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Abstract

Almost exactly 100 years ago, Max Dehn described the first
combinatorial algorithm to determine whether two given cycles
on a compact surface are homotopic, meaning one cycle can
be continuously deformed into the other without leaving the
surface. We describe a simple variant of Dehn’s algorithm that
runs in linear time, with no hidden dependence on the genus
of the surface. Specifically, given two closed vertex-edge walks
of length at most ` in a combinatorial surface of complexity n,
our algorithm determines whether the walks are homotopic in
O(n+ `) time. Our algorithm simplifies and corrects a similar
algorithm of Dey and Guha [JCSS 1999] and simplifies the more
recent algorithm of Lazarus and Rivaud [FOCS 2012], who
identified a subtle flaw in Dey and Guha’s results. Our algorithm
combines components of these earlier algorithms, classical results
in small cancellation theory by Gersten and Short [Inventiones
1990], and simple run-length encoding.

1 Introduction

Almost exactly 100 years ago, Max Dehn [8] described
the first combinatorial algorithms for two fundamental
topological problems involving closed curves on compact
surfaces: determining whether a given closed curve can
be continuously deformed to a point, and determining
whether one given closed curve can be continuously
deformed into another. In modern terminology, Dehn’s
algorithms determine whether a given cycle is contractible,
and whether two given cycles are freely homotopic. Both
of these problems were already known to be solvable
using covering space techniques, originally due to Schwarz
[24,38] and developed further by Poincaré [33] and Dehn
himself [7]. The key insight in Dehn’s 1912 paper [8]
is that any contractible cycle can be contracted by a
sequence of greedy local moves, each involving only a
small segment of the cycle; moreover, these local moves
can be performed directly on the cycle without constructing
or searching any portion of any covering space. Dehn’s
algorithm exposed deep connections between fundamental
groups of surfaces and the geometry of the hyperbolic
plane, which laid the foundation for several fields of
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mathematics, most notably combinatorial and geometric
group theory and the study of non-positively curved
metric spaces [5, 14, 18, 19, 28, 31, 32, 39]. In particular,
Dehn’s greedy algorithm has been broadly generalized to
a family of techniques called “small cancellation theory”
[14,17,19,28,29].

For any fixed surface, careful implementations of Dehn’s
algorithms run in time linear in the complexity of the
input curve [3,11,15,21]; however, this “linear” running
time hides a constant that depends on the genus of the
surface. We consider a formulation where the surface
is not fixed, but rather provided as part of the input.
Specifically, the input consists of an arbitrary polygonal
decomposition of the surface with complexity n and one or
two closed walks with length at most ` in the 1-skeleton
of this decomposition. We analyze our algorithms in the
standard integer RAM model.

In this setting, Schipper [36] solved the contractibility
problem in O(gn + g2`) time, where g is the genus of
the input surface, by constructing and searching a small
relevant portion of the universal cover of the input surface,
as originally suggested by Schwarz. Dey and Schipper [10]
later improve the running time to O(n + ` log g). Dey
and Guha [9] adapted Dehn’s “small cancellation” con-
tractibility algorithm to run in optimal O(n + `) time.
(We describe some of the subtleties in Dey and Guha’s
algorithm in Section 3.) Dey and Guha also claimed a
linear-time algorithm to test whether two cycles are freely
homotopic; however, Lazarus and Rivaud [26] recently
discovered a subtle flaw in their algorithm. Lazarus and
Rivaud described a different O(n + `)-time homotopy-
testing algorithm that constructs and searches a finite
portion of a certain cyclic covering space. Their algorithm
adapts and simplifies techniques of Colin de Verdière and
Erickson to find the shortest cycle in a given free homotopy
class [6].

1.1 Our Results

This paper recasts Lazarus and Rivaud’s homotopy-testing
algorithm into the language of small cancellation theory,
thereby avoiding the need to construct or search any
portion of any covering space. In fact, aside from the
input surface itself, the most complicated data structure
used by our algorithm is a circular linked list.
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Following Lazarus and Rivaud, we first reduce our
problems in arbitrary surface complexes to the same
problems in a particular complex we call a system of quads.
A system of quads on an orientable surface of genus g > 0
is a cell complex with two vertices, 4g edges between those
vertices, and 2g quadrilateral faces. Unlike Dey and Guha’s
reduction to systems of loops, our reduction to systems of
quads increases the complexity of the input walk by at
most a factor of 2. We describe this reduction in Section 3.

Next, we encode each input walk as a cyclic sequence
of turns; each turn is the number of corners (modulo 4g) in
clockwise order between two successive edges in the cycle.
For example, a turn of 0 represents a spur (a directed edge
followed by its reversal), a turn of 1 represents a sharp left
turn, and a turn of −1 represents a sharp right turn. To
speed up computation, we compress these turn sequences
using simple run-length encoding.

