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Abstract

We design a kinetic data structure for detecting collisions
between two simple polygons in motion. In order to do so,
we create a planar subdivision of the free space between the
two polygons, called the external relative geodesic triangu-
lation, which certifies their disjointness. We show how this
subdivision can be maintained as a kinetic data structure
when the polygons are moving, and analyze its performance
in the kinetic setting.

1 Introduction

The problem of collision detection between moving ob-
jects is fundamental to simulations of the physical world.
It has been studied in a number of different communi-
ties, including robotics, computer graphics, computer-
aided design, and computational geometry. Methods
have been developed for the case of rigid bodies moving
freely in two and three dimensions. Many extant tech-
niques for collision checking on objects of complex ge-
ometry rely on hierarchies of simple bounding volumes
surrounding each of the objects. For a given placement
of two non-intersecting objects, their respective hierar-
chies are refined only to the coarsest level at which the
primitive shapes in the two hierarchies can be shown
to be pairwise disjoint. This and several other opti-
mizations have improved considerably the cost of colli-
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sion detection. Though a physical simulation involves
several other computational tasks, such as motion dy-
namics integration, graphics rendering, and collision re-
sponse, collision detection remains still one of the most
time consuming in such a system.

Motion in the physical world is in general continuous
over time, and many systems attempt to speed up
collision checking by exploiting this temporal coher-
ence, instead of repeating a full collision check ab initio
at each time step [10]. Swept volumes in space or
space-time have also been used towards this goal [2, 8].
Though time-stepping at equal increments is customary
for motion integration, collisions tend to be very irreg-
ularly spaced over time. If we know the motion laws
of the objects, then it makes sense to try to predict
exactly when collisions will happen. There have been a
few theoretical papers in computational geometry along
these lines [4, 7, 11], but their results are not so useful
in practice because they use complex data structures
and are only applicable for limited types of motion.

In this paper we focus on a problem that, while sim-
ple, still adequately addresses a number of the funda-
mental issues that arise as we try to move away from
the limitations of these earlier methods. Our problem is
that of detecting collisions between two simple polygons
moving rigidly in the plane. What makes this problem
challenging is that the two polygons can be quite in-
tertwined and thus in close proximity in many places
at once. We adopt the point of view of kinetic data
structures [1, 6], as it is very natural for the collision
detection problem.

A kinetic data structure, or KDS for short, is built on
the idea of maintaining a discrete attribute of objects in
motion by animating a proof of its correctness through
time. The proof consists of a set of elementary con-
ditions, or certificates, based on the kinds of tests per-
formed by ordinary geometric algorithms (CCW tests in
our case). Those of the certificates that can fail as a re-
sult of the rigid motion of the polygons are placed in an
event queue, ordered according to their earliest failure
time. When a certificate fails, the proof needs to be up-
dated. Unless a collision has occurred, we perform this
update and continue the simulation. In contrast to fixed
time step methods, for which the fastest moving object
determines the time step for the entire system, a ki-
netic method is based on events (the certificate failures)



that have a natural significance in terms of the problem
being addressed (collision detection in this case). The
kinetic model allows us to perform a rigorous combina-
torial time-cost analysis and obtain practical solutions
at the same time.

Unlike earlier collision detection methods that have
focused on bounding volume hierarchies for complex ob-
jects, we focus on the free space between the moving
objects. We tile this free space into cells of a certain
type. Some cells of this tiling deform continuously as
the objects move. As long as all the cells in the tiling
remain non-self-intersecting, the tiling itself functions as
the KDS proof of separation, or non-collision, between
the objects. At certain times, of course, cells will be-
come invalid and a combinatorial change to the tiling
will become necessary. In designing a good tiling we
seek to satisfy three somewhat opposing desiderata:

e select a deformable cell shape whose self-collisions
are easy to detect,

e select a tiling that can conform or adjust to the
motion of the polygons, so that its combinatorial
structure remains valid for as long as possible, and

e make it easy to update the tiling when cell self-
collisions do occur.

These desiderata are directly related to the compact-
ness, efficiency, and responsiveness of our KDS.

