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Abstract. We show that in the worst case, 
(ndd=2e�1+n log n) sidedness queries are required

to determine whether the convex hull of n points in IRd is simplicial, or to determine the number of

convex hull facets. This lower bound matches known upper bounds in any odd dimension. Our result

follows from a straightforward adversary argument. A key step in the proof is the construction of a

quasi-simplicial n-vertex polytope with 
(ndd=2e�1) degenerate facets. While it has been known for

several years that d-dimensional convex hulls can have 
(nbd=2c) facets, the previously best lower

bound for these problems is only 
(n logn). Using similar techniques, we also obtain simple and

correct proofs of Erickson and Seidel's lower bounds for detecting a�ne degeneracies in arbitrary

dimensions and circular degeneracies in the plane. As a related result, we show that detecting

simplicial convex hulls in IRd is dd=2esum-hard, in the sense of Gajentaan and Overmars.
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1. Introduction. The construction of convex hulls is one of the most basic and

well-studied problems in computational geometry [2, 3, 5, 10, 11, 12, 13, 15, 17, 18,

29, 34, 35, 38, 39, 47, 41, 45, 43, 44, 47, 48]. Over twenty years ago, Graham described

an algorithm that constructs the convex hull of n points in the plane in O(n logn)

time [29]. The same running time was �rst achieved in three dimensions by Preparata

and Hong [38]. Yao [48] proved a lower bound of 
(n logn) on the complexity of

identifying the convex hull vertices, in the quadratic decision tree model. This lower

bound was later generalized to the algebraic decision tree and algebraic computation

tree models by Ben-Or [7]. It follows that both Graham's scan and Preparata and

Hong's algorithm are optimal in the worst case. If the output size f is also taken into

account, the lower bound drops to 
(n log f) [34], and a number of algorithms match

this bound both in the plane [34, 12, 10] and in three dimensions [18, 16, 10].

In higher dimensions, the problem is not quite so completely solved. Seidel's

\beneath-beyond" algorithm [41] constructs d-dimensional convex hulls in time O(ndd=2e).

After a ten-year wait, Chazelle [15] improved the running time to O(nbd=2c) by deran-

domizing a randomized incremental algorithm of Clarkson and Shor [18]; see also [44].

Since an n-vertex polytope in IRd can have 
(nbd=2c) facets [27], Seidel's algorithm is

optimal in even dimensions, and Chazelle's algorithm is optimal in all dimensions, in

the worst case.

Several faster algorithms are known when the output size f is also considered,

at least when the input points are in general position. In 1970, Chand and Ka-

pur [13] described a "gift-wrapping" algorithm that constructs convex hulls in ar-

bitrary dimensions in time O(nf); see also [47]. Seidel's \shelling" algorithm runs

in time O(n2 + f logn) [43]. A divide-and-conquer algorithm of Chan, Snoeyink,

and Yap [12] constructs four-dimensional hulls in time O((n + f) log2 f), and a re-

cent improvement by Amato and Ramos [2] constructs �ve-dimensional hulls in time
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O((n + f) log3 f). In dimensions higher than �ve, the fastest algorithms are an im-

provement of the gift-wrapping algorithm by Chan [11] with running time O(n log f+

(nf)1�1=(bd=2c+1) polylogn), an extension of Chan, Snoeyink, and Yap's divide-and-

conquer algorithm [12] with running time O((n+(nf)1�1=dd=2e+fn1�2=dd=2e) polylogn),

and an improvement of Seidel's shelling algorithm by Matou�sek [35] with running time

O(n1�1=(bd=2c+1) polylogn+ f logn). For related results, see [6, 13, 17, 18, 34, 45].

Except when f is extremely small or extremely large, there are still large gaps

between all these upper bounds and the lower bound 
(n log f + f). Moreover, most

of these algorithms compute either the complete face lattice of the convex hull or

a triangulation of its boundary, both of which can be signi�cantly larger than the

number of facets if the input is not in general position. Avis, Bremner, and Seidel [5]

describe families of polytopes on which current convex hull algorithms perform quite

badly, sometimes requiring exponential time (in d) even when the number of facets is

only polynomial.

In this paper, we consider convex hull problems for which the result is a single

integer, or even a single bit, although the convex hull itself may be large. We show

that in the worst case, 
(ndd=2e�1 + n logn) sidedness queries are required to decide

whether the convex hull of n points in IRd is simplicial, or to determine the number

of convex hull facets, where d is any �xed constant. This matches known upper

bounds when d is odd [15]. The only lower bound previously known for either of these

problems is 
(n logn), following from the techniques of Yao [48] and Ben-Or [7].

When the dimension is allowed to vary with the input size, deciding if a convex hull

is simplicial is coNP-complete [14, 19], and counting the number of facets is #P-hard

[19].

Our lower bounds follow from a straightforward adversary argument. We start by

constructing a set whose convex hull contains a large number of independent degen-

erate facets. To obtain the adversary con�guration, we perturb this set to eliminate

the degeneracies, but in a way that the degeneracies are still \almost there". An ad-

versary can reintroduce any one of the degenerate facets, by moving its vertices back

to their original position, without changing the result of any other sidedness query.

Our argument is similar to earlier arguments of Erickson and Seidel [23]; however,

many of the the proofs in that paper were 
awed [24]. Our proof technique yields

correct and very simple proofs of Erickson and Seidel's claimed lower bounds for a�ne

degeneracy detection in arbitrary dimensions and circular degeneracy detection in the

plane.

