
FSM Builder: A Tool for Writing Autograded Finite Automata
Questions

Eliot Wong Robson

University of Illinois

Urbana-Champaign

Urbana, IL, USA

erobson2@illinois.edu

Sam Ruggerio

University of Illinois

Urbana-Champaign

Urbana, IL, USA

samuelr6@illinois.edu

Jeff Erickson

University of Illinois

Urbana-Champaign

Urbana, IL, USA

jeffe@illinois.edu

Abstract
Deterministic and nondeterministic finite automata (DFAs and

NFAs) are abstract models of computation commonly taught in

introductory computing theory courses. These models have impor-

tant applications (such as fast regular expression matching), and are

used to introduce formal language theory. Undergraduate students

often struggle with understanding these models at first, due to the

level of abstraction. As a result, various pedagogical tools have been

developed to allow students to practice with these models.

We introduce the FSM Builder, a new pedagogical tool enabling

students to practice constructing DFAs and NFAs with a graphical

editor, giving personalized feedback and partial credit. The algo-

rithms used for generating these are heavily inspired by previous

works. The key advantages to its competitors are greater flexibility

and scalability. This is because the FSM Builder is implemented

using efficient algorithms from an open source package, allowing

for easy extension and question creation.

We discuss the implementation of the tool, how it stands out

from previous tools, and takeaways from experiences of using the

tool in multiple large courses. Survey results indicate the interface

and feedback provided by the tool were useful to students.

CCS Concepts
• Theory of computation → Regular languages; • Social and
professional topics → Computing education; • Applied com-
puting → Computer-assisted instruction.

Keywords
discrete mathematics; theory education; autograder; finite automata

ACM Reference Format:
Eliot Wong Robson, Sam Ruggerio, and Jeff Erickson. 2024. FSM Builder:

A Tool for Writing Autograded Finite Automata Questions. In Proceedings
of the 2024 Innovation and Technology in Computer Science Education V.
1 (ITiCSE 2024), July 8–10, 2024, Milan, Italy. ACM, New York, NY, USA,

7 pages. https://doi.org/10.1145/3649217.3653599

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ITiCSE 2024, July 8–10, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0600-4/24/07. . . $15.00

https://doi.org/10.1145/3649217.3653599

1 Introduction
Formal languages and automata are a core topic in introduc-

tory computing theory courses [10]. Undergraduate students often

struggle with these concepts, as these courses are usually the first

exposure these students have to abstract models of computation.

The simplest of these models are Deterministic Finite Automata

(DFA) and Non-Deterministic Finite Automata (NFA), which are

used to define regular languages. DFAs and NFAs are classified as

finite-state machines (FSMs), or (equivalently) finite automata.

Many assignments require students to design FSMs to match

English descriptions of regular languages or regular expressions. In

our experience, students have frequently asked for more of these

types of practice problems, along with feedback to their solutions.

In a large introductory theory course, providing meaningful one-on-

one feedback for a multitude of practice problems is infeasible, and

the time needed to provide this feedback prevents many students

from engaging fully with these topics. Thus, providing practice

with automated feedback represents a significant opportunity to

increase student engagement while also easing the workload of

course staff.

To meet these demands, we developed the FSM Builder as a suc-

cessor to previous finite automata tools, implementing similar key

features while also providing functionality to aid in development

of new exercises at scale for large courses. This tool was developed

for easy integration with the PrairieLearn platform [20], but the

implementation is self-contained and may be used elsewhere.

1.1 Finite Automata Background
We briefly review standard terminology for FSMs [15]. A finite state

machine consists of an input alphabet (the characters that can be

used in input strings), a set of states, a set of accepting states, a start

state, and a transition function. The transition function defines a

state to transition to from every state and every character from

the alphabet (unless explicitly stated that missing characters go to

an implicit dump state, which by convention results in rejection).

The set of accepted strings is the language accepted by the FSM,

and there may be multiple different FSMs that accept the same

language.

Of note is that DFAs cannot have multiple transitions leaving a

given state on the same character, while NFAs can (as this is how

nondeterminism is incorporated). Additionally, NFAs may contain

epsilon transitions.