We obtain such a tiling by maintaining a moving
polygonal line separating the two polygons. More
specifically, we maintain a structure containing the rela-
tive convex hull [14] of the two polygons. This structure
is what we call the external relative geodesic triangula-
tion (ERGT), a planar subdivision combining the idea
of the relative convex hull and of the geodesic triangu-
lation of a simple polygon [3]. (This latter structure
was also used by Mount [9] for the static problem of
intersection detection.) The ERGT effectively defines
a set of flexible shells surrounding each of the poly-
gons. The space between these shells consists of pseudo-
triangles, which are the basic shapes used in our tiling.
The ERGT can be quickly updated upon certificate fail-
ures (it is responsive, as described in [6]) and has many
other nice properties. For example, as we will see, the
number of certificates of our separation proof is related
to the size of the minimum link separator for the two
polygons [13]. Thus our separation proof automatically
adapts to the complexity of the relative placement of
the two polygons—from a single separating line when
the polygons are far apart to as complex as necessary
when they have many points of near contact. This fea-
ture is important in the kinetic model, in which objects
are allowed to change their motion plan unpredictably.

Figure 1. The geodesic from a to b for two placements of the
small polygon. A shortest path endpoint is indicated by a star.

The quality of a KDS is measured in part by the num-
ber of events it has to process in the worst case (its ef-
ficiency). Obviously, this number depends on the type
of motions allowed. We derive the surprising result that
when the moving polygons are translating along alge-
braic trajectories of bounded degree, the relative convex
hull of the two polygons changes only O(n) times, where
n is the complexity of the polygons. A variation on this
argument shows that under such motion our KDS will
process O(nlogn) events. If the polygons are also al-
lowed to rotate by a constant number of full turns, we
show that the number of events is near quadratic in the
worst case (the obvious bound is cubic). These bounds
are nearly optimal for structures incorporating the rel-
ative convex hull.

Section 2 presents the exterior relative geodesic trian-
gulation for two non-intersecting simple polygons and
the associated separation proof derived from it. It also
shows how this proof can be maintained under continu-
ous motion. Section 3 presents the event bounds for the
two models of motion considered. Section 4 concludes
with plans for further work.

2 Certification and Maintenance

We denote the boundary of a simple polygon P by 0P,
and take the convention that a simple polygon is an
open set. For two vertices a,b € 0P, we denote by
C(a,b) the relatively open polygonal chain along 0P
from a to b going counter-clockwise. The complement
of P is called the free space of P and denoted Fp. The
shortest path from a to b homotopic to C(a, b) in Fp is
denoted mo(a, b).

In this paper, we consider two non-intersecting poly-
gons P, Q. Define F, the free space, to be the comple-
ment of P U Q. We denote by (a,b) the shortest path
from a to b that is homotopic to C'(a,b) in F. It is an
oriented polygonal chain called the geodesic from a to b.
If an edge connects two vertices of 9P (resp. 0Q), it is
called a PP edge (resp. a QQ edge). If it connects a ver-
tex from P and a vertex from @, it is called a PQ edge.
An oriented edge that connects two vertices u,v of P
in Fp is denoted wo. Finally, we denote by R(a,b) the
open region delimited by C(a,b) and 7(a,b) (Figure 1).



Figure 2. Planar maps induced by the ERGT of two polygons, with the PQ edges in bold. The right polygon is dreaming about its

first four pinned geodesic cycles.

Proposition 2.1. Let (a,b) and (c,d) be two pairs of
vertices, with each pair either on 9P or 0Q. If (a,b) and
(¢, d) are on different polygons, then R(a,b) and R(c,d)
do not intersect. If (a,b) and (c,d) are on the same
polygon and C(a,b) and C(c,d) do not overlap, then
R(a,b) and R(c, d) do not intersect. If C'(a,b) C C(c,d),
then R(a,b) C R(c,d).

Given a subsequence S of vertices of P, the pinned
geodesic cycle of P based on S is the sequence of
geodesics in F joining consecutive vertices of S. We
say that the vertices of S are pinned.

2.1 External Relative Geodesic Triangula-
tion

Proposition 2.1 allows us to define a planar map. Let Tp
(resp. T) be a binary tree whose leaves are the edges
of P (resp. Q) in counter-clockwise order, and let T be
the binary tree whose root has Tp and Tg as its two
children. Each subtree of T (except T itself) is associ-
ated with a polygonal chain on one of the boundaries,
so T defines a hierarchy of polygonal chains. With each
node v of T, we associate the geodesic between the two
extreme vertices of the subtree rooted at v.