The paper is organized as follows. Section 2 contains de�nitions and some pre-

liminary results. In Section 3, we describe some relative complexity results. Section

4 contains the proof of our main theorem. We discuss extensions of our model of

computation in Section 5. In Section 6, we discuss the relevance of our results in light

of existing convex hull algorithms. In Section 7, we prove lower bounds for some re-

lated degeneracy-detection problems. Finally, in Section 8, we summarize and suggest

directions for further research.

2. Geometric Preliminaries.

2.1. De�nitions. We begin by reviewing basic terminology from the theory of

convex polytopes. For a more detailed introduction, we refer the reader to Ziegler [49]

or Gr�unbaum [30].

The convex hull of a set of points is the smallest convex set that contains it. A

polytope is the convex hull of a �nite set of points. A hyperplane h supports a polytope
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if the polytope intersects h and lies in a closed halfspace of h. The intersection of a

polytope and a supporting hyperplane is called a face of the polytope. The dimension

of a face is the dimension of the smallest a�ne space that contains it; a face of

dimension k is called a k-face. The faces of a polytope are also polytopes. Given a

d-dimensional polytope, its (d � 1)-faces are called facets, its (d � 2)-faces are called

ridges, its 1-faces are called edges, and its 0-faces are called vertices.

A polytope is simplicial if all its facets, and thus all its faces, are simplices. A

polytope is quasi-simplicial if all of its ridges are simplices, or equivalently, if its facets

are simplicial polytopes. A degenerate facet of a quasi-simplicial polytope is any facet

that is not a simplex.

The basic computational primitive that we consider is the sidedness query : Given

d + 1 points p0; p1; : : : ; pd 2 IRd, does the point p0 lie \above", on, or \below" the

oriented hyperplane determined by the other d points? Algebraically, the result of a

sidedness query is given by the sign of the following (d + 1) � (d + 1) determinant,

where pij denoted the jth coordinate of pi.���������

1 p01 p02 � � � p0d

1 p11 p12 � � � p1d

...
...

...
. . .

...

1 pd1 pd2 � � � pdd

���������
The value of this determinant is d! times the signed volume of the simplex spanned

by the points. The algorithms we consider can be modeled as a family of decision

trees, one for each possible value of n, in which every decision is based on the result

of a sidedness query. (We will consider other computational primitives in Section 5.)

The orientation of a simplex (p0; p1; : : : ; pd) is the result of a sidedness query on

its vertices (in the order presented). If the orientation is zero, we say that the simplex

is degenerate. A set of points is a�nely degenerate if any d + 1 of its elements lie on

a single hyperplane, or equivalently, if the set contains the vertices of a degenerate

simplex. The convex hull of an a�nely nondegenerate set of points is simplicial, but

the converse is not true in general|consider the regular octahedron in IR3. Note that

any d+ 1 vertices of a degenerate facet are also the vertices of a degenerate simplex.

2.2. The Weird Moment Curve. The weird moment curve in IRd, denoted

!d(t), is the set of points

!d(t) = (t; t2; : : : ; td�1; td+1);

where the parameter t ranges over the reals. The weird moment curve is similar

to the standard moment curve (t; t2; : : : ; td�1; td), except that the degree of the last

coordinate is increased by one.

If we project the weird moment curve down a dimension by dropping the last

coordinate, we get a standard moment curve. Since every set of points on the standard

moment curve is in convex position, every set of points on the d-dimensional weird

moment curve is in convex position if d � 3. Similarly, since every set of points on the

standard moment curve is a�nely nondegenerate, no d points on the d-dimensional

weird moment curve lie on a single (d�2)-
at. It follows immediately that the convex

hull of any set of points on the weird moment curve is quasi-simplicial; however,

degenerate facets are possible.

Lemma 2.1. Let x0 < x1 < � � � < xd be real numbers. The orientation of the

simplex (!d(x0); !d(x1); : : : ; !d(xd)) is given by the sign of
Pd

i=0 xi. In particular,

the simplex is degenerate if and only if
Pd

i=0 xi = 0.
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Proof. The orientation of the simplex (!d(x0); !d(x1); : : : ; !d(xd)) is given by the

sign of the determinant of the following matrix.

M =

2
6664
1 x0 x

2
0 � � � x

d�1
0 x

d+1
0

1 x1 x
2
1 � � � x

d�1
1 x

d+1
1

...
...

...
. . .

...
...

1 xd x
2
d � � � x

d�1
d x

d+1
d

3
7775

The determinant of M is an antisymmetric polynomial of degree
�
d+1
2

�
+ 1 in the

variables xi, and it is divisible by (xi � xj) for all i < j. It follows that

detMQ
i<j(xj � xi)

is a symmetric polynomial of degree one, and we easily observe that its leading co-

e�cient is 1. (This polynomial is well-de�ned, since the xi's are distinct.) The only

such polynomial is
Pd

i=0 xi.

This result, or at least its proof, is hardly new. If we replace the weird moment

curve by any polynomial curve, the orientation of a simplex is given by the sign of

a symmetric Schur polynomial [40]. A determinantal formula for Schur polynomials

was discovered by Jacobi in the mid-1800's [32].1

The next lemma characterizes degenerate convex hull facets on the weird moment

curve. The result is similar to Gale's \evenness condition" [27], which describes which

vertices of a cyclic polytope form its facets.

Lemma 2.2. Let X be a set of real numbers, and let x0 < x1 < � � � < xd be

elements of X such that
Pd

i=0 xi = 0. The points !d(x0); !d(x1); : : : ; !d(xd) are the

vertices of a degenerate facet of conv(!d(X)) if and only if, for any two elements

y; z 2 X n fx0; x1; : : : ; xdg, the number of elements of fx0; x1; : : : ; xdg between y and

z is even.