Small cancellation results of Gersten and Short [17],
which we prove in Section 4 using a combinatorial version
of the Gauss-Bonnet theorem, imply that any nontrivial
contractible cycle contains either a spur or a bracket (a path
around three sides of a rectangle). More generally, we
define a cycle to be reduced if it has no spurs or brackets.
Gersten and Short’s results also imply that a cycle in a
system of quads is reduced if and only if there is no
shorter cycle in the same free homotopy class. We can
easily remove any spur or bracket from the run-length-
encoded turn sequence in constant time without changing
the homotopy type of the encoded cycle. We describe
how to remove all spurs and brackets from a run-length-
encoded turn sequence in linear time using a variant of
Dehn’s algorithm. We immediately obtain a linear-time
contractibility algorithm.

Finally, in Section 5, we define a cycle to be canonical
if it contains no sharp right turns (−1) and not all its turns
are equal to −2. We show that any reduced cycle can
be transformed into a canonical cycle in the same free
homotopy class, using a single scan of run-length-encoded
turn sequence. Intuitively, this transformation pushes
the reduced cycle as far to the right as possible without
increasing its length. Finally, using the combinatorial
Gauss-Bonnet theorem again, we prove that there is
exactly one canonical cycle in each free homotopy class.
Our algorithm reports that two input cycles are freely
homotopic if and only if they are transformed into the
same canonical cycle.

1.2 Simplifying Assumptions

We explcitly consider only orientable combinatorial surfaces
without boundary and with genus at least 2, but our
results can be extended to arbitrary combinatorial surfaces
with little difficulty. As Lazarus and Rivaud observe [26],
non-orientable surfaces can be handled by passing to the
oriented double cover. All cycles are contractible on the

sphere (genus 0), and it is easy to determine whether
two cycles are homotopic on the torus (genus 1) using
homology. Finally, homotopy problems on surfaces with
boundary can be solved quickly by even simpler linear-time
algorithms.

2 Background

We begin by recalling several standard definitions from
combinatorial surface topology and topological graph
theory. For more detailed background, we refer the
reader to Stillwell [39], Mohar and Thomassen [30], and
Edelsbrunner and Harer [12].

2.1 Combinatorial Surfaces

A 2-manifold is a Hausdorff space in which every point
has an open neighborhood homeomorphic to the plane R2.
A 2-manifold is non-orientable if it has a subset homeo-
morphic to a Möbius band and orientable otherwise. We
consider only compact, connected, orientable 2-manifolds
in this paper.

A combinatorial surface Σ is a decomposition of a
compact 2-manifold without boundary into vertices, edges,
and faces; every vertex is a point, every edge is a simple
path between vertices, and every face is an open disk. The
underlying graph of vertices and edges is called the 1-
skeleton of Σ. Each incidence between a face and a vertex
of Σ is called a corner; each incidence between a vertex
and an edge is called a dart. Any combinatorial surface Σ
can be represented by a rotation system, which records
the clockwise cyclic order of darts at each vertex.

The dual of a combinatorial surface Σ is another
combinatorial surface Σ∗ on the same 2-manifold, with
a vertex f ∗ for each face f of Σ, an edge e∗ for each edge e
of Σ, and a face v∗ for each vertex v of Σ. A spanning
tree of a combinatorial surface Σ is a spanning tree of
its 1-skeleton; a spanning cotree of Σ is a set of edges
whose duals form a spanning tree of Σ∗. A tree-cotree
decomposition of Σ is a partition (T, L, C) of its edges
into three edge-disjoint subgraphs: a spanning tree T ,
a spanning cotree C , and the leftover edges L [2,13].

A combinatorial surface with boundary is obtained
from a combinatorial surface by deleting a subset of its
faces. The boundary of such a surface is the set of facial
walks of the deleted faces; the boundary is non-singular if
it consists of disjoint simple cycles and singular otherwise.
We emphasize that a combinatorial surface with singular
boundary is homotopy-equivalent but not homeomorphic
to a 2-manifold with boundary; a combinatorial surface
with non-singular boundary is actually a 2-manifold with
boundary. An interior vertex is a vertex that does not lie
on any boundary walk.



2.2 Paths, Cycles, and Homotopy

A path in an abstract 2-manifold Σ is a continuous function
π: [0, 1]→ Σ; a cycle is a continuous function γ: S1→ Σ.
A path π whose endpoints coincide is called a loop; the
common endpoint π(0) = π(1) is called the basepoint of
the loop. A path or cycle is simple if it is injective; a loop
is simple if it injective except at the basepoint. Whenever
we speak of a path or cycle in a combinatorial surface, we
always mean a walk or circuit in its 1-skeleton.