We associate with the root node a geodesic homotopic
to 0@ and pinned to a vertex p of P. We choose p
depending on the configuration so that, when the convex
hulls of P and @ are disjoint, this geodesic adds an inner
common tangent and an outer common tangent to the
edges already defined by the geodesics associated with
the other nodes.

By Proposition 2.1, this system of geodesics defines
a planar map (a tiling) that we call the external rela-
tive geodesic triangulation (or ERGT) of the pair (P, Q)
based on T (Figure 2). In the rest of this paper, we take
a tree of depth O(logn) to define the ERGT, where n
is the total number of vertices of the two polygons.

Observation 2.1. The edges of the ERGT are ob-
tained by superimposing O(logn) pinned geodesic cy-
cles for each polygon, and possibly some inner and outer
common tangents of the polygons.

The ERGT has a number of properties, which are
straightforward generalizations of those of the geodesic
triangulation of [3]. Consider a node v in Tp or Tg. It
has an associated geodesic, and its two children define
two geodesics obtained by pinning an additional ver-
tex. The open region between these three geodesics, if
non-empty, is a face of the planar map called a pseudo-
triangle (three convex vertices joined by three concave
chains). The root node of T' defines two faces: the infi-
nite face (made of only one concave chain linked to itself
by a convex vertex) and a pseudo-triangle. For any line
segment in F, the sequence of nodes of T' corresponding
to the faces whose interior it crosses lie along a path in
T.

A planar map is made of vertices, edges, and faces.
Additionally, we will say that two adjacent edges along
a face define a corner, which can be either reflez, convez,
or degenerate (i.e., 0° or 180°) on that face. A condi-
tion that states that a given corner is reflex or convex is
called a corner certificate. Now, suppose that we move
the vertices in compliance with the certificates of all cor-
ners: are we sure that the map will remain planar, i.e.,
that no two edges will intersect? For a general planar
map, this is not the case, but the special structure of
the pseudo-triangles allows the ERGT to be certified by
its corners, in the following sense:

Lemma 2.2. Let P,Q be two simple polygons moving
continuously between time 0 and time ty, and let ¥; be
their ERGT at t. If no corner of ¥y becomes degenerate
before ty, then 3y = ¥ for all t < ty.

In particular, a collision can occur between P and @
only when a certificate fails. Thus, we will be able to
detect collisions if we can maintain the ERGT.



Figure 3. The failure of a convex certificate (right to left), and of a reflex certificate (left to right). The polygon edges incident to the
extreme vertices may lie on either side of the edge involved in the event (right inset).

2.2 Locality

Some certificates in the geodesic triangulation involve
only vertices of P, some involve only vertices of ), and
some involve both. In a context in which P and @
both move rigidly, only the certificates involving both
polygons can ever fail. Those are the corner certificates
that are adjacent to PQ edges in the ERGT. This set
of certificates is called the active set.

In the kinetic setting, a change of the motion plan
of one of the polygons makes it necessary to recompute
the failure times of the active set, and it is therefore
desirable to have as small an active set as possible.

Lemma 2.3. In an ERGT of P and ) with n vertices
in total, the active set has O(klogn) certificates, where
K is the size of a minimum link separator of P and Q.

Proof: A line segment not contained in P can cross a
geodesic between two vertices of P at most once. There-
fore, it can cross a pinned geodesic cycle at most twice.
A separator has to cross all PQ edges, so there are at
most twice as many such edges as there are segments in
the separator. Finally, there are at most four certificates
per PQ edge in the active set. O

2.3 Maintenance of the ERGT

We now assume that we have two moving simple poly-
gons P, Q). We assume transversality in space/time, i.e.,
there are at most three vertices collinear at any given
time. This assumption also implies non-degeneracy of P
and @ separately: no three vertices of P are collinear,
and the same holds for . We further assume that,
given the knowledge of the motions of P and @, we can
compute the failure time of any certificate in O(1).

We maintain the ERGT of P and @ by taking all
corner certificates of the associated planar map, and
putting them in an event queue ordered by time of fail-
ure. As the ERGT remains the same when no certifi-
cate fails, we just need to describe how to update it
when there is an event. An event, in general, involves
updating the geodesic triangulation, and descheduling

and rescheduling in the event queue the corner certifi-
cates that are affected by this update.

