
Local Polyhedra and Geometric Graphs∗

Jeff Erickson†

University of Illinois at Urbana-Champaign
jeffe@cs.uiuc.edu

http://www.cs.uiuc.edu/∼jeffe

Submitted to Computational Geometry: Theory and Applications: August 20, 2003

Abstract

We introduce a new realistic input model for geometric graphs and nonconvex poly-
hedra. A geometric graph G is local if (1) the longest edge at every vertex v is only a
constant factor longer than the distance from v to its Euclidean nearest neighbor and
(2) the the longest and shortest edges differ in length by at most a polynomial factor.
A polyhedron is local if all its faces are simplices and its edges form a local geometric
graph. We show that any boolean combination of two local polyhedra in IRd, each with
n vertices, can be computed in O(n log n) time using a standard hierarchy of axis-aligned
bounding boxes. Using results of de Berg, we also show that any local polyhedron in IRd

has a binary space partition tree of size O(n logd−2 n) and depth O(log n); these bounds
are tight in the worst case when d ≤ 3. Finally, we describe efficient algorithms for
computing Minkowski sums of local polyhedra in two and three dimensions.

∗A preliminary version of this paper was presented at the 19th Annual ACM Symposium on Computational
Geometry [19]. See http://www.cs.uiuc.edu/∼jeffe/pubs/local.html for the most recent version of this paper.

†Partially supported by a Sloan Foundation Fellowship, NSF CAREER award CCR-0093348, and NSF ITR grants
DMR-0121695 and CCR-0219594. Portions of this work were done while the author was visiting Duke University.

Local Polyhedra and Geometric Graphs 1

1 Introduction

Nonconvex polyhedra are ubiquitous in computer graphics, solid modeling, computer aided design
and manufacturing, robotics, and other geometric application areas. Unlike nonconvex polygons or
convex objects in space, for which many problems can be solved easily, polyhedra are notoriously
difficult to handle efficiently, at least in the worst case.

Collision detection is a textbook example of a problem that is relatively easy for polygons but
hard for polyhedra. Although it is quite easy to detect whether two simple polygons intersect
in O(n log n) time, the fastest algorithm for deciding whether two static nonconvex polyhedra
intersect, due to Pellegrini, runs in time O(n8/5+ε) [43]. For polyhedral terrains, the time bound
can be improved to O(n4/3+ε) [11]. Pellegrini’s algorithm was generalized by Schömer and Thiel
[46] to find the first collision between two translating polyhedra in time O(n8/5+ε), or between
two rotating polyhedra in time O(n5/3+ε). To avoid directly checking all Ω(n2) edge pairs, these
algorithms employ complex multilevel range-searching data structures that would be difficult (if
not impossible) to implement efficiently. Erickson [17] proved that the polyhedron intersection
problem is at least as hard (in the the algebraic decision tree model of computation) as Hopcroft’s
problem: Given a set of points and lines in the plane, does any point lie on a line? The main idea
of the reduction is to replace each point and line with an infinitesimally thin spike. In light of
this reduction and Erickson’s Ω(n4/3) lower bound for Hopcroft’s problem [18], an algorithm that
detects intersections in o(n4/3) worst-case time appears unlikely.1

In practice, one of the most popular techniques for intersection detection uses a hierarchy
of bounding volumes. For a given placement of two disjoint polyhedra, the algorithms refine their
hierarchies only to the coarsest level at which the resulting bounding volumes are disjoint. Beginning
with Guttmann’s introduction of the R-tree in the early 1980s [24], several types of bounding volume
hierarchies have been proposed and implemented [2, 22, 23, 26, 31, 33, 35]. Unfortunately, all of
these methods—in fact, any related method that uses a hierarchy of convex bounding volumes—
can be forced to spend Ω(n2) time to determine whether two n-vertex polyhedra intersect. The
worst-case example consists of two polyhedra whose edges approximate a twisted grid, similar to a
construction of Chazelle [10, 41]. (See Section 4.)

Since worst-case efficient algorithms for detecting intersections seem unlikely, many authors have
analyzed heuristics under the assumption that the input objects satisfy certain realistic constraints.
For example, Suri and others have shown that for large collections of objects, a standard bounding
box heuristic culls out most non-intersecting pairs, provided the objects are fat (at least on average)
and all about the same size [53, 60]. Agarwal, Guibas, et al. [23, 1] and independently Lotan
et al. [33] recently showed that in a certain hierarchy of bounding spheres for well-behaved necklaces
of balls, only O(n4/3) pairs of balls can intersect. Haverkort et al. [25] also recently showed that
storing a set of boxes with low slicing number in a certain bounding box hierarchy allows box-
intersection and approximate range queries to be answered in polylogarithmic time.

