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ABSTRACT
We present a near-optimal polynomial-time approximation algo-
rithm for the asymmetric traveling salesman problem for graphs
of bounded orientable or non-orientable genus. Given any algo-
rithm that achieves an approximation ratio of f (n) on arbitrary
n-vertex graphs as a black box, our algorithm achieves an ap-
proximation factor of O( f (g)) on graphs with genus g. In partic-
ular, the O(log n/ log log n)-approximation algorithm for general
graphs by Asadpour et al. [SODA 2010] immediately implies an
O(log g/ log log g)-approximation algorithm for genus-g graphs.
Moreover, recent results on approximating the genus of graphs
imply that our O(log g/ log log g)-approximation algorithm can
be applied to bounded-degree graphs even if no genus-g embed-
ding of the graph is given. Our result improves and generalizes
the O(pg log g)-approximation algorithm of Oveis Gharan and
Saberi [SODA 2011], which applies only to graphs with orientable
genus g and requires a genus-g embedding as part of the input,
even for bounded-degree graphs. Finally, our techniques yield
a O(1)-approximation algorithm for ATSP on graphs of genus g
with running time 2O(g) · nO(1).

Categories and Subject Descriptors: F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and
Problems—Computations on discrete structures; G.2.2 [Discrete
Mathematics]: Graph Theory—Graph algorithms, Path and circuit
problems

Keywords: approximation algorithms, topological graph algo-
rithms, traveling salesman

1. INTRODUCTION
The Asymmetric Traveling Salesman Problem (ATSP) is one of the
most fundamental and well studied problems in combinatorial
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optimization. An instance of ATSP consists of a a directed graph
~G = (V, A) and a (not necessarily symmetric) cost function c : A→
R+; we can assume without loss of generality that the cost of any
arc is equal to the shortest-path distance between its endpoints.
The goal is to find a spanning closed walk of ~G with minimum
total cost.

The exact problem is well-known to be NP-hard. In the early
1980s, Frieze et al. [7] described a polynomial-time algorithm
that achieved an approximation ratio of log2 n; subsequent papers
improved this approximation ratio by constant factors [3,6,11]. A
recent breakthrough result of Asadpour et al. [1] improved the ap-
proximation ratio to O(log n/ log log n), marking the first asymp-
totic improvement in almost 30 years. Building on this break-
through, Oveis Gharan and Saberi [14] described a polynomial-
time O(pg log g)-approximation algorithm when the input in-
cludes an embedding of the input graph into an orientable surface
of genus g. We refer the interested reader to the two previous
papers [1, 14] and the references therein for a more detailed
overview of the rich history of the problem.

In this paper, we present a polynomial-time approximation al-
gorithm for the asymmetric traveling salesman problem in graphs
embedded on surfaces of bounded genus, whose approximation
ratio is optimal up to constant factors.

Theorem 1.1. If there is a polynomial-time f (n)-approximation
algorithm for ATSP for arbitrary n-vertex graphs, then there is
polynomial-time O( f (g))-approximation algorithm for ATSP for
graphs embedded into a surface of either orientable or non-
orientable genus g.

Combining our main result with the approximation algorithm
of Asadpour et al. [1] immediately implies the following corollary.

Corollary 1.2. There is a polynomial-time O(log g/ log log g)-
approximation algorithm for ATSP for graphs embedded into a
surface of either orientable or non-orientable genus g.

Our algorithm has several advantages over the result of Oveis
Gharan and Saberi [14], aside from improving the approxima-
tion ratio from O(pg log g) to O(log g/ log log g). First, ours is
the first constant-factor approximation algorithm for graphs of
bounded non-orientable genus; Oveis Gharan and Saberi’s algo-
rithm requires an embedding onto an orientable surface .

Second, recent results of Chekuri and Sidiropoulos [4] imply
that for bounded-degree graphs, our algorithm does not require
an embedding to be given as part of the input. Given a graph G
with bounded maximum degree, Chekuri and Sidiropoulos [4]
describe an algorithm that outputs an embedding of G into a
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surface with orientable (resp. non-orientable) genus gO(1), where
g is the orientable (resp. non-orientable) genus of G, in poly-
nomial time (independent of g). Combining their result with
Theorem 1.1 immediately implies us the following corollary.

Corollary 1.3. There is a polynomial-time O(log g/ log log g)-
approximation algorithm for ATSP for bounded-degree graphs
with either orientable or non-orientable genus g; this algorithm
does not require an embedding of the graph as part of the input.