As we have seen, there are two types of certificates
(reflex and convex), and therefore two types of events,
which are pictured in Figure 3. The failure of a convex
certificate (right to left in Figure 3) is easy to handle,
as there is only one possible resulting map. However,
when a reflex certificate fails, we need to choose between
three possible resulting maps. We describe below how
this can be done with the help of the tree on which the
ERGT is based.

Consider the situation on the left of Figure 3. Let f be
the face of the reflex certificate, and let v be its adjacent
vertex. The face f has two adjacent faces around v,
which we denote f; and f,.. Recall that our ERGT is
based on a binary tree T, and that each face has an
associated node in this tree. Let v, vy, v, be the three
nodes associated with our faces.

Proposition 2.4. The relative positions of nodes
v, vy, v are different in each case of Figure 3. More
precisely, if none of them is the root node of T, the
cases are:

(a) the three nodes are not on a common path,

(b) the three nodes are on a common path, and v,
is between v and vy,

(c) the three nodes are on a common path, and vy
is between v and v,

Proof: (sketch) As we mentioned earlier, if a segment
in Fp crosses a sequence of faces, the associated nodes
lie along a path in T. In each case (a)—(c), we choose
appropriate segments around the vertex v to prove the
claim. For instance, in case (b), we can draw a segment
that crosses f, f,, f¢ in this order. O

If one of the nodes is the root node, we can distin-
guish how the event should be handled with a little ex-
tra work. Details are omitted from this version of the
paper.

Our kinetic data structure maintains the ERGT, and,
for each face, a pointer to its node in T (note that T



Figure 4. (a) An inner appearance and (b) an outer appearance
of the oriented edge pip2 along 7(a,b) as @ moves downwards.
In each case, the polygon edges incident to the extreme vertices
may lie on either side of the connecting edge (inset).

is fixed over time: it is not the dual tree of the pla-
nar map). When a reflex certificate fails, we use these
pointers as indicated by Proposition 2.4 to decide how to
handle the event. This can be done in O(log logn) with
a constant number of least-common-ancestor queries. In
all cases, the update of the ERGT involves the destruc-
tion and creation of a constant number of edges. Each
corner certificate that is disturbed during this process
needs to be descheduled or rescheduled in the event
queue, which takes an additional time logarithmic in
the size of the active set. In other words, our KDS is
responsive.

The reader is invited to examine Figure 2, and to
imagine how the structure of the ERGT would change
if the small polygon were to move around.

3 Efficiency

In this section, we analyze the number of combinato-
rial changes to the ERGT under two models of motion:
pure translation and translation with bounded rotation.
In both cases, we will assume without loss of general-
ity that P is stationary and @ is moving. The position
and orientation of @ is given by a moving orthogonal
reference frame—a point ¢(¢) and a pair of orthogonal
unit vectors x(t), y(t)—whose coordinates are contin-
uous functions of time. The vertices of () have fixed
coordinates relative to the moving reference frame. In
order to compute the failure times of corner certificates
in constant time, we assume that the coordinates of the
reference frame, and thus the coordinates of every ver-
tex, are polynomials of bounded degree. Any rigid mo-
tion can be approximated by such a moving reference
frame to any desired accuracy, for a limited time. How-
ever, bounded-degree algebraic rigid motions necessarily

have non-uniform angular velocity and can cover only a
constant number of full turns.

For both pure translation and rigid motion, we show
that the worst-case number of changes to the ERGT is
about the same as the worst-case number of changes to
the relative convex hull. Our results are as follows:

Theorem 3.1. If two simple polygons P and @) with
n vertices translate along algebraic trajectories of de-
gree k, then the number of changes to their ERGT is
O(knlogn).

Theorem 3.2. If two simple polygons P and QQ with n
vertices undergo bounded-degree algebraic rigid motion,
then the number of changes to their ERGT is O(n?*¢)
for any € > 0, where the hidden constant depends on
the exact parameters of the motion.

Like the bounds for other kinetic data structures [1, 5,
6], these bounds do not actually require the motion to be
algebraic, but only that it satisfy certain combinatorial
conditions. However, it is not sufficient to assume that
any individual certificate can fail only a constant num-
ber of times, as it is for most previous KDSs. Whether
our bounds can be extended to more general classes of
pseudo-algebraic motion remains an open problem.