Proof. Let h be the hyperplane passing through the points !d(x0); !d(x1); : : : ;

!d(xd). For any real number x, the point !d(x) lies above, on, or below h according

to the sign of the determinant���������

1 x x
2

� � � x
d�1

x
d+1

1 x1 x
2
1 � � � x

d�1
1 x

d+1
1

...
...

...
. . .

...
...

1 xd x
2
d � � � x

d�1
d x

d+1
d

���������
=

0
@ Y

1�i<j�d

(xj � xi)

1
A
 

dY
i=1

(x� xi)

! 
x+

dX
i=1

xi

!

=

0
@ Y

1�i<j�d

(xj � xi)

1
A
 

dY
i=0

(x� xi)

!
:

1Jacobi proved that for any non-negative integers 
0; 
1; : : : ; 
d,

����������

x

0
0

x

1
0

� � � x

d
0

x

0
1

x

1
1

� � � x

d
1

.

.

.
.
.
.

. . .
.
.
.

x

0
d

x

1
d

� � � x

d
d

����������

=

����������

�
0 �
1 � � � �
d

�
0�1 �
1�1 � � � �
d�1

.

.

.
.
.
.

. . .
.
.
.

�
0�d �
1�d � � � �
d�d

����������

�
Y

0�i<j�d

(xj � xi);

where �k is the sum of all possible monomials of total degree k in the variables x0; x1; : : : ; xd. In

particular, �0 = 1 and �k = 0 for all k < 0.
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(See the proof of Lemma 2.1.) Since all factors of the form (xj � xi) are positive, the

sign of this determinant is equal to the sign of the polynomial f(x) =
Qd

i=0(x � xi).

The hyperplane h supports conv(!d(X)) if and only if f(x) has the same sign for all

x 2 X n fx0; x1; : : : ; xdg.

The polynomial f(x) has degree d+ 1 and vanishes at each xi. Thus, the sign of

f(x) changes at each xi. In more geometric terms, the weird moment curve crosses

the hyperplane h at each of the points !d(xi). It follows that f(y) and f(z) both have

the same sign if and only if an even number of xi's lie between y and z.

3. dd=2eSUMHardness. Gajentaan and Overmars [26] de�ne the class of 3sum-

hard problems, all of which are harder than the following base problem.

3sum: Given a set of n distinct integers, do any three sum to zero?

This problem can be easily solved in O(n2) time, and this is believed to be optimal,

but the best lower bound in any general model of computation is only 
(n logn) [7].

Formally, a problem is 3sum-hard if there is a sub-quadratic reduction from 3sum

to the problem in question. Thus, a sub-quadratic algorithm for any 3sum-hard

problem would imply a sub-quadratic algorithm for 3sum, and a su�ciently powerful

quadratic lower bound for 3sum would imply similar lower bounds for every 3sum-

hard problem. (For this reason, some earlier papers call these problems \n2-hard",

but see [8].) Examples of 3sum-hard problems include several degeneracy detection,

separation, hidden surface removal, and motion planning problems in two and three

dimensions.

More generally, we will say that a problem is rSUM-hard if the following problem

can be reduced to it in o(ndr=2e) time.

rsum: Given a set of n distinct integers, do any r sum to zero?

The problem rsum can be solved in time O(n(r+1)=2) when r is odd, or in time

O(nr=2 logn) when r is even. We conjecture that these algorithms are optimal; how-

ever, the best lower bound in any general model of computation, for any �xed r, is

again only 
(n logn) [7]. Higher-dimensional versions of many 3sum-hard problems

are rsum-hard for larger values of r. For example, Lemma 2.1 immediately implies

that detecting a�ne degeneracies in IRd is dsum-hard.

Theorem 3.1. Deciding whether the convex hull of n points in IRd
is simplicial,

for any �xed d, is dd=2esum-hard.

Proof. We describe the proof explicitly only for the case d = 5; generalizing the

proof to higher dimensions is straightforward.

Given a set of integers X = fx1; x2; : : : ; xng, we �rst replace them with the larger

set X 0 = fx
[
1; x

]
1; x

[
2; x

]
2; : : : ; x

[
n; x

]
ng, where x

[
i = xi � 2�i and x

]
i = xi + 2�i for all i.

We then consider the points !5(X
0) obtained by lifting X

0 onto the weird moment

curve in IR5. To prove the theorem, it su�ces to show that the convex hull of the

points !5(X
0) is non-simplicial if and only if some three elements of X sum to zero.

Suppose the convex hull of !5(X
0) is non-simplicial. Then some six points in

!5(X
0) lie on the same hyperplane. By Lemma 2.1, the corresponding six elements

of X 0 sum to zero. These must consist of three matched pairs a[; a]; b[; b]; c[; c] for

some a; b; c 2 X , since otherwise, the various \fudge factors" �2�i do not cancel out,

and the sum of six elements is not even an integer. Thus, X has three elements whose

sum is zero.
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Conversely, suppose that a + b + c = 0 for some a; b; c 2 X . This immediately

implies a[+a
]+b

[+b
]+c

[+c
] = 0, and thus, by Lemma 2.1, the corresponding points

in !5(X
0) all lie on a single hyperplane. Moreover, by Lemma 2.2, this hyperplane

supports a facet of the convex hull of !5(X
0), since no other elements of X 0 lie in the

intervals (a[; a]), (b[; b]), or (c[; c]). Thus, the convex hull of !5(X
0) is not simplicial.

The best lower bound we can ever hope to derive using this reduction is 
(ndd=4e+

n logn), which is signi�cantly smaller than the best known upper bound O(nbd=2c +

n logn), except for the single case d = 5. In particular, Theorem 3.1 tells us absolutely

nothing about the four-dimensional case, since we already have a lower bound of


(n logn) in all dimensions.