In contrast, applying the same approach to the O(pg log g)-
approximation algorithm of Oveis Gharan and Saberi degrades
the approximation guarantee to O(gβ ) for some constant β > 6.

Finally, a minor modification of our algorithm improves the
approximation guarantee to a constant, in time exponential in the
genus of the input graph. In other words, obtaining a constant-
factor approximation for ATSP is fixed-parameter tractable, when
parametrized by the genus of the input graph. In particular, we
obtain the first polynomial-time constant-factor approximation
for graphs of genus O(log n).

Theorem 1.4. There is an O(1)-approximation algorithm for
ATSP for graphs with either orientable or non-orientable genus g
that runs in time 2O(g)nO(1); this algorithm does not require an
embedding of the graph as part of the input.

Corollary 1.5. There is a polynomial-time O(1)-approximation
algorithm for ATSP for graphs of either orientable or non-
orientable genus O(log n), which does not require an embed-
ding of the graph as part of the input.

1.1 Algorithm Overview

Previous work on rounding the Held-Karp LP. Our algorithm
is inspired by and relies heavily on recent results of Asadpour
et al. for general graphs [1] and Oveis Gharan and Saberi for
surface-embedded graphs [14]. Both of these algorithms use the
classical linear programming relaxation of ATSP introduced by
Held and Karp [9]. Intuitively, a feasible solution to the Held-
Karp LP assigns a weight to every arc, so that the total weight
crossing every cut (in either direction) is at least 1, and the
total weight of the edges entering each vertex is 1; see Section 2
for a formal definition. The main tool introduced by Asadpour
et al. [1] for rounding such a fractional solution is the notion of
a thin spanning tree. Roughly speaking, an undirected spanning
tree T is (α, s)-thin if it satisfies two conditions:

(i) For every cut, the total number of edges in T crossing the
cut is at most α times the total fractional weight of the cut.

(ii) The total cost of the tree is at most s times the total cost of
the fractional solution.

Given such an (α, s)-thin spanning tree, one can obtain a tour of
total cost O((α+ s) ·OPT), where OPT is the cost of the mini-
mum TSP tour, via a careful application of Hoffman’s circulation
theorem. Asadpour et al. [1] describe a randomized algorithm
that constructs a (O(log log n), 2)-thin spanning tree with high
probability for any graph; Oveis Gharan and Saberi [14] show
how to compute a (O(pg log g), O(pg log g))-thin spanning tree
for any graph embedded on an orientable surface of genus g.

The forest for the trees. We depart slightly from the previous
paradigm by using thin spanning forests instead of thin spanning

trees. Given a graph of genus g, we show how to construct a
(O(1), O(1))-thin spanning forest with at most g connected com-
ponents. Using a modified application of Hoffman’s circulation
theorem, we can transform this thin forest into a collection of g
closed walks W1, W2, . . . , Wg that collectively visit all vertices in
the graph and that have total cost O(OPT). We choose an arbi-
trary vertex from each walk Wi and form a smaller ATSP instance
on a graph with only these g vertices. We solve this smaller in-
stance using the algorithm for general graphs, obtaining a tour C .
Finally, we merge the walks C , W1, . . . , Wg and shortcut the re-
sulting closed walk to obtain the approximate solution to the
original ATSP instance.

How can we find a thin forest? The main technical part of our
algorithm is the computation of a thin spanning forest with few
connected components. Our algorithm maintains a decompo-
sition of the input graph into ribbons, where each ribbon is a
maximal set of parallel edges that are contained inside a disk
in the surface. We show that unless the graph has at most g
vertices, we can find such a ribbon having large total fractional
cost. Our algorithm repeatedly contracts a ribbon with largest
fractional cost until we arrive at a graph with at most g vertices.
Every vertex in the contracted graph corresponds to a connected
subgraph of ribbons in the original graph. The fact that every
ribbon has large fractional cost allows us to find a spanning tree
in each such component, so that the resulting spanning forest is
thin.

1.2 Preliminaries
We give a brief overview of some of our notation and terminology.
For a more detailed background in topological graph theory, we
refer the reader to Mohar and Thomassen [13].