This paper introduces a new realistic input model for nonconvex polyhedra, called locality. A
geometric graph is local if (1) the longest edge at every vertex v is only a constant factor longer
than the distance from v to its Euclidean nearest neighbor and (2) the the longest and shortest
edges differ in length by at most a polynomial factor. A simplicial polyhedron is local if its edges
form a local geometric graph. Surprisingly, our model allows polyhedra that contain sharp spikes

1It should be emphasized, however, that Erickson’s results [18, 17] are proved in incomparable models of compu-
tation and therefore do not imply an Ω(n4/3) lower bound for the polyhedron intersection problem. The strongest
lower bound known for this problem is only Ω(n log n), in the algebraic decision tree and algebraic computation tree
models [52, 4].

2 Jeff Erickson

and folds; however, it forbids many long edges to be packed closely together. See Section 2 for
more formal definitions and basic properties.

We consider the complexity of three problems involving local polyhedra: detecting intersections,
computing binary space partitions, and constructing Minkowski sums. Restricting the input to
local polyhedra significantly improves the worst-case complexity of each problem. In Section 3,
we prove that standard bounding volume hierarchy techniques can be used to detect whether two
local polyhedra of any fixed dimension intersect in O(n log n) time. In fact, our algorithm can
compute the intersection, union, or any other boolean combination of two local polyhedra in same
time bound. In Section 5, we apply a result of de Berg [5] to show that any local polyhedron in IRd

has a binary space partition tree of size O(n logd−1 n) and depth O(log n); we also show that these
bounds are tight when d ≤ 3. We develop upper and lower bounds on the complexity of Minkowski
sums of local polyhedra in low dimensions in Sections 6 and 7.

2 Preliminaries

2.1 Definitions

A geometric graph G = (V,E) is an undirected simple graph whose vertices V are distinct points
in IRd and whose edges E are straight line segments. Planar straight-line graphs are examples of
geometric graphs in the plane; however, the edges of a geometric graph may cross. The vertices and
edges of any (convex or non-convex) polyhedron or piecewise linear complex also form a geometric
graph. The size n(G) of a geometric graph G is the number of vertices.

Let N(v) denote the set of neighbors of a vertex v in a geometric graph G. We define the local
stretch of a vertex, denoted σ(v), to be the ratio between the length of the longest edge at v and
the distance from that vertex v to its nearest Euclidean neighbor (which may not be a neighbor
of v in the graph). The local stretch of a graph G, denoted σ(G), is the maximum local stretch
of its vertices. Similarly, we define the global stretch of G, denoted Σ(G), as the ratio between the
longest and shortest edge lengths in G.

σ(v) =
max

u∈N(v)
|uv|

min
u∈V \{v}

|uv|
σ(G) = max

v∈V
σ(v) Σ(G) =

max
uv∈E

|uv|

min
uv∈E

|uv|

Intuitively, σ(G) and Σ(G) respectively bound the local and global variation in the ‘scale’ of the
graph. We easily observe that Σ(G) ≤ σ(G)n(G). We will write n = n(G), σ = σ(G), and Σ = Σ(G)
whenever the graph G is clear from context.

We call a geometric graph local if its local stretch σ is less than some fixed constant and its
global stretch Σ is less than some fixed polynomial in the number of vertices. Local graphs are a
generalization of the civilized graphs considered by Teng [56], for which Σ = O(1). The choice of
the word “local” is meant to emphasize the much more important role of the local stretch; all of our
complexity bounds are polynomial in σ but at most polylogarithmic in Σ (for any fixed dimension).

A polytope is the convex hull of a finite number of points. A polyhedron is the union of a finite
number of polytopes, all of the same dimension. The boundary of any d-dimensional polyhedron
P is a (d− 1)-dimensional manifold, comprised of several connected (d− 1)-dimensional polyhedra
called the facets of P . A face of P is either P itself or a face of a facet of P ; the latter are
called proper faces of P . In particular, the empty set is the unique (−1)-dimensional face of every
polyhedron. A polyhedron is simplicial if its facets (and thus its faces) are all simplices. A boundary
triangulation of a polyhedron decomposes its facets into simplices that meet face to face, with no

Local Polyhedra and Geometric Graphs 3

additional vertices, Finally, we say that a polyhedron is local if it has a boundary triangulation
whose edges form a local geometric graph.