In an earlier paper [21], we derive an 
(ndr=2e) lower bound for rsum in the r-

linear decision tree model. In this model, decisions are based on the signs of arbitrary

a�ne combinations of r or fewer input variables. Unfortunately, since the reduction

described by the previous theorem does not follow this model, we do not automatically

get similar lower bounds for detecting simplicial convex hulls. In the next section of

the paper, we derive such lower bounds directly.

Remark: If r is not �xed, the problem rsum is NP-complete, by a simple reduction

to Subset Sum [28]. We can use this fact to to give simple proofs that certain

geometric problems in arbitrary dimensions are NP-hard. For example, Khachiyan

[33] proves that detecting a�ne degeneracies is NP-complete. This result follows

directly from Lemma 2.1. Chandrasekaran et al. [14] and Dyer [19] independently

prove that deciding whether the convex hull of a set of points is simplicial is coNP-

complete; this result also follows immediately from Theorem 3.1. Moreover, since the

reductions are parsimonious [28], the corresponding counting problems (how many

degenerate simplices/facets?) are #P-complete.

4. Lower Bounds for Convex Hull Problems. Our main result is based on

the following combinatorial construction.

Lemma 4.1. For all n and d, there is a quasi-simplicial polytope in IRd
with O(n)

vertices and 
(ndd=2e�1) degenerate facets.

Proof. First consider the case when d is odd, and let r = (d� 1)=2. Without loss

of generality, we assume that n is a multiple of r. Let X denote the following set of

n+ 2n=r = O(n) integers.

X = f�rn;�rn+ r; : : : ;�r; r; r + 1; 2r; 2r+ 1; : : : ; n; n+ 1g

We can specify a degenerate facet of !5(X) as follows. Choose r distinct elements

a1; a2; : : : ; ar 2 X , all positive multiples of r. Let a0 = �

Pr
i=1 ai, let b0 = a0+r, and

for all i > 0, let bi = ai +1. Each ai and bi is a unique element of X , and no element

of X lies between ai and bi for any i. The d+1 points !d(a0); !d(b0); : : : ; !(ar); !(br)

all lie on a single hyperplane by Lemma 2.1, since

rX
i=0

(ai + bi) = 2

rX
i=0

ai = 0:

Moreover, since any pair of elements of X n fa0; b0; a1; b1; : : : ; ar; brg has an even

number of elements of fa0; b0; : : : ; ar; brg between them, Lemma 2.2 implies that these

points are the vertices of a single facet of conv(!d(X)). There are at least
�
n=r
r

�
=


(nr) ways of choosing such a degenerate facet.
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In the case where d is even, let r = d=2�1, and assume without loss of generality

that n is a multiple of r. Let X be the following set of n+2n=r+1 = O(n) integers.

X = f�n� rn;�n� rn+ r; : : : ;�n� r; r; r + 1; 2r; 2r+ 1; : : : ; n; n+ 1; 2ng

Using similar arguments as above, we easily observe that the polytope conv(!d(X))

has 
(nr) degenerate facets, each of which has !d(2n) as a vertex.

This result is the best possible when d is odd, since an odd-dimensional n-vertex

polytope has at most O(n(d�1)=2) facets [49]. In the case where d is even, the best

known upper bound is O(nd=2), which is a factor of n bigger than the result we prove

here. We conjecture that this upper bound is tight. However, if we consider only sets

of points on the weird moment curve, the bound given in the lemma is tight. That

is, the convex hull of any set of n points on !d has at most O(ndd=2e�1) degenerate

facets.

We now prove the main result of the paper.

Theorem 4.2. Any decision tree that decides whether the convex hull of a set of n

points in IRd
is simplicial, using only sidedness queries, must have depth 
(ndd=2e�1+

n logn).

Proof. Let X be the set of numbers described in the proof of Lemma 4.1, and let

X
0 = X +1=(2d+2) = fx+1=(2d+ 2) j x 2 Xg. Initially, the adversary presents the

set of points !d(X
0). Since

Pd
i=0 x

0
i is always a half-integer, this point set is a�nely

nondegenerate, so its convex hull is simplicial.

It su�ces to consider the case where d is odd. Let r = (d � 1)=2. Choose

distinct elements a
0
0; b

0
0; a

0
1; b

0
1; : : : ; a

0
r; b

0
r 2 X

0 so that
Pr

i=0(a
0
i + b

0
i) = 1=2 and no

other elements of X 0 lie between a
0
i and b

0
i for any i. The corresponding points

!(a00); !(b
0
0); : : : ; !(a

0
r); !(b

0
r) form a collapsible simplex. To collapse it, the adversary

simply moves the points back to their original positions in !d(X). Lemmas 2.1 and

2.2 imply that the collapsed simplex forms a degenerate facet of the new convex hull.

Since the sum of any other (d + 1)-tuple changes by at most 1=2 � 1=(2d + 2), no

other simplex changes orientation. In other words, the only way for an algorithm to

distinguish between the original con�guration and the collapsed con�guration is to

perform a sidedness query on the collapsible simplex.

Thus, if an algorithm does not perform a separate sidedness query for every

collapsible simplex, then the adversary can introduce a degenerate facet that the

algorithm cannot detect. There are 
(ndd=2e�1) collapsible simplices, one for each

degenerate facet in conv(!d(X)).

Finally, the n logn term follows from the algebraic decision tree lower bound of

Ben-Or [7].

A three-dimensional version of our construction is illustrated in Figure 4.1. (See

also the proof of Theorem 7.4 below.)