A surface is a compact 2-dimensional manifold without bound-
ary. A surface is orientable if it can be embedded in R3, and non-
orientable otherwise. An embedding of an undirected graph G
(possibly with parallel edges and self-loops) into a surface S is
a continuous injective function from the graph (as a topological
space) to S. Vertices of G are mapped to distinct points in S, and
edges are mapped to simple, interior-disjoint paths. A face of
an embedding is a component of the complement of the image
of the embedding; without loss of generality, we consider only
embeddings for which every face is homeomorphic to an open
disk. To avoid excessive notation, we do not distinguish between
vertices, edges, and subgraphs of G and their images under the
embedding. A bigon is a face bounded by exactly two edges.

A cycle is contractible if it can be continuously deformed to a
point; classical results of Epstein [5] imply that a simple cycle
in S is contractible if and only if it is the boundary of a disk in S.
Two paths with matching endpoints are homotopic if they form a
contractible cycle. Thus, two edges in an embedded graph are
homotopic if and only if they bound a bigon.

The dual G∗ of an embedded graph G is defined as follows. For
each face f of G, the dual graph has a corresponding vertex f ∗.
For each edge e of G, the dual graph has an edge e∗ connecting
the vertices dual to the two faces on either side of e. Intuitively,
one can think of f ∗ as an arbitrary point in the interior of f
and e∗ has a path that crosses e at its midpoint and does not
intersect any other edge of G. Each face of G∗ corresponds to
a vertex of G; thus, the dual of G∗ is isomorphic to the original
embedded graph G. Trivially, a face f of G is a bigon if and only
if its dual vertex f ∗ has degree 2.

The genus of a surface S is the maximum number of cycles in S

whose complement is connected. Let G be an embedded graph



with n vertices, m edges, and f faces. Euler’s formula states that
n−m+ f = χ(S), where χ(S) is a topological invariant of the
surface called its Euler characteristic. For a surface of genus g,
the Euler characteristic is 2− 2g if the surface is orientable and
2− g if the surface is non-orientable. To simplify our notation, we
define the Euler genus of S to be 2−χ(S). The orientable genus
of a graph G is the minimum genus of an orientable surface that
supports an embedding of G; the non-orientable genus and the
Euler genus of G are defined similarly.

1.3 Organization
The rest of the paper is organized as follows. In Section 2 we
recall the Held-Karp LP relaxation of ATSP. In Section 3 we in-
troduce the notion of a ribbon and prove some basic properties
of decompositions of the edges of a graph into a collection of
ribbons. Using these ribbon decompositions, we show in Sec-
tion 4 how to construct a thin forest with a small number of
connected components. In Section 5 we how how to turn a thin
forest with few connected components into a small collection of
closed walks visiting all the vertices, and with small total cost.
Finally, in Section 6 we show how to combine the above technical
ingredients to obtain the algorithm for ATSP.

2. THE HELD-KARP LP
We now recall the definition of Held and Karp’s linear program-
ming relaxation of ATSP [9]. Fix a directed graph ~G = (V, A) and
a cost function c : A→ R+. For any subset U ⊆ V , we define

δ+~G (U) := {u�v ∈ A | u ∈ U and v /∈ U}

and δ−~G (U) := δ+~G (V \ U).

We omit the subscript ~G when the underlying graph is clear from
context. To simplify notation, we write δ+(v) = δ+({v}) and
δ−(v) = δ−({v}) for any single vertex v.

Let G = (V, E) be the undirected graph such that uv ∈ E if and
only if u�v ∈ A or v�u ∈ A. For any U ⊆ V , we define

δG(U) := {uv ∈ E | u ∈ U and v /∈ U} .

Again, we omit the subscript G when the underlying graph is clear
from context. We also extend the cost function c to undirected
edges by defining

c(uv) :=min {c(u�v), c(v�u)} .

For any function x : A→ R and any subset W ⊆ A of arcs, we
write x(W ) =

∑

a∈W x(a). With this notation, the Held-Karp LP
relaxation is defined as follows.

minimize
∑

a∈A
c(a) · x(a)

subject to x(δ+(U))≥ 1 for all nonempty U ( V
x(δ+(v)) = x(δ−(v)) for all v ∈ V

x(a)≥ 0 for all a ∈ A

The Held-Karp LP is traditionally defined with variables for each
arc in a complete directed graph, with the additional constraint
x(δ+(v)) = 1 for every vertex v ∈ V . However, the weaker for-
mulation given above is both more convenient for our algorithm,
since any feasible solution is supported on the arcs of the input
graph ~G, and sufficient for our analysis.