An event, i.e., a combinatorial change to the ERGT,
always involves the appearance or disappearance of a
PP or a Q@ edge. It is clear that it is sufficient to
bound the number of appearances. A PP edge may
appear for two different reasons: if @) suddenly stops
intersecting it (we call this an inner appearance), or if
one of the P vertices starts intersecting a PQ edge (we
call this an outer appearance). Figure 4 illustrates these
two events for specific positions of the vertices of P.

3.1 Bounds for Translational Motion

In this section, we consider the case in which the motion
of () is pure translation. In this case, the motion of
@ can be described by the motion of a single point.
Let us say that the position of this point at time ¢ is
q(t). We say that the motion is convezr between t; and
to if the projection of ¢(t) on any line ¢ has at most
one local extremum in the range t; < ¢t < t5. Thanks
to the following lemma, we can assume without loss of
generality that the motion of @ is convex.

Lemma 3.3. If the coordinates of q(t) are polynomials
of degree k, then q(t) can be decomposed into O(k)
convex motion fragments.

We will not prove all the cases of Theorem 3.1.
Rather, we will consider only the number of appear-
ances of PP edges on a single pinned geodesic cycle of



Figure 5. Two instances of an oriented edge wv. The pocket it
defines is in gray, and the neighbor pockets are hatched.

P, which we call PGC in the sequel. This case illus-
trates our main arguments, and symmetry considera-
tions, with a careful case analysis, take care of the other
possibilities.

Recall that mo(a,b) is the shortest path that avoids
only the polygon P for a,b € P. It is identical to 7(a, b)
when the convex hulls of P and @ are disjoint. Let
Ry(a,b) be the region bounded by m(a,b) and C(a,b),
just as R(a,b) is the region bounded by =(a,b) and
C(a,b).

Let wv be an oriented PP edge. We extend it beyond
v until it hits P, and denote this segment (or ray, or
empty set) by @ww. We call @ the extension of uv at v.
The extension ¥ is defined symmetrically. The union of
v and its two extensions is denoted wv. It cuts Fp in up
to four components (at most four, by non-degeneracy).

Definition 3.1. The pocket of the oriented edge uv
(denoted pocket(uv)) is the component of Fp \ wv that
is locally to the left of wv. If wv is a finite segment, the
neighbor pocket of v is the component with wv on its
boundary, and wv not on its boundary. The neighbor
pocket of u is defined symmetrically (Figure 5).

If a neighbor pocket is on the same side of v as
pocket(uv), it is called forward-facing, otherwise it is
called backward-facing.

A finite pocket of P is full if it contains at least one
point of @, and empty otherwise. The lid of pocket(uv)
is the portion of W on its boundary. If a finite pocket
contains a pinned vertex of PGC in its closure, we say
that the pocket itself is pinned.

A neighbor pocket is also a pocket in its own right.
The endpoints of the extension segment that defines it
may not be vertices, but the definition of a pocket does
not require them to be.

Lemma 3.4. Let P, and P, be two finite, disjoint
pockets in P whose lids are parallel, with P; and P»
locally on the same sides of their lids. Suppose that at
some time ty, pocket P; is full and P, is empty, and
that at some later time to, pocket Py is empty and P»
is full. If P and @ remain disjoint and translate con-
tinuously between t1 and to, then there exists a time t',
with t1 < t' < ts, at which both P, and P, are empty.

Proof: (sketch) The proof is based on the ‘depth of
penetration’ of a full pocket. If P; is already full when
P, becomes full, then P; will stay full until after P,
becomes empty again, because @) sticks farther into P,
than into P,. Hence when P; first becomes empty, P,
is empty as well. O

The definitions of the pocket and neighbor pockets
allow us to characterize the placements of @ for which
a PP edge can be present on PGC. In the following
discussion, we will assume that a and b are consecutive
pinned vertices along 0P.

Lemma 3.5. If a PP edge e is present on PGC for
some position of ), then for each unpinned endpoint
v of e, the extension of e at v is a non-empty segment
or ray. If the extension is a finite segment, then the
neighbor pocket of v is either infinite, pinned, or full.
Furthermore, pocket(e) is empty and has no pinned ver-
tex not collinear with e.

Proof: Edge e belongs to 7(a,b) for some pair of con-
secutive pinned vertices a and b. If a vertex v of e is
unpinned, 7(a, b) must bend at v, and P must lie locally
in the interior of the angle formed by the bend. Hence
the extension at v is non-empty.