Most of our bounds for simplicial polyhedra apply immediately to ‘simplex soup’: arbitrary
collections of simplices in IRd, possibly with shared faces. Thus, for example, we can replace the
word ‘polyhedron’ with ‘mesh’ or ‘piecewise linear complex’ or ‘immersed manifold’ in almost all
our results with no other changes. The only exceptions are the bounding volume hierarchy time
bounds in Section 3.2, which require that the spread of the vertices is bounded by a polynomial,
and the bounds for BSP trees in Section 5, which increase by a logarithmic factor if the simplices
do not have disjoint interiors.

Finally, all the results in this paper hold under slightly weaker versions of locality. For example,
we can allow a constant number of vertices to have non-constant local stretch, or allow polyhedra
that can be partitioned into a constant number of local components. Our analysis also applies to
small perturbations of local polyhedra, by identifying nearby pairs of vertices that are not graph
neighbors. More significantly, let σk(v) denote the ratio between the length of v’s longest edge and
the distance from v to its kth nearest Euclidean neighbor. Say that a geometric graph or polyhedron
is k-local if Σ = nO(1) and σk(v) = O(1) for all every vertex v (or all but a constant number). All
our bounds for local polyhedra also apply to k-local polyhedra, up to a small polynomial factor
in k; we omit the easy details.

2.2 Basic Properties

In a geometric graph with local stretch σ, any edge of length ` has two balls of radius `/σ around its
endpoints that contain no other vertices of the graph. Several basic properties of local geometric
graphs and local polyhedra follow immediately from this simple observation by straightforward
packing arguments.

l

l/σ

Figure 1. Any edge in a local geometric graph has large empty balls around its endpoints.

Lemma 2.1. In any geometric graph G in IRd, every vertex has degree at most O(σd log σ). This
bound is tight in the worst case.

Proof: Let v be an arbitrary vertex of G. Without loss of generality, suppose that the distance
from v to its nearest neighbor is exactly 1. We define a sequence of open nested balls B0 ⊂ B1 ⊂
B2 ⊂ · · · , all centered at v, where each ball Bi has radius 2i. Every neighbor of v lies inside the
ball Bdlg σe. Let Ai denote the annulus Bi \Bi−1.

Consider an edge uv of G where u ∈ Ai. The distance from u to v is at least 2i−1, which
implies that the ball of radius 2i−1/σ centered at u does not contain any other vertex of G. The
intersection of this empty ball and Ai has volume Ω(2id/σd). On the other hand, the volume of Ai

is O(2id). A straightforward packing argument immediately implies that each annulus Ai contains
at most O(σd) neighbors of v.

For the matching lower bound, let v be an arbitrary point, pack as many points as possible into
each annulus Ai, and let G be the graph connecting v to every other point. �

4 Jeff Erickson

Lemma 2.2. Any n-vertex geometric graph G in IRd has at most O(σdn) edges. This bound is
tight in the worst case.

Proof: Let u and v be the closest pair of vertices in G, and without loss of generality, assume that
|uv| = 1. Let B be a ball of radius σ centered at v. Every neighbor of v in the graph lies inside
B and is the center of an empty unit ball. A straightforward packing argument now immediately
implies that v has O(σd) neighbors. Let G′ be the graph obtained from G by deleting v and all
its incident edges. We easily observe that σ(G′) ≤ σ(G) and Σ(G′) ≤ Σ(G). By the inductive
hypothesis, G′ has (n− 1) ·O(σd) edges. The trivial base case is a one-vertex graph.

For the matching lower bound, consider the graph G∗ whose vertices lie on the integer grid
{1, 2, . . . ,m}d, where m = bn1/dc, with an edge between any two vertices whose Euclidean distance
is at most σ. This graph clearly has Ω(mdσd) = Ω(nσd) edges. �

Corollary 2.3. Any n-vertex polyhedron in IRd has at most O(σd(d−1)n) faces.

Proof: Without loss of generality, we can assume that the polyhedron is simplicial, since triangu-
lating any non-simplicial polyhedron only increases the number of faces. Let u and v be the closest
pair of vertices in the polyhedron. The previous proof implies that v has at most O(σd) neighbors
in the polyhedron’s edge graph. Every k-dimensional face that has v as a vertex is the convex
hull of v and k of its graph neighbors. It follows that v is a vertex of at most

(O(σd)
k

)
= O(σkd)

k-dimensional faces, and thus O(σd(d−1)) faces altogether. By the inductive hypothesis, deleting v
and all the faces that contain it leaves a polyhedron with at most (n− 1) ·O(σd(d−1)) faces. �

For general collections of simplices, this bound is tight in the worst case. The matching lower
bound is attained by the simplicial complex whose vertices lie on an integer grid, where a subset
of up to d + 1 points form a simplex if and only if its diameter is at most σ. For polyhedra,
however, the bound in Corollary 2.3 is quite conservative. In particular, Euler’s formula implies
that a three-dimensional polyhedron of arbitrary genus has fewer facets than edges, so Lemma 2.2
implies a tighter upper bound of O(σ3n) when d = 3. Of course, if the polyhedron has genus zero,
it has at most 3n− 6 edges and 2n− 4 facets, regardless of the value of σ.