Figure 1. Left: A ribbon. Right: Parallel edges not forming a ribbon.

Let x : A→ R be a feasible solution for the Held-Karp LP. We
define the symmetrization of x as the function z : E→ R where

z(uv) := x(u�v) + x(v�u)

for every edge uv ∈ E. For any subset W ⊆ E of edges, we write
z(W ) :=

∑

e∈W z(e).

3. RIBBON DECOMPOSITIONS
Let G be a graph embedded into a surface. A ribbon in G is a
maximal set R of parallel non-self-loop edges in G, such that for
any e 6= e′ ∈ R, the cycle e ∪ e′ is contractible. (See Figure 1 for
an example.) By definition, every non-loop edge in G belongs to
exactly one ribbon. We call the set of all ribbons in any embedded
graph G the ribbon decomposition of G. See Figure 1.

Lemma 3.1. Let G = (V, E) be a graph embedded into a sur-
face S, and let R be its ribbon decomposition. We have |R| ≤
3|V | − 3χ(S).

Proof: Let H be a subgraph of G containing exactly one edge
from each ribbon in R. Every pair of parallel edges in H defines
a non-contractible cycle, and there are no self-loops in H. Thus,
every face of H has at least 3 distinct edges, which implies that
H has at most 2|R|/3 faces. The inequality |R| ≤ 3|V | − 3χ(S)
now follows immediately from Euler’s formula.

Every ribbon R is contained in a closed disk in the surface
that does not intersect the interior of any edge outside R. The
edges in R are naturally ordered inside this disk, so that every
consecutive pair of edges bounds a bigon. We say that an edge
in R is central if it is a weighted median (with respect to z) in
this ordering. Every ribbon has either one or two central edges.

4. COMPUTING A THIN FOREST
For the rest of the paper, fix a directed graph ~G = (V, A), em-
bedded on a surface with Euler genus g, and a positive cost
function c on the arcs of G. Let x be any feasible solution to
the Held-Karp linear program for ~G and c, and let z be the sym-
metrization of x . For any subset W ⊆ E, we refer to c(W ) as its
cost and z(W ) as its weight.

The notion of a thin set, introduced by Asadpour et al. [1],
captures a key idea for rounding a solution of the Held-Karp
linear program. Fix two positive real parameters α and s. A
subset W ⊆ E is said to be (α, s)-thin (with respect to x) if

�

�W ∩δ(U)
�

�≤ α · z(δ(U))

for every subset U ⊆ V , and

c(W )≤ s ·
∑

a∈A

c(a) · x(a).



Figure 2. A sequence of ribbon contractions.

That is, the number of edges in W that cross any cut is at most α
times the total weight of all edges crossing that cut, and the total
cost of W is at most s times the Held-Karp objective value.

In this section we show how to compute a (O(1), O(1))-thin
forest with at most g connected components. We begin by de-
scribing how to compute a forest T with at most g components
that satisfies a slightly weaker notion of thinness.

To that end, we compute a sequence of graphs G0, G1, . . . , Gt ,
with G0 = G, as follows. Fix an index i ≥ 0, and suppose we
have already computed Gi . If Gi has at most g vertices, we set
t = i and terminate the sequence. Otherwise, let Ri denote a
maximum-weight ribbon in Gi; more formally,

Ri = argmax
R′∈Ri

z(R′).

where Ri be the ribbon decomposition of Gi . Let Gi+1 be the
graph obtained from Gi by contracting all the edges in Ri . See
Figure 2 for an example. Finally, let T be a subgraph containing
one central edge ei from each ribbon Ri . Because ribbons do
not contain self-loops and we only contract ribbons, T must be
a forest with exactly one component for each vertex of Gt , and
therefore at most g components in total.

Lemma 4.1. For each index i between 0 and t − 1, we have
z(Ri)≥ 2/5.

Proof: Fix an index i between 0 and t−1, and consider the graph
Gi = (Vi , Ei). By construction we have |Vi | ≥ g, so Lemma 3.1
implies that

|Ri | ≤ 3|Vi | − 3χ(S) = 3|Vi | − 6+ 3g < 6|Vi | − 6.

Therefore, Gi has at least one vertex vi that is incident to at
most 5 ribbons.