The concatenation π ·π′ of two paths π and π′ with
π(1) = π′(0) is the path with (π · π′)(t) = π(2t) for all
t ≤ 1/2 and (π ·π′)(t) = π′(2t − 1) for all t ≥ 1/2. The
reversal π of π satisfies π(t) = π(1 − t) for all t; the
reversal of a cycle is defined similarly.

The genus g of a surface Σ is the maximum possible
number of disjoint cycles γ1, . . . ,γg whose complement
Σ \ (γ1 ∪ · · · ∪ γg) is connected. For example, the sphere
and the disk have genus 0, the torus and the projective
plane have genus 1, and the Klein bottle has genus 2.

A path homotopy from a path π to another path π′ is
a function h: [0,1]2 → Σ such that h(0, t) = π(t) and
h(1, t) = π′(t) for all t, and h(s, 0) = π(0) = π′(0)
and h(s, 1) = π(0) = π′(0) for all s. Two paths are
homotopic if there is a path homotopy from one to the
other. A free homotopy between two cycles γ and γ′ is
a function h: [0,1] × S1 → Σ such that h(0,θ) = γ(θ)
and h(1,θ) = γ′(θ) for all θ ∈ S1. Two cycles are freely
homotopic if there is a free homotopy from one to the
other. A cycle γ is contractible if it is freely homotopic
to a constant cycle. Equivalently, two paths π and π′ are
homotopic if and only if the loop π ·π′ is contractible.

2.3 Euler and Gauss-Bonnet

Let Σ be a combinatorial surface, possibly with singular
boundary. The Euler characteristic χ(Σ) of Σ is the
number of vertices and faces minus the number of edges.
Euler’s formula states that χ(Σ) = 2− 2g − b, where g is
the genus of Σ and b is the number of boundary cycles.

Suppose we assign an arbitrary real number ∠c to each
corner c of Σ, called the exterior angle at c. We define
the (combinatorial) curvature of a face f or a vertex v
as follows:

κ( f ) := 1−
∑

c∈ f

∠c,

κ(v) := 1−
1

2
deg(v) +
∑

c∈v

∠c.

Here deg(v) denotes the number of darts in Σ that are
incident to v. To simplify notation, we identify each face
or vertex with its set of incident corners, and we measure
angles in circles instead of radians or degrees.

The Combinatorial Gauss-Bonnet Theorem. For any
combinatorial surface Σ = (V, E, F), possibly with singular
boundary, and for any assignment of angles to the corners
of Σ, we have
∑

f ∈F κ( f ) +
∑

v∈V κ(v) = χ(Σ).

Proof: We immediately have
∑

f κ( f ) = |F | −
∑

c ∠c and
∑

v κ(v) = |V |−|E|+
∑

c ∠c, which implies that
∑

f κ( f )+
∑

v κ(v) = |V | − |E|+ |F |= χ(Σ). �

In all our applications of this theorem, we assign
∠c = 1/4 at every corner c; we emphasize, however,
that the theorem holds for arbitrary angle assignments.
Variants and special cases of this theorem were proposed
independently by many different authors [1,17,19,20,22,
27, 28, 35]; our general formulation is closest to that of
McCammond and Wise [29].

2.4 Diagrams

Unlike many previous authors [6, 9, 10, 26, 36], who
formulated their results in terms of covering spaces, we
rely on a more general class of complexes called diagrams,
which are central tools in combinatorial and geometric
group theory. Our definitions closely follow McCammond
and Wise [29].

Let ∆ and Σ be combinatorial surfaces, possibly with
singular boundary. We call ∆ a diagram over Σ if there
is a continuous function δ : ∆→ Σ that sends vertices to
vertices, edges to edges, and faces to faces; the function δ
is called a diagram map. A diagram is singular if its
boundary is singular, and non-singular otherwise.

Consider two faces f and f ′ in a diagram ∆ whose
boundaries intersect in a path from vertex u to vertex v;
the boundary of f ∪ f ′ consists of two paths π and π′

from u to v. We say that f and f ′ cancel if the diagram
map δ sends π and π′ to the same path in Σ. Equivalently
(because Σ is an orientable surface), two faces in ∆ cancel
if they share an edge and the diagram map sends them
to the same face of Σ but with opposite orientations. A
diagram is reduced if no two of its faces cancel. Any
interior vertex of a reduced diagram has the same local
neighborhood structure as the corresponding vertex in the
target surface Σ. Any subcomplex of a covering space of Σ
is also a reduced diagram over Σ, but not every reduced
diagram is a subcomplex of a covering space.