1.2 Organization
The rest of the paper is organized as follows. We first review the

features and limitations of other tools in Section 2. We outline

https://doi.org/10.1145/3649217.3653599
https://doi.org/10.1145/3649217.3653599

ITiCSE 2024, July 8–10, 2024, Milan, Italy Eliot Wong Robson, Sam Ruggerio, and Jeff Erickson

design considerations for the FSM Builder in Section 3 and provide

background for the course and development of the tool in Section 4.

In Sections 5 and 6, we discuss the features of the user interface and

backend autograder respectively, including the specific algorithms

used to generate partial credit and feedback. In Section 7 we present

survey results from using the FSM Builder in an undergraduate

algorithms course with over 300 students. Section 8 provides details

on how to adopt the tool, and Section 9 concludes with a discussion

of future directions.

2 Related Work
There has been substantial prior work on software tools enabling

automated teaching of automata theory, with a specific focus on

finite automata [5]. In this section, we discuss the strengths and

weaknesses of previous tools and compare to those of the FSM

Builder.

2.1 JFLAP
One of the earliest such tools is the JFLAP software package [13,

14], which allows interactive exploration of automata by students,

including the simulation of input strings. The original aim of JFLAP

was to give students an interactive way to explore course content, as

the original package does not provide mechanisms for feedback or

evaluation by instructors. Moreover, the original package required

a local installation, making scaling to a large course difficult. JFLAP

has support for more types of automata than just finite automata

[4], which is beyond the scope of the FSM Builder.

2.1.1 DAVID Extension A follow-up work on JFLAP analyzed the

impact of automated feedback on the student experience. Specif-

ically, Bezáková et al. [3] developed the DAVID extension, which

provides automated feedback through counterexamples, and an-

alyzed the effect on student performance. This feedback, called a

witness string, is the shortest string where the student submission

and reference solution have differing behavior. The feedback mech-

anism in the FSM Builder is an extension of this idea, providing

multiple such strings if possible.

Although the DAVID extension used an autograder in addition

to the feedback provided, this autograder did not provide partial

credit.

2.1.2 OpenFLAP More recently, the functionality in JFLAP was

expanded with an autograder in OpenFLAP [11] as part of an effort

to develop an eTextbook for automata theory. This tool can be

integrated with existing learning management systems, but cannot

be integrated with PrairieLearn easily. In addition, the autograding

algorithm is not as robust as that of the DAVID extension, using

test strings instead of analyzing the FSMs for equivalence.

2.2 Automata Tutor
More recently, Automata Tutor has emerged as a similar tool to

JFLAP, providing a web-based interface with a greater emphasis

on graded assessments [7]. In particular, the most recent version

of Automata Tutor provides automated feedback for a number of

different question types related to automata (not just FSMs), with a

focus on large courses [6]. However, this tool cannot be integrated

with PrairieLearn easily, and does not seem to allow for custom

grader code the way the FSM Builder does.

2.3 FSM Designer
The FSM Designer [18] is a graphical user interface for typesetting

automata and does not feature any kind of simulation or auto-

grading. Although the FSM designer has a narrower scope than

other tools, it has an intuitive interface, freely available source code,

and was already a popular tool many students were familiar with.

The user interface of the FSM Builder is based on that of the FSM

Designer to facilitate easy adoption by students, and encourage

students to typeset their homework by giving them familiarity with

the FSM Designer.

2.4 Partial Credit
Alur et al. [2] analyzed different partial credit schemes for DFA

construction questions. Although not directly compared to other

partial credit schemes, the density difference partial credit scheme

proved to be the easiest to integrate into the FSM Builder.

3 Design Considerations
Some desirable features of the previously discussed tools incor-

porated into the FSM Builder are the following:

(1) A simple, modern graphical user interface for students. See

Section 5.1.

(2) A robust grading algorithm that can efficiently checkwhether

a student submission is equivalent to a reference solution

and give partial credit. See Sections 6.2 and 6.3.

(3) A string-based feedback mechanism that can generate coun-

terexamples to student submissions. See Section 6.4.

(4) The ability to create questions and practice assignments.

To distinguish itself from other tools, the FSM Builder incorpo-

rates the following unique features:

(1) Compatibility with PrairieLearn, the course content hosting

platform.