If the extension is finite and the neighbor pocket N
is finite and unpinned, then 7(a, b) crosses the lid of N
twice. But if @ does not enter N, 7(a, b) can be shortcut
using a segment of the pocket lid. Hence N must be full.

For each endpoint v of e, either the lid of pocket(e)
ends at v, or 7(a,b) bends away from pocket(e) at v.
In either case, 7(a,b) separates from the lid at v. The
only intersection of 7(a,b) with the lid of pocket(e) is
exactly the edge e. (If there were two intersections with
the lid of a neighbor pocket, 7(a,b) could be shortcut.)
Tt follows that 7(a, b) does not enter pocket(e). However,
if Q entered pocket(e), or if pocket(e) contained a pinned
vertex not collinear with e, then 7(a, b) would be forced
to enter pocket(e), a contradiction. a

This characterization lets us bound the number of
appearances of any PP edge, as a pocket can become
empty at most once during a single convex motion.



Figure 6. Two restricted PP edges that cross.

Lemma 3.6. An oriented PP edge has at most one
inner appearance and one outer appearance on PGC
during a single convex motion.

Proof: (sketch) At the instant a PP edge e has an in-
ner appearance, some point of @ exits pocket(e). Hence
the projection of 2’s motion on the normal to e is di-
rected away from pocket(e). Before e can have a second
inner appearance, () must re-enter pocket(e), then re-
verse direction to exit it again, creating a non-convex
motion.

Likewise, if e has an outer appearance, () crosses one
of the extensions of e. This motion may either be to-
ward pocket(e) or away from pocket(e), depending on
the configuration of e and its extensions. Nevertheless,
a case analysis shows that before e can have a second
outer appearance, the projection of @Q’s motion on the
normal to e will have two local extrema. a

To bound the number of appearances of PP edges on
PGC, we bound the number of appearances of each of
three types of edges: (1) edges that belong to mo(a,b)
for some pair of consecutive pinned vertices a and b (the
lemma above says that there are linearly many such
appearances); (2) edges not of type (1) that have at
least one backward-facing neighbor pocket (we prove in
the full paper that such edges belong to one of two n-
vertex trees, so there are O(n) of them); and (3) edges
not of type (1) that have only forward-facing neighbor
pockets.

We now focus our attention on PP edges of PGC
that do not belong to any mo(a,b), and that have only
forward-facing neighbor pockets. We call these edges
restricted PP edges.

Lemma 3.7. If two restricted PP edges of PGC' that
appear during the motion of ) cross (i.e., their interiors
intersect), then each has a finite, forward-facing neigh-
bor pocket that is contained in the other edge’s pocket.

Proof: By non-degeneracy, the two edges must cross
properly—they cannot be collinear. Let the two edges
be wz and wz, and without loss of generality assume

that x is contained in pocket(wz) and w is contained in
pocket(ux). See Figure 6. We can show that 7(a,b) C
Ro(a,b) Umo(a,b); we omit the details from this version
of the paper. Hence uZ and wz both belong to 7(a,b)
for the same consecutive pair of pinned vertices a and
b, albeit at different times.

As noted in the proof of Lemma 3.5, if e is a PP edge
of PGC, then m(a,b) does not enter pocket(e). This
implies that pocket(e) is contained in R(a,b). By tran-
sitivity, pocket(e) is also contained in Ry(a,b).

Since pocket(wz) and pocket(uz) are both contained
in Ro(a,b), neither = nor w is pinned. Hence the exten-
sions at = and w must exist, by Lemma 3.5. Further-
more, each extension is contained in the other edge’s
pocket: for example, 7w cannot intersect ux, because
vz intersects ux in only one place, namely on wz.
Therefore, the extensions are finite, and bound neigh-
bor pockets pocket(vw) and pocket(xy). Because uT
and wz are restricted PP edges, these neighbor pock-
ets are forward-facing. Each neighbor pocket is there-
fore finite. It follows that pocket(vw) C pocket(ux) and
pocket(zy) C pocket(wz). O

Lemma 3.8. No two restricted PP edges that have
outer appearances on PGC during a single convex mo-
tion of () can cross.

Proof: If a restricted PP edge e has an outer appear-
ance on PGC, it follows from Lemma 3.5 that pocket(e)
is empty, and some vertex of @) crosses the lid into a
neighbor pocket at the moment of appearance. The
pocket @ enters is finite and unpinned, and empty just
prior to the appearance of e (otherwise m(a,b) would
already enter the pocket).