Our lower bound matches known upper bounds when d is odd [15]. We emphasize

that if the points are known in advance to lie on the weird moment curve, this problem

can be solved in O(ndd=4e) time if dd=2e is odd, and in O(ndd=4e logn) time if dd=2e is

even, by an algorithm that uses more complicated queries not allowed by Theorem 4.2,

namely, evaluating the signs of certain linear combinations of x1-coordinates. (See

[21].)

The convex hull of the adversary con�guration !d(X
0) has dd=2e � 1 more facets

than the convex hull of any collapsed con�guration. Thus, we immediately have the

following lower bound.
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(a) (b) (c)

Fig. 4.1. Our adversary construction in three dimensions. Bottom views of (a) a quasi-

simplicial polytope with 
(n) degenerate facets, (b) the simplicial adversary polytope with one col-
lapsible simplex highlighted, and (c) the corresponding collapsed polytope.

Theorem 4.3. Any decision tree that computes the number of convex hull facets

of a set of n points in IRd
, using only sidedness queries, must have depth 
(ndd=2e�1+

n logn).

A simple modi�cation of our argument implies the following \output-sensitive"

version of our lower bound.

Theorem 4.4. Any decision tree that decides whether the convex hull of a set

of n points in IRd
is simplicial or computes the number of convex hull facets, using

only sidedness queries, must have depth 
(f) when d is odd, and 
(f1�2=d) when d

is even, where f is the number of faces of the convex hull.

Proof. Assume that f > n, since otherwise we have nothing to prove. We con-

struct a modi�ed degenerate polytope as follows. We start by constructing a degen-

erate polytope with f faces, exactly as described in the proof of Lemma 4.1. When

d is odd, this polytope is the convex hull of �(f2=(d�1)) points on the weird moment

curve, and has 
(f) degenerate facets. When d is even, the polytope is the convex

hull of �(f2=d) points and has 
(f1�2=d) degenerate facets.

By introducing a new vertex extremely close to the relative interior of any facet

of a simplicial polytope, we can split that facet into d smaller facets. Each such split

increases the number of polytope faces by 2d � 2. To bring the number of vertices of

our adversary polytope up to n, we choose some facet and repeatedly split it in this

fashion, being careful not to introduce any new degenerate simplices. The augmented

polytope has at most f + (2d � 2)n = O(f) faces.

To get a modi�ed adversary polytope, we slide the original vertices of the degen-

erate polytope along the weird moment curve, just enough to remove the degeneracies,

leaving the new vertices in place. Each of the degenerate facets becomes a collapsible

simplex. As long as we do not slide the vertices too far, collapsing a simplex will

not change the orientation of any simplex involving a new vertex. (In e�ect, we are

treating sidedness queries involving new vertices as \allowable" queries; see below.)

The lower bound now follows from the usual adversary argument.

5. Other Computational Primitives. In this section, we identify a general

class of computational primitives which, if added to our model of computation, do

not a�ect our lower bounds. In fact, even if we allow any �nite number of these

primitives to be performed at no cost, the number of required sidedness queries is the

same. These primitives include comparisons between coordinates of input points in

any number of directions, comparisons between coordinates of hyperplanes de�ned by
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d-tuples of points, and in-sphere queries.

The primitives we consider are all algebraic queries. The result of an algebraic

query is given by the sign of a multivariate query polynomial, evaluated at the co-

ordinates of the input. If the sign is zero (resp. nonzero), we say that the input

is degenerate (resp. nondegenerate) with respect to that query. For example, a set

of points is a�nely degenerate if and only if it is degenerate with respect to some

sidedness query.

A projective transformation of IRd (or more properly, of the projective space

IRIPd) is any map that takes hyperplanes to hyperplanes. If we represent the points

of IRd in homogeneous coordinates, a projective transformation is equivalent to a

linear transformation of IRd+1. In Stol�'s two-sided projective model [46], projective

maps preserve (or reverse) the orientation of every simplex in IRd, and thus preserve

the combinatorial structure of convex hulls. See Chapter 14 of [46].

Let X be the set of numbers described in the proof of Lemma 4.1. We call an

algebraic query allowable if for some projective transformation �, the con�guration

�(!d(X)) is nondegenerate with respect to that query. Our choice of terminology is

justi�ed by the following theorem.

Theorem 5.1. Any decision tree that decides whether the convex hull of n points

in IRd
is simplicial, using only sidedness queries and a �nite number of allowable

queries, requires 
(ndd=2e�1) sidedness queries in the worst case.

Proof. If some projective transformation makes !d(X) nondegenerate with re-

spect to an algebraic query, then almost every projective transformation (i.e., all but

a measure zero subset) makes !d(X) nondegenerate. Thus, for any �nite set of al-

lowable queries, almost every projective transformation makes !d(X) nondegenerate

with respect to all of them. Let � be such a transformation.

If �(!d(X)) is nondegenerate with respect to some �nite set of allowable queries,

then for all X 0 in an open neighborhood of X in IRn, the con�guration �(!(X 0)) is

also nondegenerate with respect to that set of queries.

The theorem now follows from a slight modi�cation of the proof of Theorem

4.2. Let " > 0 be some su�ciently small real number. The set �(!d(X + ")) has

a simplicial convex hull, but has 
(ndd=2e+1) collapsible simplices, each correspond-

ing to a degenerate facet in �(!d(X)). No allowable query can distinguish between

�(!d(X + ")) and any collapsed con�guration, or even between �(!d(X + ")) and

�(!d(X)).

We characterize allowable queries algebraically as follows. Consider the degen-

erate con�guration !d(X) as a single point in the con�guration space IRdn. Any

algebraic query induces a surface in con�guration space, consisting of all con�gura-

tions that are degenerate with respect to that query. Since any projective map � can

be represented by a (d + 1)� (d+ 1) matrix with determinant �1, the set of projec-

tively transformed con�gurations �(!d(X)) forms a (d2 + 2d)-dimensional algebraic

variety in con�guration space. Any query whose surface does not completely contain

this variety is allowable.