(2) Reinforcement of course conventions for designing more

human-readable FSMs. See Section 6.1.

(3) Fast creation of practice problems from existing reference

solutions with minimal developer overhead (no need for

custom grader code if using the included autograder). See

Section 5.2.

(4) Use of the graphical interface independently of the auto-

grader (for questions with custom grading algorithms).

(5) A self-contained, modular, open source implementation in

Python and JavaScript. Importantly, all code from the FSM

Builder can be integrated into other content hosting plat-

forms if desired.

The above lend to the scalability and flexibility of the FSM

Builder, which are the key characteristics distinguishing it from

prior work.

4 Course Context
The FSM Builder was developed and pilot tested as part of the

introductory algorithms and models of computation course in the

computer science department at the University of Illinois Urbana-

Champaign.Most students are second year computer sciencemajors

taking the course as a degree requirement. This is a large course,

with enrollment between 370 and 400 students each semester. The

models of computation portion of the course spends a considerable

FSM Builder: A Tool for Writing Autograded Finite AutomataQuestions ITiCSE 2024, July 8–10, 2024, Milan, Italy

amount of time on finite state machines and regular languages. The

first author of this paper has been the lead developer for the course

since Fall 2021, and the second author has been a developer since

Spring 2022. The third author has been a lead instructor for the

course and written much of the course material.

One of the most common questions asked of students on finite

automata is, given an English description of a language, prove this

language is regular by providing a finite state machine accepting

this language. This question structure is commonly used in home-

work and exam questions throughout the course, and accordingly,

most of the existing practice questions for regular languages follow

this structure. We designed the interface for question writing to

facilitate efficient creation from existing solutions to these types of

problems.

The course also uses the PrairieLearn platform [19] to deliver

other types of course content, so any tool used needed to be com-

patible with this platform. See [8] for more details on content de-

velopment for our course.

4.1 Tool Development
Prior to the development of the FSM Builder, our course used a

system for autograding FSMs that required programmatic input

from both students and question writers, hosted on PrairieLearn.

Students were required to write a short Python program defining

a finite automata, and this was checked against the reference so-

lution using an equality checking algorithm based on the product

construction for DFAs [15]. During these semesters, a common

sentiment was the desire for a visual editor that did not require

writing Python code.

The key motivation for the creation of the FSM Builder, rather

than using existing tools, was desire for integrationwith PrairieLearn.

With the design considerations outlined in Section 3, during the

summer of 2022, we wrote the first proper version of the FSM

Builder. This included the full graphical interface based on the FSM

designer, a simple interface for question writers, and string based

feedback.

In summer of 2023, we updated the FSM Builder with another

round of feedback from course instructors, incorporating the language-

similarity based partial credit scheme, and more detailed feedback

for incorrect answers by students. With these new features in place,

the tool has seen adoption in other courses, including the introduc-

tory discrete mathematics course within the same department.

5 User Interface
The FSM Builder is integrated within PrairieLearn, providing an

intuitive user experience for students and an interface for question

writers that requires minimal knowledge of automata theory. Of

particular importance is the ease of question creation using the

included autograder, as this facilitated the production of a large

number of exercises in a short period of time from existing reference

solutions.

5.1 Student Interface
As alluded to in Section 2.3, the interface for students is based on the

FSM Designer by Wallace [18]. Students are given a canvas where

they can add new states and transitions to their finite state machine

by clicking. States can be moved once created and transitions be-

tween states can be repositioned to keep the drawing clear. States

can be given labels consisting of any characters, and transitions

can be labeled with characters from the language’s alphabet. An

instance of the FSM Builder is shown in Figure 1a.

Students receive automated feedback from their response both

on the canvas and feedback box below once they select "Save &

Grade".

5.2 Instructor Interface
In PrairieLearn, an instructor can create a new question using the

custom HTML element for the FSM Builder. This HTML element

takes a JSON object defining a DFA or NFA used as the correct

answer. This JSON object contains the states, alphabet, transitions,

initial state, and accepting states. The following is an example JSON

object used for the reference solution in Figure 1:

{
"states": ["0", "1", "2", "3"],
"input_symbols": ["0", "1"],
"transitions":{

"0":{"0": "1", "1": "0"},
"1":{"0": "2", "1": "1"},
"2":{"0": "3", "1": "2"},
"3":{"0": "3", "1": "3"}

},
"initial_state": "0",
"final_states": ["3"]

}

Instructors can either write JSON directly when creating new

questions, or use the FSM Builder itself to generate the JSON for the

reference FSM. Unlike the previous solution we had for building

questions with Python, there is no scripting necessary to use the

autograder, only static HTML elements. For general information

on custom elements, see [17].