Suppose that the two crossing edges are ux and wz,
as shown in Figure 6, and wz appears before uz. When
Wz appears, some vertex of Q crosses Wz from above
to below. Just after Wz appears, pocket(vw) is full and
pocket(wz) is empty. When TZ appears, pocket(zy) is
full and pocket(ux) is empty, implying that pocket(vw)
is empty and pocket(wz) is full.

By Lemma 3.4, pocket(vw) becomes empty before
pocket(wz) becomes full. Hence some vertex of @
crosses Wz from below, and another vertex later crosses
wz from above. The projection of Q’s motion on the
normal to Wz therefore has two successive local extrema,
and (Q’s motion is not convex. O

The proof of the corresponding lemma for inner ap-
pearances is similar, but easier.

Lemma 3.9. The number of PP edge appearances on
PGC is O(n) during a single convex motion.



Figure 7. When Q rotates around the point o, each tooth causes
the relative convex hull to change n times.

Proof: (sketch) The graph of all outer appearances
of restricted PP edges is planar (Lemma 3.8), and
hence of linear size; each edge can appear at most once
(Lemma 3.6). The same argument applies to the inner
appearances. Appearances of non-restricted edges have
been bounded separately. O

This concludes the part of the proof of Theorem 3.1
that we are able to present in this proceedings.

3.2 Bounds for Rigid Motion

When @ is allowed to rotate as well as translate, the key
Lemma 3.4 fails. Indeed, we can construct an example of
algebraic rigid motion in which the relative convex hull
of P and @ (and hence their ERGT) changes quadrati-
cally many times, as shown in Figure 7. In the figure, P
is fixed, and @ rotates around the point 0. Once a tooth
of Q crosses a dashed line, which is the extension of an
edge on the left convex chain of P, the relative convex
hull of P changes combinatorially. We can make @) have
n regularly spaced teeth, and the convex chain of P flat
enough so that the teeth of @) cross all the dashed lines
one after another. Then, each tooth of ) causes the rela-
tive convex hull to change n times. In total, the relative
convex hull changes quadratically many times. Since
the relative convex hull of P is the outermost pinned
geodesic cycle if we choose the first pinned vertex on
the convex hull of P, the ERGT changes quadratically
many times as well.

To prove a nearly matching upper bound, we once
again consider separately inner and outer appearances.
In the remainder of this section, () undergoes algebraic
rigid motion, as described at the beginning of this sec-
tion, and as usual, P is stationary.

We first relate the outer appearances on the ERGT
to some visibility changes in a continuously changing
scene.

Lemma 3.10. Let P be a fixed simple polygon and
p € OP. If a point ¢ moves along a bounded-degree

algebraic path in Fp, then the visibility between p and
q in Fp changes O(1) times.

Proof: (sketch) The region where ¢ is not visible from
p is made of disjoint pockets whose lids are collinear with
p. Each time ¢ disappears and reappears from view, it
has to enter and leave a pocket, and the slope of pg
reaches a maximum or a minimum. Since ¢ is moving
along an algebraic path of bounded degree, the slope of
pq has only O(1) local extrema. There is one special case
in which ¢ passes behind P, but this can also happen
only O(1) times. |

Lemma 3.11. The visibility between any point of P
and any point of Q) changes O(1) times.

Proof: Suppose that at time ¢, g starts (or ceases) to be
visible from p. This happens only when there is a vertex
r that ceases (or starts) to block the visibility from ¢ to
p. If r € P, then the visibility from ¢ to p changes even
if we consider only the visibility with respect to P. If
r € @, similarly, the visibility from ¢ to p changes, even
considering only the visibility with respect to @. By
Lemma 3.10, there can be O(1) such events. i

An interesting observation is that the previous lemma
doesn’t hold for two points on the same polygon. In Fig-
ure 7, the visibility between a vertex on the left convex
chain of P and the tip vertex on the right side of P
changes n times as Q makes a full rotation.

Lemma 3.12. The number of outer appearances of PP
and QQ edges on the ERGT is O(n?).

Proof: If a PP edge p1pz has an outer appearance due
to a vertex ¢ as in Figure 4(b), we charge this outer
appearance to the pair (p1,q). As ¢ stops being visible
from p; at that time, such a pair can be charged at most
a constant number of times by Lemma 3.11. The same
applies to Q@) edges. O

The bound on the number of inner appearances is
surprisingly much more involved and requires a lower
envelope argument.