Lemma 2.4. Let G be a geometric graph in IRd, all of whose edges have length at least 1. At
most O(σd log Σ) edges of G intersect any unit-width hypercube.

Proof: Let � be a hypercube of unit width, and let E2 be the set of edges in G that intersect �.
We define a sequence of nested hypercubes �1 ⊂ �2 ⊂ · · · , all concentric with �, where each
hypercube �i has width 2i+1 + 1. We partition the edges in E2 into into disjoint length classes
E1 ∪ E2 ∪ · · · , where each set Ei contains all edges in E2 whose length is between 2i−1 and 2i.
Any edge in Ei has at least one endpoint in �i, and that endpoint is the center of an empty ball
of radius at least 2i−1/σ. Thus, by a straightforward packing argument, O(σd) edges in any length
class Ei intersect �. At most lg Σ of the length classes are nonempty. �

Finally, let G = (V,E) and G′ = (V ′, E′) be geometric graphs (or possibly the same graph).
We say that two edges uv ∈ E and u′v′ ∈ E′ are α-close if their Euclidean distance is less than α
times the sum of their lengths:

min
x∈uv

min
x′∈u′v′

|xx′| < α
(
|uv|+ |u′v′|

)
.

Two edges are close if they are 1-close.

Local Polyhedra and Geometric Graphs 5

Lemma 2.5. Let G be a geometric graph in IRd, all of whose edges have length at least 1. At
most O((1 + α)dσ2d log σ log Σ) edges of G are α-close to any line segment of length 1.

Proof: Let s be a line segment of length 1. As in the previous lemma, we partition the edges of G
into disjoint length classes E1 ∪ E2 ∪ · · · , where each edge class Ei contains edges whose length is
between 2i−1 and 2i. If an edge e ∈ Ei is α-close to s, then the distance between e and s is at most
α + α2i. In particular, some endpoint of e is within distance α + α2i + 2i−1 of segment s.

Let Ci denote the Minkowski sum of s with a ball of radius α + α2i + 2i−1 = O((1 + α)2i).
Any edge e ∈ Ei that is close to s must have at least one endpoint in Ci. We charge the close
edge e to this endpoint. Each charged endpoint must lie at the center of a ball of radius 2i−1/σ
that contains no other vertex of G. Since the volume of Ci is O((1 + α)d2id), a standard packing
argument implies that at most O((1 + α)dσd) endpoints of edges in Ei are charged. Lemma 2.1
implies that each endpoint is charged O(σd log σ) times. Finally, at most dlg Σe of the length classes
are nonempty. �

Corollary 2.6. Two geometric graphs G and G′ have at most O(n(1 + α)dσ2d log σ log Σ) α-close
edge pairs, where σ = max{σ(G), σ(G′)}, Σ = max{Σ(G),Σ(G′)}, and n = n(G) + n(G′).

In the remainder of the paper, we will assume that σ is a fixed constant and Σ is a fixed
polynomial in n, and we will omit explicit dependence on these parameters from our upper bounds.

2.3 Relationship to Other Input Models

Several different models of realistic or well-shaped geometric data have been proposed in the past
[6, 7]. Perhaps the most well-known realistic input model is fatness [59]. An object X is fat if any
ball centered inside X either contains X or has a constant fraction of its volume inside X. Thus,
fat objects have no sharp spikes or folds. Local polyhedra, however, can have arbitrarily sharp
features, and thus need not be fat; conversely, fat objects can have vertices with edges of arbitrarily
different length, and thus need not be local. See Figure 2.

Figure 2. A local nonfat polygon, and a fat nonlocal polygon.

Another realistic input model, introduced by van der Stappen in the context of motion plan-
ning [51], is low density ; see also [39, 48]. A set of objects have density λ if any ball of radius r
intersects at most λ objects with diameter r or greater. Most bounds for low density scenes depend
linearly on λ. Lemma 2.4 implies that a local polyhedron, viewed as a collection of facets, has
density O(log n); thus, bounds for low-density environments apply to local environments with only
a polylogarithmic penalty. On the other hand, low-density objects need not be local.