6 Autograder
The FSM Builder uses autograding features that both reinforce

clear writing conventions for designing FSMs, and check for cor-

rectness against a reference solution using finite automata based

algorithms. Note that the autograder is tailored to the most common

question format used by our course, asking students to provide an

FSM that accepts a given target language.

6.1 Enforcing FSM conventions
Before any in-depth feedback on the language of an input automa-

ton is given by the grading algorithm, the student submissions are

checked that they define a valid automaton (DFA or NFA) according

to the following conventions:

(1) All provided state names are nonempty and unique.

(2) Exactly one start state is marked.

(3) The FSM does not have any non-accessible states.

(4) All transitions are defined on valid characters in the alphabet.

(5) The automaton must have transitions leaving every state for

every character, unless specified that missing transitions go

to a dump state.

ITiCSE 2024, July 8–10, 2024, Milan, Italy Eliot Wong Robson, Sam Ruggerio, and Jeff Erickson

(a) The student interface for the FSM Builder. Note the student submission in
the figure does not match the desired language.

(b) Feedback shown to the student for the submission on
the left.

Figure 1: An incorrect student submission in the FSM Builder and corresponding feedback.

(6) For a DFA, the submission should not have multiple transi-

tions leaving a given state on the same character.

Using these checks ensures that the FSM is well defined, and

helps promote clear writing. Where possible, parts of the submis-

sions that must be corrected according to the above rules are high-

lighted in red on the canvas. This gives personalized feedback on

specific errors in a submission, similar to what students might get

from course staff.

6.2 Checking correctness of an automaton
Once the student submission has been validated based on the above

criteria, it is converted by the grader code into a Python object

representing the automaton. The grader code creates a similar object

for the automaton provided as a reference solution, then compares

them for language equality to award full credit. Note that this type

of comparison is robust to different underlying FSMs, meaning

that any student submission accepting the same language as the

reference solution will be given full credit by the autograder.

This comparison is donewith an optimized version of theHopcroft-

Karp algorithm [1, 12]. Importantly, this algorithm has nearly-linear

runtime in the size of the input, and is easy to implement using stan-

dard data structures, making it very well-suited for this application.

The runtime was of particular importance, as the size of student

submissions necessitated the use of an algorithm more efficient

than the standard product construction algorithm [15]. This is the

same comparison algorithm used by Bezáková et al. [3].

6.3 Partial Credit
If the student submission was not awarded full credit by the equiv-

alence algorithm, we use the language-based partial credit scheme

described by Alur et al. [2, Section 3.3], called the approximated
density difference. In detail, for two regular languages 𝐿1, 𝐿2 ⊂ Σ∗,
this quantity is defined as

A-Den-Dif(𝐿1, 𝐿2) B
1

2𝑘 + 1

2𝑘∑︁
𝑛=0

| (𝐿1 ⊕ 𝐿2) ∩ Σ𝑛 |
max(|𝐿2 ∩ Σ𝑛 | , 1)

where 𝑘 is the number of states in the minimal DFA representing

𝐿2. In our grading algorithm, 𝐿2 is the language of the reference

solution. The expression contained in the sum is the number of

strings of length 𝑛 misclassified by 𝐿1 scaled by the number of

strings of length 𝑛 accepted by 𝐿2. Intuitively, this is the size of the

discrepancy between 𝐿1 and 𝐿2 for a given length 𝑛, which is then

summed over all lengths up to 2𝑘 .

This partial credit algorithm was chosen because it was practi-

cal to implement efficiently using the primitives provided by the

automata package [9], and conclusions by Alur et al. [2] stating

FSM Builder: A Tool for Writing Autograded Finite AutomataQuestions ITiCSE 2024, July 8–10, 2024, Milan, Italy

that this algorithm performed well in cases where a student answer

misclassified a small, finite number of strings (for example, only

misclassifying the empty string).