For any vertex subset Ui ⊆ Vi , there is a corresponding subset
U ⊆ V such that δGi

(Ui) = δG(U), because Gi is obtained from
G via a sequence of edge contractions; it follows that

z(δGi
(Ui)) = z(δG(U

′)) = x(δ+~G (U)) + x(δ−~G (U)) ≥ 2.

for every subset Ui ⊆ Vi . In particular, we have z(δ(vi)) ≥ 2.
Thus, the maximum-weight ribbon incident to vi has weight at
least 2/5. The lemma follows immediately.

We can now show that T satisfies the first condition in the
definition of thinness.

Lemma 4.2. For any subset U ⊆ V , we have |T ∩δ(U)| ≤ O(1) ·
z(δ(U)).

Proof: For any index i between 0 and t, let G∗i = (V
∗

i , E∗i ) denote
the dual of Gi . Similarly, for any index i between 0 and t − 1, let
R∗i ⊆ E∗i denote the set of the duals of all edges in the maximum-
weight ribbon Ri , and let e∗i denote the dual of the central edge ei .

Recall that the edges of Ri are linearly ordered so that any
successive pair bounds a bigon; with the same linear ordering,
any two successive edges in R∗i share a vertex of degree 2. Thus,
the edges in R∗i define either a path in G∗i whose endpoints have
degree at least three, or a cycle in G∗i with a single vertex of
degree at least three. Each graph Gi+1 is obtained from its prede-
cessor Gi by contracting the ribbon Ri . Because the edges in Ri
are (by definition) not self-loops, the dual graph G∗i+1 can be
obtained from G∗i by deleting all edges in R∗i and their shared
degree-2 vertices; see Figure 3.

Figure 3. Contracting a ribbon deletes its dual path.

Now consider an arbitrary subset U ⊆ V . Let X = δ(U), and
let X ∗ be the set of the duals of all edges in X . There is a set K∗

of pairwise edge-disjoint cycles in G∗ that exactly cover X ∗:

X ∗ =
⋃

K∗∈K∗
E(K∗).

Fix one such dual cycle K∗ ∈K∗. There are two cases to consider.

• First, if the primal subgraph K contains exactly one edge
ei ∈ T , then by construction R∗i ⊆ K∗, so Lemma 4.1 implies
that z(K)≥ z(Ri)≥ 2/5.

• Otherwise, suppose that K contains k ≥ 2 edges of T .
Let e∗i and e∗j be the duals of two such edges that are
consecutive around K∗. Let Q∗ be the subpath of K∗ be-
tween (and including) e∗i and e∗j . Assume without loss
of generality that i < j; then Q∗ is a subgraph of G∗i .
Thus, the definition of central edge and Lemma 4.1 im-
ply that z(Q)≥ z(Ri)/2≥ 1/5. Since the cycle K∗ contains
bk/2c ≥ k/3 such subpaths Q∗ that are pairwise disjoint,
we conclude that z(K)≥ k/15.

In both cases, we have shown that |T ∩ K | ≤ 15 · z(K). Summing
over all cycles in K∗ gives us

|T ∩δ(U)|=
∑

K∗∈K∗
|T ∩ K | ≤

∑

K∗∈K∗
15 · z(K) = 15 · z(δ(U)),

concluding the proof.

Although T satisfies the first condition in the definition of
thinness, it is not necessarily thin, because its cost (with respect



to c) could be large. We now describe how to transform T into
a (O(1), O(1))-thin spanning forest, using an argument of Oveis
Gharan and Saberi [14], who described a similar transformation
for spanning trees. In fact, their argument applies to spanning
forests with a fixed number of components with only trivial
modifications. We include their proof here for completeness.

Lemma 4.3. A (O(1), O(1))-thin spanning forest of G with at
most g components can be computed in polynomial time.

Proof: First we observe that for some fixed constant α, the algo-
rithm of Lemma 4.2 can return a forest T such that

|T ∩δ(U)| ≤ αz(δ(U)) for every subset U ⊆ V

even if z is not the symmetrization of a feasible solution to the
Held-Karp LP. In fact, the success of the algorithm requires only
that z(e)≥ 0 for every edge e and z(δ(U))≥ 2 for every subset
U ⊆ V . We call a function z : E → R suitable if it satisfies these
two requirements.