We give below a (nonexhaustive!) list of allowable queries. We leave the proofs

that these queries are in fact allowable as easy exercises.

� Comparisons of point coordinates, or more generally comparing inner prod-

ucts of two points with a �xed direction vector, is allowable. In fact, we can

allow the input points to be pre-sorted in any �nite number of �xed direc-

tions. Seidel describes a similar result in the context of three-dimensional

convex hull lower bounds [42, Theorem 5]. We emphasize that the directions
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in which these comparisons are made must be �xed in advance. No matter

how we transform the adversary con�guration, there is always some direction

in which a point comparison can distinguish it from a collapsed con�guration.

� More generally, deciding which of two points is hit �rst by a hyperplane

rotating around a �xed (d � 2)-
at is allowable. We can even pre-sort the

points by their cyclic orders around any �nite number of �xed (d�2)-
ats. If

the (d�2)-
at is \at in�nity", then \rotation" is just translation, and we have

the previous notion of point comparison. We can interpret this type of query

in dual space as a comparison between the intersections of two hyperplanes

with a �xed line. Again, we emphasize that the (d� 2)-
ats must be �xed in

advance.

� Sidedness queries in any �xed lower-dimensional projection are allowable.

This is a natural generalization of point comparisons, which can be considered

sidedness queries in a one-dimensional projection. We can even specify in

advance the complete order types of the projections onto any �nite number

of �xed a�ne subspaces. (As a technical point, we would not actually include

this information as part of the input, since this would drastically increase the

input size; instead, knowledge of the projected order types would be hard-

wired into the algorithm.)

� \Second-order" comparisons between vertices of the dual hyperplane arrange-

ment, in any �xed direction, are also allowable. Such a query can be inter-

preted in the primal space as a comparison between the intersections of two

hyperplanes, each de�ned by a d-tuple of input points, with a �xed line. To

prove that such a query is allowable, it su�ces to observe that a projec-

tive transformation of the primal space induces a projective transformation

of the dual space, and vice versa. Note that a second-order comparison is

algebraically equivalent to a sidedness query if the two d-tuples share d � 1

points.

� Since most projective transformations do not map spheres to spheres, in-

sphere queries are allowable. Given d + 2 points, an in-sphere query asks

whether the �rst point lies \inside", on, or \outside" the oriented sphere

determined by the other d+1 points. Similarly, in-sphere queries in any �xed

lower-dimensional projection are allowable.

� Distance comparisons between pairs of points or pairs of projected points are

allowable. More generally, comparing the measures of pairs of simplices of

dimension less than d | for example, comparing the areas of two triangles

when d > 2 | de�ned either by the original points or by any �xed projection,

are allowable.

On the other hand, comparing the volumes of arbitrary simplices of full dimension

is not allowable. In any projective transformation of !d(X), all of the degenerate

simplices have the same (zero) volume. It is not possible to collapse a simplex in

any adversary con�guration while maintaining the order of the volumes of the other

collapsible simplices.

6. Our Models vs. Real Convex Hull Algorithms. A large number of con-

vex hull algorithms rely (or can be made to rely) exclusively on sidedness queries.

These include the \gift-wrapping" algorithms of Chand and Kapur [13] and Swart

[47], the \beneath-beyond" method of Seidel [41], Clarkson and Shor's [18] and Sei-

del's [44] randomized incremental algorithms, Chazelle's worst-case optimal algorithm

[15], and the recursive partial-order algorithm of Clarkson [17]. Seidel's \shelling" al-
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gorithm [43] and the space-e�cient gift-wrapping algorithms of Avis and Fukuda (at

least if Bland's pivoting rule is used) [6] and Rote [39] require only sidedness queries

and second-order comparisons.

Matou�sek [35] and Chan [11] improve the running times of these algorithms (in

an output-sensitive sense), by �nding the extreme points more quickly. Clarkson [17]

describes a similar improvement to a randomized incremental algorithm. Since every

point in our adversary con�guration is extreme, our lower bound still holds even

if the extremity of a point can be decided for free. We are not suggesting that

the computational primitives used by these algorithms cannot be used to break our

lower bounds; only that the ways in which these primitives are currently applied are

inherently limited.

Chan [11] describes an improvement of the gift-wrapping algorithm that uses ray

shooting data structures of Agarwal and Matou�sek [1] and Matou�sek and Schwarzkopf

[36] to speed up the pivoting step. In each pivoting step, the gift-wrapping algorithm

�nds a new facet containing a given ridge of the convex hull. In the dual, this is

equivalent to shooting a ray from a vertex of the dual polytope along one of its

outgoing edges. The dual vertex that the ray hits corresponds in the primal to the

new facet. A single pivoting step tells us the orientation of n � d simplices, all of

which share the d vertices of the new facet. However, at most one of these simplices

can be collapsible, since two collapsible simplices share at most d=2 vertices. Thus,

even if we allow a pivoting step to be performed in constant time, our lower bound

still holds.

There are a few convex hull algorithms which seem to fall outside our framework,

most notably the divide-and-conquer algorithm of Chan, Snoeyink, and Yap [12], and

its improvement by Amato and Ramos [2]. The four-dimensional version of their

algorithm uses primitives involving up to 22 points.2 Higher-dimensional versions of

their algorithm require the use of linear programming queries and ray-shooting queries

in certain (d� 1)-dimensional projections of the input; the fastest known algorithms

to answer these queries [1, 11, 35, 36] do not even �t into the algebraic decision tree

model.