6.4 Feedback
In addition to the partial credit scheme, the grading algorithm

also generates feedback from strings misclassified by the student’s

FSM. All strings up to length 8 are checked whether they were

incorrectly accepted or incorrectly rejected by the student’s FSM,

and then the (lexicographically) first 10 are given as feedback to

the student. If no misclassified strings are found during this search,

then a minimal length misclassified string is generated using an

extension of the DFA equality algorithm [12]. For the first string

incorrectly accepted by the student’s FSM, the sequence of states

taken to reach an accepting state is shown. An example of this

feedback is shown in Figure 1b.

This can be viewed as an expanded version of the feedback

system used by the DAVID extension [3], where instead of a single

string witnessing that the student’s submission is not equal to

the reference solution, we give multiple such witness strings as

feedback if possible. This expanded feedback allows students to

identify patterns in misclassified strings that can more quickly lead

to finding a correct solution.

6.5 Implementation
The autograder is written in Python and uses the automata package

[9] to implement to the main grading and feedback algorithms. The

package provides robust primitives for efficient manipulation of

regular languages, making it easy to write custom grader code for

other types of assessments involving finite automata. This means

the FSM Builder is very self-contained (the automata package is the

only major dependency) and more extensible than previous tools.

In particular, the package provides optimized algorithms for

converting regular expressions to NFAs, NFAs to DFAs, minimizing

DFAs, enumerating the strings belonging to the language of a DFA,

and the product construction for DFAs. These subroutines were

critical in writing the grading and feedback algorithms for the FSM

Builder, and represent the most technically challenging parts of the

implementation. The availability of these subroutines opens the

door for the creation of more custom questions using the tool.

7 Evaluation

7.1 Scalability
A key motivating factor in the development of FSM Builder was

scalability to both large courses and large numbers of questions.

The FSM Builder has been very successful on these fronts, as in our

course, wewere able to convert our entire backlog of finite automata

questions (over 50) to automated practice problems without the

need to write custom grader code for any individual question (only

using the autograding functionality described in Section 6). The tool

scaled well to the questions themselves, as we did not encounter

any efficiency issues with the grading or feedback algorithms, and

the tool integrated cleanly with PrairieLearn. This scalability has

been observed in other courses, as the large introductory discrete

mathematics course in our department has also begun using the

FSM Builder.

The FSM Builder has also proven to be extensible and flexible, as

we were able to develop multiple questions using custom grading

algorithms.

7.2 Student Response
To evaluate student responses to the FSM Builder, we conducted a

voluntary, fully anonymous online survey distributed to students

in the introductory computing theory course during the Fall 2023

semester. The survey consisted of Likert scale questions about the

experience of using the tool. All students had interacted with the

tool as part of a short (required) homework question. Of the 383

enrolled students, 246 students had additionally used the tool as

part of optional review content, and 196 responded to the survey.

Students were incentivized by granting the entire course a small

amount of extra credit if over half of students in the course com-

pleted the survey. The survey platform prevented students from

submitting responses more than once.

The University of Illinois Urbana-Champaign IRB office gives

this survey a non-human subjects research designation, as all of

the data collection was completely anonymous.

The goal of the survey was to assess general impressions of the

user interface and feedback of the tool in comparison to feedback

given by course staff. The questions were developed to assess the

general sentiment towards different aspects of the tool, rather than

doing detailed comparisons with other tools. Importantly, the FSM

Builder was not being used to replace any existing course content,

so our evaluation focused on whether students found the content

delivered through the tool useful and engaging.

The results of the survey are shown in Figure 2, and overall

feedback to the FSM Builder was very positive. Notably, there were

more students who agreed the FSM Builder provided useful feed-

back (statement 8, 131 positive responses) than students who agreed

written homework graded by a TA provided useful feedback (state-

ment 9, 125 positive responses). While not conclusive evidence

feedback by the tool was superior, this demonstrates students were

generally satisfied with the automated feedback, indicating the FSM

Builder is able to provide valuable feedback to students at scale.