Consider a convex vertex ¢ € Q and a subset P’ C P.
For two vertices p1,ps € P’ that are visible from ¢, con-
sider the cone C spanned by gp7 and gpz. If this cone
contains ) locally at ¢ and all the other vertices of P’
visible from ¢ belong to C (resp. don’t belong to C), we
say that p; and ps are upper (resp. lower) extreme vis-
ible vertices for ¢ in P’. Informally, an extreme vertex
is the “lowest” or “highest” vertex among a set of ver-
tices visible from ¢ (Figure 8). We have the following
characterization of a PQ) edge.



(b)

Figure 8. (a) p1 and p2 are lower extreme visible vertices of ¢ in
C(a,b). (b) p1 and p2 are upper extreme visible vertices of ¢ in
C(b,a) Nmo(a,b).

Lemma 3.13. Suppose that pq is a PQ edge on m(a, b)
where a,b,p € P, q € Q, and p ¢ {a,b}. Then p is
either a lower extreme vertex for q in C(a,b), or an
upper extreme vertex in C'(b,a) N mo(a,b).

Proof: (sketch) First, note that for a vertex p € P
to appear on 7(a,b), it must belong to either C(a,b)
or C(b,a) N mo(a,b). Consider the situation in which
p € C(a,b) \ {a,b}, and p is visible from ¢. (If p is not
visible from ¢, pg cannot be an edge on 7(a, b).) If there
exist two vertices py,p2 on C(a,b) so that p is outside
of the cone bounded by gp1 and gps, then p is inside the
region bounded by C(p1,p2), qp1, and gpz. Therefore,
any path from a to b containing the edge pg cannot be
the shortest path as it can be shortcut by either gp; or
gpz (Figure 8(a)).

A similar argument applies to the case when p €
C(b,a) Nmo(a,b) (Figure 8(b)). O

By Lemma 3.13, we can bound the number of inner
appearances.

Lemma 3.14. The number of inner appearances on a
single pinned geodesic cycle is O(nAs(n)), where As(n)
is the nearly linear maximum length of a Davenport-
Schinzel sequence. The parameter s is a constant de-
pending on the parameters of the motion.

Proof: (sketch) We focus on PP edges that appear on
a specific geodesic 7(a,b) in the course of the motion.
Note that an inner appearance of a PP edge is due to
the disappearance of a PQ edge.

Consider a specific vertex ¢ of @, and let £ be the
support line of one of the edges adjacent to q. For each
vertex p € C(a,b), plot the angle between gp and ¢ as
a function of time, but only for those times when p is
visible from ¢. Lemma 3.11 guarantees that each vertex
p defines only a constant number of arcs in this plot.
By Lemma 3.13, an edge gp is a PQ edge on the pinned
geodesic cycle only if p is either on the lower or the
upper envelope of these arcs. Moreover, the disappear-
ance of an edge pq from 7(a, b) happens exactly when p

ceases to be extreme for ¢. Thus, the number of appear-
ances is just the number of vertices on the upper and
lower envelopes of a set of O(n) monotone arcs, any pair
of which intersects O(1) times (since each intersection
point corresponds to a collinearity between g and two
vertices of P). The bound now follows from standard
lower-envelope results [12].

A similar argument applies when p € C'(b, a)Nmo(a, b),
and, with extra care, when the appearing PP edge is
between a vertex in C'(a, b) and one in C(b, a) Nmo(a, b).

The bound is summed over all vertices of Q. |

4 Conclusion

We have presented an efficient and responsive KDS for
the problem of collision detection between two mov-
ing simple polygons in the plane. This structure has
been implemented and will be compared with more tra-
ditional methods.

We believe that the kinetic setting is the framework
of choice to approach problems of collision detection,
even when the motion plans are not fully known. In
two dimensions, we would like to integrate the approach
presented in this paper with the distance sensitive ap-
proach for convex polygons in the companion paper [5],
and to generalize the structure to the case of multiple
moving polygons. We still do not know whether these
ideas can be successfully adapted to three-dimensional
non-convex bodies. The most straighforward extension
of our ideas to three dimensions leads, unfortunately, to
non-polyhedral tilings of the free space.

Acknowledgments: We wish to thank Jorge Stolfi for
fruitful discussions and John Bauer for helping to clarify
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