7. Related Problems.

7.1. A�ne Degeneracies.

Theorem 7.1. Any decision tree that decides whether a set of n points in IRd

is a�nely nondegenerate, using only sidedness queries, must have depth 
(nd). If

d � 3, this lower bound holds even when the points are known in advance to be in

convex position.

Proof. Let X denote the set of integers from �dn to n, and let X
0 = X +

1=(2d+ 2). The adversary initially presents the point set !d(X
0). This point set is

a�nely nondegenerate, since the expression
P

i x
0
i is always a half-integer.

Choose arbitrary distinct positive elements x1; x2; : : : ; xd 2 X , and let x0 =

�

P
i xi; this is also an element of X . Then the points !d(x

0
i) form a collapsible

simplex. To collapse it, the adversary just shifts the points back down to !d(xi); the

collapsed simplex is obviously degenerate. Since the expression
Pd

i=0 x
0
i changes by

at most 1=2� 1=(2d+2) for any other simplex, no other simplex changes orientation.

2The most elaborate primitive is a sidedness query on a three-dimensional projection of four

input points, where the direction of projection is de�ned by the intersection of three planes, each the

a�ne hull of three points, each the intersection of a �xed hyperplane and the a�ne hull of two input

points.
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Thus, if an algorithm does not perform a sidedness query on every collapsible

simplex, the adversary can introduce an a�ne degeneracy that the algorithm cannot

detect. There are at least
�
n
d

�
= 
(nd) such simplices. If d � 3, the original point set

and each collapsed point set is in convex position.

Erickson and Seidel [23] prove an 
(nd) lower bound for a restricted problem:

Do any d+ 1 points lie on a nonvertical hyperplane? Except in the two-dimensional

case, where an explicit adversary construction is given, their extension to the general

problem is 
awed [24].

The previous theorem easily generalizes to allow additional queries, as described

in Section 5.

Theorem 7.2. Any decision tree that decides whether a set of n points in IRd
is

a�nely nondegenerate, using only sidedness queries and a �nite number of allowable

queries, requires 
(nd) sidedness queries in the worst case. If d � 3, this lower bound

holds even when the points are known in advance to be in convex position.

7.2. An Alternate Proof in Two Dimensions. A. H. Stone observed that a

set of n integer points on the unit cubic can have n2=8 collinear triples [31]. F�uredi

and Pal�asti [25] discovered an elegant construction, which we describe below, that

improves this lower bound to roughly n
2
=6. We can use their construction to slightly

improve our lower bound for the two-dimensional a�ne degeneracy problem. The

resulting lower bound is the best that can be derived using our techniques, except

possibly for some lower-order terms.

F�uredi and Pal�asti describe their construction in the dual. Let L(�) be the line

passing through the point (cos�; sin�) at angle ��=2 to the x-axis. The line L(�)

also passes through the point (cos(� � 2�); sin(� � 2�)); if this is the same point as

(cos�; sin�), then the line is tangent to the unit circle at that point. Three lines

L(�); L(�); L(
) are concurrent if and only if �+�+
 � 0 (mod 2�). It follows that

the set of lines fL(2�i=n) j 1 � i � ng has 1 + bn(n� 3)=6c concurrent triples. See

Figure 7.1(a). See [25] for further details. Related results are described in [9, 20, 31].

The set of lines fL((2i� 1)�=n) j 1 � i � ng has no concurrent triples, but its

arrangement has dn(n�3)=3e triangular cells, each bounded by a triple of lines of the

form

L((2i� 1)�=n); L((2j � 1)�=n); L((2k � 1)�=n);

where i + j + k � 1 or 2 (mod n). See Figure 7.1(b). Each of these triangles is

collapsible; to collapse such a triangle, we shift each of its three de�ning lines by

�=3n, resulting in the lines

L((2i� 2=3)�=n); L((2j � 2=3)�=n); L((2k � 2=3)�=n);

if i+ j + k � 1 (mod n), or

L((2i� 4=3)�=n); L((2j � 4=3)�=n); L((2k � 4=3)�=n);

if i+j+k � 2 (mod n). See Figure 7.1(c). We easily verify that the collapsed triangle

is degenerate, and that no other triangle changes orientation, since the sum of any

other triple of de�ning angles changes by at most 2�=3n < �=n.

Theorem 7.3. Any decision tree that decides whether a set of n points in

IR2
is a�nely degenerate, using only sidedness queries, must have depth at least

dn(n� 3)=3e.
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(a) (b) (c)

Fig. 7.1. Another adversary construction for arbitrary degeneracies in the plane, following a

construction of F�uredi and Pal�asti. (a) The degenerate con�guration. (b) The adversary con�gura-

tion. (c) A collapsed con�guration.

Gr�unbaum [31] proves that a simple arrangement of n lines in the projective plane

can have at most bn(n� 1)=3c triangular cells if n is even, and at most bn(n� 2)=3c

if n is odd. Thus, we cannot hope to prove a lower bound bigger than n
2
=3 + 
(n)

using collapsible triangles.

7.3. Circular Degeneracies. We also easily prove the following related theo-

rem �rst proven in [23]. A set of points in the plane is circularly degenerate if any

four points lie on a circle. The basic computational primitive used to detect circular

degeneracies is the in-circle query : Given four points, is the �rst point inside, on, or

outside the oriented circle de�ned by the other three points? In-circle queries can be

answered by lifting the points to the unit paraboloid z = x
2+y

2, or stereographically

projecting them onto a sphere, and performing a three-dimensional sidedness query.

Theorem 7.4. Any decision tree that decides whether n points in IR2
is circularly

degenerate, using only in-circle queries, must have depth 
(n3).