A contractible diagram is called a disk diagram (or
a van Kampen diagram, or a Dehn diagram). Similarly, a
diagram with the homotopy type of a circle is called an
annular diagram (or a conjugacy diagram, or a Schupp
diagram). Figure 1 shows a singular annular diagram.

Our algorithms rely on the following fundamental
lemmas; for proofs, we refer the reader to Lyndon and
Schupp [28, Chapter V] or McCammond and Wise [29,
Lemmas 2.17 and 2.18].



Figure 1. A singular reduced annular diagram over the system of quads
in Figures 2(c) and 3; vertex and face colors describe the diagram map.

Lemma 2.1 (Van Kampen [23], Lyndon [27]). A cycle
α in Σ is contractible if and only if there is a reduced
disk diagram ∆α whose boundary walk is sent to α by the
diagram map.

Lemma 2.2 (Schupp [37]). Two cycles α and β in Σ are
freely homotopic if and only if there is a reduced annular
diagram ∆α,β whose boundary walks are sent to α and β
by the diagram map.

3 Systems of Quads

Most descriptions of Dehn’s algorithms assume a priori that
the input surface has a single vertex and a single face; such
a combinatorial surface is often called a system of loops.
Dey and Schipper [10] and Dey and Guha [9] describe
preprocessing algorithms that efficiently reduce homotopy
problems on arbitrary combinatorial surfaces to the special
case of systems of loops.

Dey and Guha’s reduction can be described as follows.
Let (T, L, C) be an arbitrary tree-cotree decomposition of
the input surface Σ. Contracting every edge in T and
deleting every edge in C transforms Σ into a system of
loops Λ. Each edge in L survives as a loop in Λ; let a
denote the basepoint (or “apex”) of these loops. Cutting
the surface along every loop in L yields a fundamental
polygon P with 2g vertices and edges. If we merely
contract T and cut along L, each edge in C survives as
a path between two corners of this polygon.

For each directed edge e in Σ, we define a walk
λ(e) in Λ as follows. If e ∈ T , then λ(e) is the empty
walk; otherwise, λ(e) is one of the two walks around the
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Figure 2. (a) A fundamental polygon obtained by contracting a spanning
tree and cutting a system of loops. (b) Replacing a non-tree edge with a
walk in the system of loops. (c) Replacing a non-tree edge with a path of
length 2 in the corresponding system of quads; see Figure 3.

boundary of P with the same endpoints as e. For any cycle
α in Σ, we define a cycle λ(α) by concatenation. Two
cycles α and β in Σ are freely homotopic if and only if the
corresponding cycles λ(α) and λ(β) in Λ are also freely
homotopic; in particular, α is contractible if and only if
λ(α) is contractible.

However, the cycle λ(α) could be a factor of Ω(g)
longer than α. Dey and Guha hide this increase in
length by recording only the first and last segments of
each segment λ(e). Efficiently maintaining this compact
representation complicates their algorithm considerably.

Following Lazarus and Rivaud [26], we avoid this
complication by reducing the input surface to a different
standard form, which we call a system of quads. A system
of quads Q is obtained from a system of loops Λ by
introducing a new vertex z (for “zenith” or “Zentrum”) in
the interior of the unique face of Λ, adding edges between z
and every corner of that face, and then deleting the edges
of Λ. The resulting combinatorial surface has exactly 4g
edges (each with endpoints a and z) and 2g quadrilateral
faces (one for each loop in Λ).

For each directed edge e in Σ, we define a path q(e)
in Q as follows. If e ∈ T , then q(e) is the empty path;
otherwise, consider e an edge between two corners of P,
and define q(e) to be the path of length 2 in Q from one
corner to z and then to the other corner. For each edge
e ∈ L, there are two possibilities for the path q(e); we
choose one arbitrarily. Finally, for any cycle α in Σ, we
define the corresponding cycle q(α) in Q by concatenation.
Again, it is easy to verify that two cycles α and β are
freely homotopic if and only if q(α) and q(β) are freely
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Figure 3. Vertex neighborhoods, faces, and the universal cover of a
genus-2 system of quads. Compare with Figures 1 and 2(c).

homotopic. Moreover, the length of q(α) is clearly at most
twice the length of α.

Given any combinatorial surface Σ with complexity n
and positive genus, it is straightforward to compute a
system of quads Q and the paths q(e) for every edge e
in Σ in O(n) time. Then for any walk α in Σ with ` edges,
we can easily compute the corresponding walk q(α) in
O(`) time. In light of this reduction, for the rest of the
paper we assume without loss of generality that the
input surface map Σ is already a system of quads.