The statement most disagreed with was number 9, that it is

easier to use the FSM Builder than to construct an automaton on

paper. However, more respondents agreed than disagreed, and this

mixed response indicates that using the tool is still advantageous

for large courses, as grading automata on paper does not scale well

among many students. Despite this, 67% of respondents (131 out

of 196) agreed the user interface of the FSM Builder was intuitive

(statement 6).

Students also responded positively to statement 10 (61% agreed,

119 out of 196), that the tool made it easier to typeset written

homework. This provides some positive evidence for the choice to

use the FSM Designer as the basis for the user interface.

8 Adopting the FSM Builder
To try the FSM builder, look at the DFA and NFA practice assess-

ments available in our public course instance
1
.

To use the FSM Builder in your course, start by following the

onboarding instructions for PrairieLearn [16]. Next, follow the

1
https://www.prairielearn.org/pl/course_instance/129595

https://www.prairielearn.org/pl/course_instance/129595

ITiCSE 2024, July 8–10, 2024, Milan, Italy Eliot Wong Robson, Sam Ruggerio, and Jeff Erickson

Percentage of Responses

13. I found the partial credit from the FSM builder fair.

12. I found the partial credit from the FSM builder useful.

11. Doing practice problems with the FSM builder was a good
use of my time.

10. Using the FSM builder made it easier to typeset written
homework.

9. The feedback for finite automata on written homeworks
helped me understand where I made mistakes.

8. The feedback from the FSM builder helped me understand
where I made mistakes.

7. Using the FSM builder is easier than writing out automata
on paper.

6. The user interface of the FSM builder was intuitive.

5. The FSM builder improved my understanding of how to
construct NFAs.

4. The FSM builder improved my understanding of how to
construct DFAs.

3. Practice with the FSM builder reduced my anxiety on exams
when constructing finite automata.

2. Practice with the FSM builder improved my ability to
construct automata on exams.

1. I enjoyed using the FSM builder

9%

5%

7%

9%

10%

6%

9%

18%

12%

9%

7%

13%

9%

5%

27%

23%

24%

27%

29%

23%

18%

17%

26%

23%

26%

16%

18%

42%

39%

39%

29%

43%

36%

27%

37%

39%

36%

36%

39%

45%

26%

28%

28%

32%

20%

31%

29%

31%

25%

33%

23%

34%

30%

Strongly disagree
Somewhat disagree
Neutral
Somewhat agree
Strongly agree

Figure 2: Responses to the Likert scale questions on the survey. There were 196 total responses.

directions in this repository
2
on integrating the FSM builder with

your course. Note that the code for this implementation is self-

contained.

9 Limitations and Future Work

The key limitation of this work is the scope for the evaluation

of the FSM Builder. Most of the questions students practiced on

were part of optional review content and of very similar format,

and completion of the survey was voluntary. The results from the

survey were positive, but the nature of the evaluation means we can

only draw general conclusions. Although we found this acceptable

for an initial investigation, more detailed data is required to draw

stronger conclusions on the effectiveness of the FSM Builder.

With a variety of different independent components, the FSM

Builder provides a number of avenues for future research. Specifi-

cally, the graphical interface shown to students and the backend

grader code are modular components, and further work could ex-

plore the student response to different types of partial credit, differ-

ent feedback schemes, and potentially a different student interface

to that of Wallace [18].

2
https://github.com/eliotwrobson/FSMBuilder

Furthermore, the backend grader code used by the FSM Builder

can be easily adapted to work with regular expressions, using sub-

routines in the automata package [9]. We have such a tool in our

course, providing nearly identical feedback to that of the FSM

Builder. Possible future work could examine the effectiveness of

this regular expression tool.

Orthogonal to altering the FSM Builder itself, most of the prob-

lems completed by students were in very similar assessment con-

texts. A direction for further work could examine student responses

to the partial credit and feedback schemes when used for different

types of questions (including questions that involve randomization

and automated generation of question prompts), and in different

assessment contexts, such as exams.