Proof. An in-circle query on four points on the unit parabola (t; t2) is algebraically

equivalent to a sidedness query for four points on the three-dimensional weird moment

curve (t; t2; t2). Thus, Lemma 2.1 implies that four points (a; a2); (b; b2); (c; c2); (d; d2)

on the unit parabola are cocircular if and only if a+ b+ c+ d = 0. Let X be the set

of integers from �n to n. There are �(n3) 4-tuples in X whose sums are zero. The

adversary presents a set of points on the unit parabola with x-coordinates taken from

the set X + 1=8. This set is non-degenerate and has 
(n3) collapsible 4-tuples.

We can extend the model of computation in a similar fashion as before, but with

a di�erent set of new queries. A linear fractional transformation of the plane (or

more formally, of the Riemann sphere (CIP1) is any transformation that maps circles

to circles. If we represent the points of IR2 in complex homogeneous coordinates |

representing (x; y) 2 IR2 by any complex multiple of (1 + 0i; x + yi) 2 (C2 | then a

linear fractional transformation is equivalent to a linear transformation of (C2.

We say that a query is circularly allowable if some linear fractional transformation

of the set (X;X
2) is nondegenerate with respect to that query, where X is the set of

numbers described in the proof of Theorem 7.4. Circularly allowable queries include

�rst- and second-order point comparisons and sidedness queries, but do not include

comparisons between arbitrary in-circle determinants.

Arguments similar to those in Section 5 give us the following theorem.

Theorem 7.5. Any decision tree that decides whether n points in IR2
is circularly

degenerate, using only in-circle queries and a �nite number of circularly allowable
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queries, requires 
(n3) in-circle queries in the worst case.

We conjecture that 
(nd+1) insphere queries are required to decide if a set of n

points in IRd is spherically degenerate, but we have been unable to generalize our proof

of the two-dimensional case to higher dimensions. A proof would follow immediately

from the construction of a set of numbers having 
(nd+1) (d+2)-tuples in the zeroset

of a certain symmetric polynomial, by applying our usual adversary argument. For

example, in three dimensions, we need 
(n4) 5-tuples in the zeroset of the polynomial

1 +
X

1�i�j�5

xixj :

Erickson and Seidel [23] prove that 
(nd+1) in-sphere queries are required to

detect proper spherical degeneracies, i.e., sets of d + 2 points on a sphere of �nite

radius, but their proof for the general problem was 
awed [24]. Unlike all the adversary

sets in this paper, the adversary set they use is not obtained by perturbing a highly

degenerate point set. Is there a set of n points in IRd with 
(nd+1) independent

spherical degeneracies? Such a set might lead to a proof of our conjecture.

8. Conclusions and Open Problems. We have presented new lower bounds

on the worst-case complexity of detecting simplicial convex hulls or counting convex

hull facets, in a fairly natural model of computation. Our lower bounds follow from

a simple adversary argument, based on the construction of a convex polytope with a

large number of degenerate features. In order to be correct, any algorithm must indi-

vidually check that each of those degenerate features is not present in the input. Sim-

ilar arguments give us simple proofs of lower bounds for several degeneracy-detection

problems.

Several open problems remain to be answered. While our lower bounds match

existing upper bounds in odd dimensions, where is still a gap when the dimension

is even. A �rst step in improving our lower bounds would be to improve the combi-

natorial bounds in Lemma 4.1. Is there a four-dimensional polytope with n vertices

and 
(n2) degenerate facets? However, we conjecture that no such polytope (or even

polyhedral 3-sphere) exists. Simple variations on the weird moment curve will not

su�ce, since an \evenness condition" like Lemma 2.2 always forces the number of

degenerate facets to be linear. Arguments based on merging facets of cyclic or prod-

uct polytopes also fail, as do variations on Amenta and Ziegler's deformed products

[3, 4]. The best example we can construct is the connected sum of n=5� 1 copies of a

bipyramid over a cube, which has n vertices and 2n�8 facets, each a square pyramid.

A common application of convex hull algorithms is the construction of Delaunay

triangulations and Voronoi diagrams. Are 
(ndd=2e) in-sphere queries required to de-

cide if the Delaunay triangulation is simplicial (i.e., really a triangulation)? Again, a

�rst step is to construct a Delaunay triangulation with 
(ndd=2e) independent degen-

erate features.

Another similar problem is deciding, given a set of points, which ones are vertices

of the set's convex hull. This problem can be decided in O(n2) time (using only

sidedness queries!) by invoking a linear-time linear programming algorithm once for

each point [37]. This upper bound can be improved to O(n2bd=2c=(bd=2c�1) polylogn)

using an algorithm due to Chan [11]. Except for the polylogarithmic term, this

algorithm is almost certainly optimal, but as usual the only known lower bound is


(n logn) [7]. It seems unlikely that a collapsible simplex argument could be used to

imply a reasonable lower bound for this problem.
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Another interesting open problem is to strengthen the models in which our lower

bounds hold. Quadratic lower bounds for either the �ve-dimensional convex hull

problem or the two-dimensional a�ne degeneracy problem in stronger models of com-

putation would imply similar lower bounds for a number of other 3sum-hard problems.

While the lower bounds we prove here and in earlier papers [23, 21] are in fairly nat-

ural models, there are still 3sum-hard problems that cannot even be solved in these

models. For example, one of the simplest problems for which our techniques fail is

�nding the minimum area triangle determined by a set of points in the plane. In order

to prove a useful lower bound for this problem, we must consider a model that allows

comparison of signed triangle areas. It seems impossible to apply our \collapsible

simplex" adversary argument in such a model; a radically new idea is called for.

Ultimately, of course, we would like a lower bound bigger than 
(n logn) that

holds in some general model of computation, such as algebraic decision trees or alge-

braic computation trees.
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