The rest of our algorithm implicitly relies on the fact
that a system of quads for a orientable surface of genus
two or higher is hyperbolic in the sense of Gromov [17,19].
The universal cover of a system of quads is isomorphic to a
regular tiling of the hyperbolic plane by squares meeting at
vertices of degree at least 8; see Figure 3 for an example.
More importantly, any interior vertex in a reduced diagram
over a system of quads has degree at least 8.

4 Contractibility: Reduced Cycles

We now describe our linear-time algorithm to test whether
a given cycle α in a system of quads is contractible.
Our algorithm greedily shortens α, without changing
its homotopy class, by replacing certain subpaths called
spurs and brackets that are obviously not as short as
possible with their corresponding shortest paths. A lemma

of Gersten and Short [17], which we prove using the
combinatorial Gauss-Bonnet theorem, implies that every
nontrivial contractible cycle contains either a spur or a
bracket. Thus, removing all spurs and brackets from a
contractible cycle eventually reduces it to the empty cycle.
To identify spurs and brackets quickly, we represent the
input α as a run-length encoded sequence of turns.

4.1 Turn Sequences

Formally, the input cycle α is given as an alternating
cyclic sequence (v0, e1, v1, e2, . . . , e`) of vertices and edges,
where for each index i, vertices vi−1 and vi mod ` are the
endpoints of edge ei .

1 For any two edges e and e′ that
share an endpoint v, we define the turn τ(e, v, e′) to
be the number of corners between e and e′ in clockwise
order around vi . The turn sequence τ(α) is the cyclic
sequence (τ0,τ1, . . . ,τ`), where τi = τ(ei , vi , ei+1 mod `)
for all i. Computing this turn sequence in O(`) time is
straightforward. For notational convenience, we write
t̄ = (−t)mod 4g for any integer t.

To simplify exposition, we use exponents to denote a
run of identical turns in the turn sequence; for example,
the expression (1,24, 12, 2) represents the turn sequence
(1,2,2,2,2,1,1,2). Our algorithm uses a similar com-
pression scheme called run-length encoding. Instead of
the raw turn sequence, we actually store a sequence of
pairs of the form ((τ0, r0), (τ1, r1), . . . (τk−1, rk−1)), with
τi 6= τi+1 mod k for all i, representing the turn sequence
(τr0

0 ,τr1
1 , . . . ,τrk−1

k−1). Again, it is straightforward to compute
the run-length-encoded turn sequence of any cycle α in
O(`) time.

4.2 Spurs and Brackets

A spur in a cycle α is any vertex with turn 0. A left bracket
is a subpath of α where each endpoint has a turn 1 and
every other vertex has turn 2. Similarly, a right bracket is
a subpath of α where each endpoint has turn 1̄ and every
other vertex has turn 2̄.

Lemma 4.1 (Gersten and Short [17, Corollary 5.1]).
The boundary of any non-singular reduced disk diagram
over a system of quads has either four left brackets or four
right brackets.

Proof: Let ∆ be a non-singular reduced diagram over a
system of quads Σ. Because ∆ is non-singular, it has at
least one face, and therefore at least four edges. Orient
the boundary of ∆ counterclockwise, so that the turn at
any boundary vertex is equal to the number of faces of ∆
incident to that vertex. Call a boundary vertex of ∆ convex

1Because α is a cycle in a system of quads, ` must be even, vi = a for
all even i, and vi = z for all odd i, but we never actually use these facts.



if its turn is 1, flat if its turn is 2, and concave otherwise.
Assign an angle of 1/4 to every corner of ∆. Then every
face has curvature zero; every convex boundary vertex has
curvature 1/4; every flat boundary vertex has curvature 0;
and every other vertex has curvature at most −1/4. The
combinatorial Gauss-Bonnet theorem gives us

∑

v κ(v) = 1.
Thus, ∆ has at least four more convex boundary vertices
than concave boundary vertices. It follows immediately
that the boundary of ∆ has at least four right brackets.
Symmetrically, if the boundary of ∆ is oriented clockwise,
it has at least four right brackets. �

Corollary 4.2. Every nontrivial contractible cycle in a
system of quads has either a spur or four brackets.

Proof: Let γ be a non-empty contractible loop in Σ. Van
Kampen’s Lemma 2.1 implies that there is a reduced disk
diagram ∆ whose boundary is mapped to γ. If ∆ is non-
singular, then γ and the boundary of ∆ have identical turn
sequences, so Lemma 4.1 implies that γ has at least four
brackets. If any vertex of ∆ has degree 1, that vertex must
map to a spur in γ.

