con�gurations?

Another open problem is to prove tight lower bounds for online halfspace range

query problems. Br�onnimann, Chazelle, and Pach [23] have proven time-space tradeo�s for

halfspace counting data structures in the Fredman/Yao semigroup model. Speci�cally, they

prove that any data structure that uses space n � s � nd has worst-case query time




 
(n= logn)

1- d-1
d(d+1)

s1=d

!
:
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Results of Matou�sek [111] imply the upper bound O((n=s1=d) polylog n), which is almost

certainly optimal (except possibly for the polylog factor), so the lower bounds have signif-

icant room for improvement. Chazelle and Rosenberg [44] have developed quasi-optimal

tradeo�s for simplex reporting data structures in Tarjan's pointer machine model, but no

lower bounds are known for halfspace reporting. No lower bounds are known for online

halfspace emptiness queries in any model of computation. One possible approach, suggested

by Pankaj Agarwal (personal communication), is to model range query data structures with

partition graphs and to prove tradeo�s between the total size of the graph (space) and the

size of the subgraph induced by a query range (time).

A problem closely related to halfspace range searching is linear programming.

The best known data structures of linear programming queries are based on data structures

for halfspace emptiness [110] and halfspace reporting queries [27]. However, no nontrivial

lower bounds are known for linear programming queries in any model of computation. One

application of particular interest is deciding, given a set of points, whether every point is

a vertex of the set's convex hull. Bounds for this problem closely match the best known

bounds for halfspace emptiness [29], but the best known lower bound is
(n logn). It seems

unlikely that a lower bounds can be derived for this problem in the partitioning algorithm

model, since the extremity of a point depends on several other points arbitrarily far away.

Perhaps the techniques developed in Part I are more applicable.

Finally, extending our lower bounds into more traditional models of computation,

such as algebraic decision trees or algebraic computation trees, is an important and ex-

tremely di�cult open problem. A lower bound bigger than 
(n logm + m logn) for any

o�ine range searching problem in these models would be a major breakthrough.

Here, however, a word of warning may be in order: do not try to visualize n-
dimensional objects for n � 4. Such an e�ort is not only doomed to failure|it
may be dangerous to your mental health. (If you do succeed, then you are in
trouble.) To speak of n-dimensional geometry with n � 4 simply means to speak
of a certain part of algebra.

| Va�sek Chv�atal, Linear Programming, 1983

This is wrong, and even Chv�atal acknowledges the fact that the correspondence
between intuitive geometric terms and algebraic machinery can be used in both
ways.

| G�unter Ziegler, Lectures on Polytopes, 1995
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