Acknowledgments
We thank Seth Poulsen and Yael Gerter for suggestions and

feedback on the survey questions we used. We would also like to

thank Morgan Fong, Yael Gerter, Seth Poulsen, and the Computers

& Education research group at the University of Illinois Urbana-

Champaign for feedback on earlier versions of this paper

Funding for this work was partially provided by the Strategic In-

structional Innovations Program at the University of Illinois Urbana-

Champaign.

https://github.com/eliotwrobson/FSMBuilder

FSM Builder: A Tool for Writing Autograded Finite AutomataQuestions ITiCSE 2024, July 8–10, 2024, Milan, Italy

References
[1] Marco Almeida, Nelma Moreira, and Rogério Reis. 2009. Testing the Equivalence

of Regular Languages. J. Autom. Lang. Comb. 15 (2009), 7–25. https://api.

semanticscholar.org/CorpusID:9014414

[2] Rajeev Alur, Loris D’Antoni, Sumit Gulwani, Dileep Kini, and Mahesh

Viswanathan. 2013. Automated Grading of DFA Constructions. In IJCAI 2013,
Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, Francesca Rossi (Ed.). IJCAI/AAAI, 1976–1982.
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6759

[3] Ivona Bezáková, Kimberly Fluet, Edith Hemaspaandra, Hannah Miller, and

David E. Narváez. 2022. Effective Succinct Feedback for Intro CS Theory:

A JFLAP Extension. In Proceedings of the 53rd ACM Technical Symposium on
Computer Science Education - Volume 1 (Providence, RI, USA) (SIGCSE 2022).
Association for Computing Machinery, New York, NY, USA, 976–982. https:

//doi.org/10.1145/3478431.3499416

[4] Ryan Cavalcante, Thomas Finley, and Susan H. Rodger. 2004. A visual and

interactive automata theory course with JFLAP 4.0. In Proceedings of the 35th
SIGCSE Technical Symposium on Computer Science Education, SIGCSE 2004, Norfolk,
Virginia, USA, March 3-7, 2004, Daniel T. Joyce, Deborah Knox, Wanda P. Dann,

and Thomas L. Naps (Eds.). ACM, 140–144. https://doi.org/10.1145/971300.971349

[5] Pinaki Chakraborty, P. C. Saxena, and C. P. Katti. 2011. Fifty Years of Automata

Simulation: A Review. ACM Inroads 2, 4 (dec 2011), 59–70. https://doi.org/10.

1145/2038876.2038893

[6] Loris D’Antoni, Martin Helfrich, Jan Kretínský, Emanuel Ramneantu, and Maxim-

ilian Weininger. 2020. Automata Tutor v3. In Computer Aided Verification - 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, Proceed-
ings, Part II (Lecture Notes in Computer Science, Vol. 12225), Shuvendu K. Lahiri and
Chao Wang (Eds.). Springer, 3–14. https://doi.org/10.1007/978-3-030-53291-8_1

[7] Loris D’Antoni, Matthew Weavery, Alexander Weinert, and Rajeev Alur. 2015.

Automata Tutor and what we learned from building an online teaching tool. Bull.
EATCS 117 (2015). http://eatcs.org/beatcs/index.php/beatcs/article/view/365

[8] Jeff Erickson, Jason Xia, Eliot Wong Robson, Tue Do, Aidan Tzur Glickman, Zhuo-

fan Jia, Eric Jin, Jiwon Lee, Patrick Lin, Steven Pan, Samuel Ruggerio, Tomoko

Sakurayama, Andrew Yin, Yael Gertner, and Brad Solomon. 2023. Auto-graded

Scaffolding Exercises For Theoretical Computer Science. In Proc. 2023 ASEE
Annual Conference & Exposition. https://doi.org/10.18260/1-2--42347

[9] Caleb Evans and Eliot W. Robson. 2023. automata: A Python package for simu-

lating and manipulating automata. Journal of Open Source Software 8, 90 (Oct.
2023), 5759. https://doi.org/10.21105/joss.05759

[10] Association for Computing Machinery (ACM) Joint Task Force on Comput-

ing Curricula and IEEE Computer Society. 2013. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
Association for Computing Machinery, New York, NY, USA.

[11] Mostafa Mohammed, Clifford A. Shaffer, and Susan H. Rodger. 2021. Teaching

Formal Languages with Visualizations and Auto-Graded Exercises. In Proceedings
of the 52nd ACM Technical Symposium on Computer Science Education (Virtual

Event, USA) (SIGCSE ’21). Association for Computing Machinery, New York, NY,

USA, 569–575. https://doi.org/10.1145/3408877.3432398

[12] Daphne Norton. 2009. Algorithms for testing equivalence of finite automata,

with a grading tool for JFLAP. (04 2009).