Otherwise,∆ is singular but has no vertices of degree 1.
In this case, ∆ consists of a “tree” of non-singular reduced
disk diagrams that are connected by paths and cut vertices.
At least two of these non-singular sub-diagrams ∆1 and ∆2
have only one vertex in common with the rest of ∆.
Lemma 4.1 implies that the boundary of ∆1 has at least
four brackets. At least two of these brackets do not overlap
the cut vertex joining ∆1 to the rest of ∆; the diagram map
sends these two brackets to brackets in γ. Similarly, γ also
has at least two brackets from the boundary of ∆2. �

Finally, we say that a cycle is reduced if it contains no
spurs or brackets. Corollary 4.2 immediately implies that
every reduced cycle is either trivial or non-contractible.

4.3 Elementary Reductions

Any spur or bracket can be removed from a cycle by a local
modification that does not change its homotopy type. We
call such local modifications elementary reductions. Our
algorithm actually performs these elementary reductions
by modifying the run-length-encoded turn sequence rather
than the cycle itself.

We call a spur or bracket standard if it excludes at least
three edges of the cycle, near-cyclic if it excludes exactly
two edges, and cyclic if it uses every edge of the cycle. It is
not possible for a spur or bracket to exclude only one edge
of a cycle. A non-trivial cycle in a system of quads has at
least two edges, so a spur cannot be cyclic. For each of the
eight remaining cases, we have a different elementary
reduction—two for spurs, three for left brackets, and
three for right brackets. These elementary reductions
are illustrated in Figure 4, and their effects on the turn
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Figure 4. Elementary reductions removing a standard spur, a near-
cyclic spur, a standard right bracket, an near-cyclic right bracket, and
a cyclic right bracket. Symmetric elementary reductions remove left
brackets.

sequence are listed below. We emphasize that reducing
a non-standard spur or brackets modifies the entire turn
sequence, as indicated by the parentheses below.

x , 0, y   x + y

(0, 0)   ( )

x , 1, 2r , 1, y   x − 1, 2̄r , y − 1

(x , 1, 2r , 1)   (x − 2, 2̄r)

(1, 2r)   (3̄, 2̄r−2)

x , 1̄, 2̄r , 1̄, y   x + 1, 2k, y + 1

(x , 1̄, 2̄r , 1̄)   (x + 2, 2r)

(1̄, 2̄r)   (3, 2r−2)

4.4 Reducing in Linear Time

Since each elementary reduction decreases the length of a
cycle by 2, any cycle of length ` can be transformed into a
reduced cycle using at most `/2 elementary reductions. It
remains only to show that we can find and execute these
elementary reductions in linear time.

Lemma 4.3. Given a cycle α of length ` in a system of
quads, we can compute a reduced cycle freely homotopic
to α in O(`) time.

Proof: We begin by computing the run-length-encoded
turn sequence of α in O(`) time. We store the runs in a



circular doubly-linked list, so that each elementary move
can be performed in constant time. The turns x and y
adjacent to a spur or bracket may lie in nontrivial runs,
or even in the same run; nevertheless, each elementary
reduction replaces at most five old runs with at most five
new runs.

In addition to the value τi and run-length ri of each
run of identical turns, we also compute and maintain the
directed edge ei leading into the first turn of the run. These
edges allow us to recover the reduced cycle α′ from its run-
length-encoded turn sequence in O(`) time. Maintaining
the edges ei during an elementary reduction requires
only O(1) additional time; we omit the tedious details.
(Maintaining these edges is not actually necessary when
we are only testing contractibility, but our free-homotopy
algorithm requires them.)

The main reduction algorithm scans through the run
sequence one run at a time, finding and reducing spurs and
brackets. Initially, we mark every run dirty. We maintain
an index i into the run sequence. In each iteration, if runs
i−4 through i do not contain a spur or a bracket, we mark
run i − 4 clean and increment i. (All index arithmetic is
performed modulo the current number of runs.) Otherwise,
we perform an elementary reduction, replacing those five
runs with at most five new runs; we then mark all the
modified runs dirty and decrease i by 5. The algorithm
repeats these iterations until either all runs are marked
clean, in which case we are done, or at most five runs
remain in the run sequence, in which case we can complete
the reduction in O(1) additional time. (Lemma 4.2 implies
that every bracket in a contractible cycle is standard, so
if we encounter a near-cyclic or cyclic bracket, we can
immediately report that α is non-contractible.)