Let N = n2/α; we assume without loss of generality that N ≥ 2.
We computes a sequence z0, z1, . . . , zN of suitable functions and
a sequence T1, . . . , TN of spanning forests, each with at most g
components, and then return the forest Ti with minimum total
cost. Our construction begins by setting z0(e) := 8bn2z(e)c/n2

for every edge e ∈ E; it is immediate that z0 is suitable.
For each index i ≥ 1, we compute the function zi and spanning

forest Ti as follows. First, using Lemma 4.2, we find a spanning
forest Ti with at most g components; because zi−1 is suitable, by
the inductive hypothesis, we have

|Ti ∩δ(U)| ≤ αzi−1(δ(U)) for every subset U ⊆ V. (1)

Then for each edge e ∈ E, we define

zi(e) =

¨

zi−1(e)− 1/n2 if e ∈ Ti ,
zi−1(e) if e /∈ Ti .

We prove that the function zi is suitable as follows. All values
in z0 are integer multiples of 1/n2, and every value in zi − zi−1
is either 0 or 1/n2. It follows inductively that all values in zi are
integer multiples of 1/n2. An edge e can appear in the forest Ti
only if zi−1(e)> 0. We conclude that zi(e)≥ 0 for every edge e.

Now fix an arbitrary nonempty subset U ( V . Equation (1)
and the definitions of zi and N imply inductively that

zi(δ(U)) = zi−1(δ(U))− |Ti ∩δ(U)|/n2

≥ zi−1(δ(U)) (1−α/n2)

≥ z0(δ(U)) (1−α/n2)i

≥ z0(δ(U)) (1− 1/N)N

≥ z0(δ(U))/4.

The definition of z0 implies that

z0(δ(U))> 8(z(δ(U))− |δ(U)|/n2)> 8(z(δ(U))− 1),

since at most n2 edges cross any cut in G. Finally, because z is
the symmetrization of a feasible solution to the Held-Karp LP,
we have z(δ(U))≥ 2, which implies z0(δ(U))> 8 and therefore
zi(δ(U))> 2. We conclude that zi is suitable, as claimed.

Finally, choose an index i such that the cost c(Ti) of forest Ti
is minimized; our algorithm returns the forest Ti . Equation (1)
implies that

|Ti ∩δ(U)| ≤ αzi−1(δ(U))≤ αz0(δ(U))≤ 3αz(δ(U))

for every subset U ⊆ V . Each edge e ∈ E appears in at most
n2 z0(e)< 3n2 z(e) forests T j , so

c(Ti)≤
1

N

N
∑

j=1

c(T j)

≤
3n2

N

∑

e∈E

z(e)c(e)

= 3α
∑

e∈E

z(e)c(e)

≤ 3α
∑

a∈A

x(a)c(a).

(The last inequality follows from the fact that z(uv)c(uv) ≤
x(u�v)c(u�v) + x(v�u)c(v�u) for every edge uv ∈ E.) We
conclude that Ti is (3α, 3α)-thin, as required.

5. WALKING IN THE FOREST
The last missing ingredient of our main result is an algorithm to
transform a thin forest with few components into a small number
of closed walks with small total cost that span the input graph.
We follow an argument of Asadpour et al. [1], with only minor
modifications to deal with thin forests instead of thin trees; we
include their complete argument here to keep our presentation
self-contained. The argument relies on the following classical
result of Hoffman [10]; for a more modern presentation, see
Schrijver [15, Chapter 11].

Hoffman’s Circulation Theorem [10]. Fix a directed graph ~G =
(V, A) with upper and lower bounds l, u : A→ R. There is a circu-
lation f : A→ R such that l(a)≤ f (a)≤ u(a) for every arc a ∈ A
if and only if the following two conditions are satisfied:

(I) l(a)≤ u(a) for every arc a ∈ A.

(II) l(δ−(U))≤ u(δ+(U)) for every subset U ⊆ V .

Moreover, if l and u are integer-valued, then f can be chosen to
be integer-valued.

Lemma 5.1. Fix positive integer parameters α and s and a fea-
sible solution x to the Held-Karp LP. Given a spanning forest T
of G with at most k connected components that is (α, s)-thin with
respect to x , we can compute in polynomial time a sequence
C1, . . . , Ck′ of closed walks in ~G, for some k′ ≤ k, that visit every
vertex in ~G and such that

∑k
i=1 c(Ci)≤ (2α+ s)

∑

a∈A c(a) · x(a).