[13] Susan H. Rodger. 2006. JFLAP: An Interactive Formal Languages and Automata
Package. Jones and Bartlett Publishers, Inc., USA.

[14] Susan H. Rodger, Eric Wiebe, Kyung Min Lee, Chris Morgan, Kareem Omar, and

Jonathan Su. 2009. Increasing Engagement in Automata Theory with JFLAP. In

Proceedings of the 40th ACM Technical Symposium on Computer Science Education
(Chattanooga, TN, USA) (SIGCSE ’09). Association for Computing Machinery,

New York, NY, USA, 403–407. https://doi.org/10.1145/1508865.1509011

[15] M. Sipser. 2012. Introduction to the Theory of Computation. Cengage Learning.
45–47 pages.

[16] PrairieLearn Team. 2021. PrairieLearn Documentation. https://prairielearn.

readthedocs.io/en/latest/ Accessed: April 2024.

[17] PrairieLearn Team. 2021. PrairieLearn Question Element Documentation. https:

//prairielearn.readthedocs.io/en/latest/devElements/ Accessed: April 2024.

[18] Evan Wallace. 2015. Finite State Machine Designer. Github repository. https:

//github.com/evanw/fsm

[19] MatthewWest, Geoffrey L. Herman, and Craig Zilles. 2015. PrairieLearn: Mastery-

based online problem solving with adaptive scoring and recommendations driven

by machine learning. ASEE Annual Conference and Exposition, Conference Pro-
ceedings 122nd ASEE Annual Conference and Exposition: Making Value for

Society, 122nd ASEE Annual Conference and Exposition: Making Value for...

(2015). https://doi.org/10.18260/p.24575 2015 122nd ASEE Annual Conference

and Exposition ; Conference date: 14-06-2015 Through 17-06-2015.

[20] Matthew West, Geoffrey L. Herman, and Craig Zilles. 2015. PrairieLearn:

Mastery-based Online Problem Solving with Adaptive Scoring and Recom-

mendations Driven by Machine Learning. In 2015 ASEE Annual Conference
& Exposition. ASEE Conferences, Seattle, Washington, 26.1238.1–26.1238.14.

https://peer.asee.org/24575.

https://api.semanticscholar.org/CorpusID:9014414
https://api.semanticscholar.org/CorpusID:9014414
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6759
https://doi.org/10.1145/3478431.3499416
https://doi.org/10.1145/3478431.3499416
https://doi.org/10.1145/971300.971349
https://doi.org/10.1145/2038876.2038893
https://doi.org/10.1145/2038876.2038893
https://doi.org/10.1007/978-3-030-53291-8_1
http://eatcs.org/beatcs/index.php/beatcs/article/view/365
https://doi.org/10.18260/1-2--42347
https://doi.org/10.21105/joss.05759
https://doi.org/10.1145/3408877.3432398
https://doi.org/10.1145/1508865.1509011
https://prairielearn.readthedocs.io/en/latest/
https://prairielearn.readthedocs.io/en/latest/
https://prairielearn.readthedocs.io/en/latest/devElements/
https://prairielearn.readthedocs.io/en/latest/devElements/
https://github.com/evanw/fsm
https://github.com/evanw/fsm
https://doi.org/10.18260/p.24575

	Abstract
	1 Introduction
	1.1 Finite Automata Background
	1.2 Organization

	2 Related Work
	2.1 JFLAP
	2.2 Automata Tutor
	2.3 FSM Designer
	2.4 Partial Credit

	3 Design Considerations
	4 Course Context
	4.1 Tool Development

	5 User Interface
	5.1 Student Interface
	5.2 Instructor Interface

	6 Autograder
	6.1 Enforcing FSM conventions
	6.2 Checking correctness of an automaton
	6.3 Partial Credit
	6.4 Feedback
	6.5 Implementation

	7 Evaluation
	7.1 Scalability
	7.2 Student Response

	8 Adopting the FSM Builder
	9 Limitations and Future Work
	Acknowledgments
	References