To analyze the main algorithm, consider the potential
Φ = c+ 8r, where c denotes the current number of clean
runs and r denotes the number of elementary reductions
that have been performed so far. Initially, we have Φ = 0.
Because each elementary reduction decreases the length
of the encoded cycle by 2, we have r ≤ `/2. Similarly,
because the number of runs cannot exceed the number of
edges, we immediately have c ≤ `. Thus, Φ ≤ 5`. Each
iteration runs in O(1) time and increases Φ by at least 1.
We conclude that the total running time is O(`). �

Theorem 4.4. Given a combinatorial surface Σ with com-
plexity n and a cycle α inΣwith length `, we can determine
whether α is contractible in Σ in O(n+ `) time.

5 Free Homotopy: Canonical Cycles

Finally, we describe our algorithm to determine whether
two given cycles in a system of quads are freely homotopic.
Following a common strategy first proposed by Dehn [8],
we transform each input cycle into a unique canonical
cycle in its free homotopy class. Then two cycles are freely

homotopic if and only if they are transformed into the
same canonical cycle.

An intuitively natural choice for the canonical cycles,
also suggested by Dehn [8], are the minimum-length cycles
in each homotopy class; indeed, these are precisely the cy-
cles computed by our reduction algorithm. Unfortunately,
almost all free homotopy classes in a system of quads
contain more than one shortest cycle; freely homotopic
reduced cycles are not necessarily equal. Following Lazarus
and Rivaud [26], we intuitively declare a cycle to be
canonical if it is the rightmost reduced cycle in its homotopy
class. (Dey and Guha [9] proposed a similar strategy for
their free-homotopy algorithm, but as Lazarus and Rivaud
recently observed [26], their proposed canonical cycles
were not actually unique.)

5.1 Elementary Right Shifts

More formally, we say that a cycle is canonical if it
is reduced, its turn sequence contains no 1̄, and its
turn sequence does not contain only 2̄s. A turn of 1̄
indicates that the cycle can be shifted to the right using an
elementary homotopy of the form x , 1̄, y   x+1, 1, y+1.
However, this change may introduce new 1̄s. To avoid
cascading, we define an right bend to be a subpath with
turn sequence 2̄s, 1̄, 2̄t for some integers s and t. Any right
bend can be eliminated by shifting the entire path one
step to the right; we call each such move an elementary
right shift. Exhaustive case analysis (which we omit)
implies that there are seven types of elementary right shift,
differentiated by which of the integers s and t are positive,
whether the right bend covers the entire cycle, and how
the right bend meets itself if it does cover the whole cycle.
We also consider the global substitution (2̄`)  (2`) to be
an eighth type of elementary right shift.

The different types of elementary right shift are listed
below and illustrated in Figure 5; again, parentheses in the
last five cases indicate that we are modifying the entire turn
sequence. Right shifts marked (+) require the exponents s
and t to be positive; right shifts marked (∗) require x 6= 3̄.

x , 2̄s, 1̄, 2̄t , y   x + 1, 1, 2s−1, 3, 2t−1, 1, y + 1 (+)

x , 1̄, 2̄t , y   x + 1, 2t , 1, y + 1

x , 2̄s, 1̄, y   x + 1, 1, 2s, y + 1

(x , 2̄s, 1̄, 2̄t)   (z+ 2, 1, 2s−1, 3, 2t−1, 1) (+)(∗)
(x , 1̄, 2̄t)   (z+ 2, 2t , 1) (∗)
(x , 2̄s, 1̄)   (z+ 2, 1, 2s) (∗)

(3̄, 2̄s, 1̄, 2̄t)   (1, 2s, 3, 2t)

(2̄`)   (2`)

In all these moves, neither of the turns x and y can be
equal to 1̄ or 0 because we apply elementary right shifts
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Figure 5. Elementary right shifts.

only to reduced cycles. We also have x 6= 2̄ and y 6= 2̄;
otherwise, either the run-length encoding is incomplete,
or we are considering the wrong case. Moreover, our
assumption that g ≥ 2 implies that 3 6= 1̄. Thus, applying
an elementary right shift to a reduced cycle yields another
reduced cycle with one less 1̄. It follows that a reduced
cycle of length ` can be transformed into a canonical cycle
in the same free homotopy class by a sequence of at most `
elementary right shifts; in fact, this sequence can be found
and executed in O(`) time.

Lemma 5.1. Given a reduced cycle α of length ` in a
system of quads, we can compute a canonical cycle freely
homotopic to α in O(`) time.