Proof: First we direct the edges of T to obtain a directed sub-
graph ~T ⊆ A. Specifically, for every edge uv ∈ T , we have
u�v ∈ ~T if c(u�v)≤ c(v�u) and v�u ∈ ~T otherwise. Then for
each arc a ∈ A, we define

l(a) :=

¨

1 if a ∈ ~T
0 if a /∈ ~T

and u(a) := l(a) + d2α x(a)e.

We verify that these two functions satisfy the conditions of
Hoffman’s circulation theorem as follows. Condition (I) follows
trivially from the fact that x(a) ≥ 0 for every arc a ∈ A. To
verify condition (II), fix a subset U ⊆ V . Recall that z is the
symmetrization of x . We have a sequence of equations and



inequalities

l(δ−(U)) = |~T ∩δ−(U)| (2)

≤ |T ∩δ(U)| (3)

≤ αz(δ(U)) (4)

= α(x(δ+(U)) + x(δ−(U))) (5)

= 2α x(δ+(U)) (6)

≤ u(δ+(U)), (7)

where (2) follows from the definition of l, (3) from the definition
of ~T , (4) from the thinness of T , (5) from the definition of z, (6)
from the second constraint in the Held-Karp LP, and (7) from the
definition of u.

Hoffman’s circulation theorem now implies that there is a
feasible circulation f in ~G; moreover, because the functions l
and u are integer-valued, f can be chosen to be integer-valued.
Let ~H be the directed multigraph obtained from ~G by splitting
each arc v�w into f (v�w) parallel copies, or removing v�w if
f (v�w) = 0. Flow conservation implies that ~H is Eulerian. More-
over, ~H contains ~T as a subgraph. Because T has k components,
~H has at most k strongly-connected components, which implies
that ~H can be decomposed into closed walks C1, C2, . . . , Ck′ for
some k′ ≤ k. Every vertex in ~G lies in one of these closed walks.
Finally, the total cost of these walks is

k′
∑

i=1

c(Ci) =
∑

a∈A

c(a) · f (a)

≤
∑

a∈A

c(a) · u(a)

= c(T ) + 2α
∑

a∈A

c(a) · x(a)

= (2α+ s)
∑

a∈A

c(a) · x(a),

which completes the proof.

6. OUR APPROXIMATION ALGORITHM
We are now finally ready to describe our polynomial-time ap-
proximation algorithm. Suppose we are given a directed graph
~G = (V, A) embedded on a surface of Euler genus g and a non-
negative cost function c : A→ R. Let OPT≥ 0 denote the mini-
mum total cost of a closed spanning walk of ~G.

We begin by computing an optimal solution x to the Held-Karp
LP relaxation for this instance of ATSP. Using Lemma 4.3, we
compute a spanning forest T of G with at most g connected
components that is (O(1), O(1))-thin with respect to x . Then
using Lemma 5.1, we then compute a sequence C1, . . . , Ck of
closed walks, for some integer k ≤ g, that visit every vertex of G
and have total cost at most O(OPT).

Next, we choose a vertex vi of each closed walk Ci and define
a new instance of ATSP over those O(g) vertices. Specifically,
we construct a complete directed graph ~G′ = (V ′, A′) with V ′ =
{v1, . . . , vk}, and for each pair of vertices vi and v j , we define
c′(vi�v j) to be the shortest-path distance from vi to v j in ~G with
respect to the original cost function c.

This new instance of ATSP clearly has a solution of cost OPT′ ≤
OPT. Using any polynomial-time f (n)-approximation algorithm
for ATSP in general graphs, we can compute a closed spanning
walk C ′ in ~G′ such that c′(C ′) ≤ f (k) ·OPT′ ≤ f (g) ·OPT, in
time polynomial in g. By composing C ′ with the earlier closed

walks C1, . . . , Ck, we obtain a single closed spanning walk C of ~G
with total cost c(C) ≤ O(OPT) + f (g) ·OPT = O( f (g)) ·OPT.
The overall running time of the algorithm is clearly polynomial.

This completes the proof of Theorem 1.1.

To prove Theorem 1.4, we simply replace the black-box f (n)-
approximation algorithm with the classical dynamic program-
ming algorithm of Bellman [2] and Held and Karp [8], which
solves any n-vertex instance of ATSP exactly in O(2nn2) time. If
no embedding is given as part of the input, we can compute a
minimum-genus embedding in 2O(g)n time using an algorithm of
Kawarabayashi, Mohar, and Reed [12]. The rest of the algorithm
and its analysis is identical to Theorem 1.1.
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