Proof: As in the proof of Lemma 4.3, our algorithm
computes and maintains the run-length-encoded turn
sequence of α, together with the directed edges entering
each run. The algorithm simply scans once through the
compressed turn sequence. Whenever we encounter a 1̄,
we eliminate it with an elementary right shift, which
involves at most seven runs and thus requires only constant
time. Since no elementary right shift introduces a new 1̄
into the turn sequence, no backtracking is required. �

5.2 Canonical Cycles are Unique

Finally, given two cycles α and β in a system of quads, each
with length at most `, we can decide whether α and β are

freely homotopic as follows. First we compute canonical
cycles α′ and β ′ that are freely homotopic to α and β ,
respectively, using Lemmas 4.3 and 5.1. Then to determine
whether α′ and β ′ are equal as cycles, we break the cycles
into loops by choosing arbitrary basepoints and then check
whether the loop α′ is a subpath of the loop β ′·β ′ using any
linear-time string-matching algorithm [4,16,25]. Finally,
we report that α and β are freely homotopic if and only if
α′ and β ′ are the same cycle. The overall running time of
our algorithm is clearly O(`). It remains only to prove that
our algorithm is correct.

Lemma 5.2. There is exactly one canonical cycle in each
free homotopy class in a system of quads.

Proof: Let α and β be distinct reduced cycles in the same
free homotopy class. It suffices to show that either α is not
canonical or β is not canonical. Let A be a reduced annular
diagram over Σ whose boundary cycles map to α and β ,
as guaranteed by Schupp’s Lemma 2.2.

First, we claim that each boundary cycle of A is a simple
cycle. Otherwise, there is a cut vertex x that separates A
into a smaller annular diagram A′ and a disk diagram ∆.
Lemma 4.1 implies that the boundary of ∆ has at least two
brackets that do not touch A, contradicting our assumption
that α and β are reduced. A similar argument implies
that no interior edge of A has both endpoints on the same
boundary cycle of A.

Next, we claim that A has no interior vertices. Suppose
we assign an angle 1/4 to every corner in A. Then every



x

A'

Δ x

yA'

Δ x

(a)

x

A

x+

Δ

x−
α'

β'

α'
β'

(b)

S L

S

S

S

R S S S
S S S

S

R
L

-2 -2 -2 -2

-2 -2 -2

-2

-2

-2

-1 -3

-1

-3

2 2 2 2

2 2

2

2

2

3 1

3

12

(c)

Figure 6. (a) Impossible features in an annular diagram with reduced
boundary cycles. (b) Cutting an annular diagram into a disk diagram.
(c) A cyclic staircase.

face of A has curvature zero, and every interior vertex
of A has curvature at most −1/2. The Combinatorial
Gauss-Bonnet Theorem implies that the sum of all vertex
curvatures is zero. Thus, if A has at least one interior
vertex, the total curvature of its boundary vertices is at
least 1/2, which implies that the boundary of A has at least
two brackets, contradicting our assumption that α and β
are reduced. See Figure 6(a).

Suppose the boundary cycles of A contain a common
vertex x . Then we can consider the boundary cycles of A
to be loops based at x; let α′ and β ′ denote the images of
these boundary loops under the diagram map δ : A→ Σ.
Thus, α′ and β ′ are loops based at δ(x) that respectively
traverse the cycles α and β exactly once.

Now consider the disk diagram ∆ obtained by cutting
the annular diagram A at x , as shown in Figure 6(b). The
vertex x survives in∆ as two boundary vertices x+ and x−;
the natural diagram map sends the boundary of ∆ to the
loop α′ · β̄ ′. Lemma 4.1 implies that the boundary of ∆
has (without loss of generality) four left brackets. Because
α and β are reduced cycles, each of these brackets must
end at either x+ or x−. It follows that the loops α′ and β̄ ′

each have at least one interior vertex with turn 1, so β has
a vertex with turn 1̄ and thus is not canonical. Similarly,
if the boundary of ∆ has four right brackets, then α is not
canonical.

Finally, suppose the boundary cycles of A are disjoint.
Then A must consist of a simple cycle of quadrilaterals,
each with exactly two edges on the boundary of A. Without

loss of generality, suppose the boundary of A is oriented
so that α is the image of the left boundary cycle. Consider
the inner dual cycle A∗, which has a node for each face
of A and an edge for each interior edge of A, oriented
consistently with the boundary cycles of A. Call each face
of A a left face, a straight face, or a right face, depending on
whether A∗ turns left, moves straight ahead, or turns right
inside that face; see Figure 6(c). Any two left faces must
be separated by a right face and vice versa; otherwise, the
boundary of A would contain a bracket, contradicting our
assumption that α and β are reduced. In particular, A has
the same number of left and right faces. If A has a right
face, then the left boundary of A has a vertex with turn 1̄;
otherwise, A has only straight faces, which implies that
every vertex in α has turn 2̄. In either case, we conclude
that α is not canonical. �

Theorem 5.3. Given a combinatorial surface Σ with com-
plexity n and two cycles α and β in Σ, each with length
at most `, we can determine whether α and β are freely
homotopic in Σ in O(n+ `) time.
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