Two other realistic input models studied by de Berg et al. are uncluttered scenes and scenes with
small simple cover complexity [7, 5]. Again, local polyhedra fit these models up to a logarithmic

6 Jeff Erickson

Figure 3. Local but badly-shaped tetrahedra. From left to right: spindle, wedge, cap, sliver.

factor, but neither uncluttered nor easily-covered polyhedra are necessarily local. We discuss the
connection between locality and clutter in more detail in Section 5.

We can also compare our model to quality metrics used for simplicial finite-element mesh gen-
eration. For example, Miller, Talmor, Teng, and others [32, 34, 49, 54, 56] define a triangulation to
be well-shaped if the circumradius of each simplex is only a constant factor longer than the shortest
edge of that simplex. Well-shaped triangulations have bounded local stretch σ, but they are not
necessarily local, since the global stretch Σ could be exponential in the worst case. Conversely, local
triangulations need not be well-shaped, even in two dimensions, since they can contain sharp an-
gles; see Figure 3. Talmor [54] proved that a well-shaped triangulation with n vertices, in any fixed
dimension, has only O(n) simplices. Corollary 2.3 implies that this linear upper bound actually
holds for any triangulation whose local stretch is bounded by a constant.

3 Intersecting Local Polyhedra

3.1 Combinatorial Bounds

Intuitively, one of the reasons that collision detection is difficult for arbitrary nonconvex polyhedra
in IR3 is that two polyhedra can intersect, or nearly intersect, in a quadratic number of differ-
ent locations [10, 41]. For local polyhedra, this quadratic behavior is impossible, even in higher
dimensions.

Lemma 3.1. If two simplices 4 and 4′ intersect, then at least one edge of 4 is close to at least
one edge of 4′.

Proof: Let uv and u′v′ be the longest edges of 4 and 4′, respectively, and let x be an arbitrary
point in the intersection 4∩4′. We easily observe that the distance from any point in 4 to uv is
at most |uv|. In particular, the distance from uv to x is at most |uv|. Similarly, the distance from
u′v′ to x is at most |u′v′|. Thus, by the triangle inequality, uv and u′v′ are close. �

Corollary 3.2. Between any two local polyhedra in IRd, each with at most n vertices, there are
O(n log n) pairs of intersecting faces. Thus, any boolean combination of two local polyhedra has
complexity O(n log n).

Proof: Without loss of generality, we can assume that both polyhedra are simplicial; triangulating
the boundary of each polyhedron can only increase the number of intersecting face pairs. Corol-
lary 2.6 implies that there are O(n log n) close edge pairs. We charge each intersecting pair of faces
to some close pair of edges with one edge from each face. By Corollary 2.3, each edge belongs to
O(1) faces. It follows that each close edge pair is charged O(1) times. �

Local Polyhedra and Geometric Graphs 7

Our algorithmic results are based on the following stronger observation. A bounding box of a
geometric object is a parallelepiped with orthogonal edges, such that each facet of the box touches
the object. Unless specifically stated otherwise, we do not assume that bounding boxes are aligned
with the coordinate axes.

Lemma 3.3. If two simplices 4 and 4′ have bounding boxes that intersect, then at least one edge
of 4 is close to at least one edge of 4′.

Proof: Let � and �′ denote the intersecting axis-aligned bounding boxes of 4 and 4′, respectively.
Each facet of � contains at least one vertex of 4. Thus, 4 must have at least one edge e with
vertices on the furthest pair of parallel facets of �. This edge is close to every point in �, that is,
the distance from e to any point in � is at most the length of e. Similarly, 4′ has at least one edge
e′ that is close to every point in the bounding box �′. The triangle inequality now implies that e
and e′ are close. �

Corollary 3.4. Between any two local, simplicial polyhedra in IRd, each with at most n vertices,
there are O(n log n) pairs of faces with intersecting bounding boxes.

Proof: Essentially the same as Corollary 3.2. �

Corollary 3.4 immediately suggests the following algorithm for detecting whether two local,
simplicial polyhedra P and Q intersect. Let B1 and B2 be the set of axis-aligned bounding boxes
of facets of P and Q, respectively. Since each polyhedron has O(n) facets, we can clearly calculate
B1 and B2 in O(n) time. Using multidimensional range trees and segment trees [16, 50], we can
find all pairs of intersecting boxes (�1,�2) ∈ B1 × B2 in time O(n logd−1 n + k), where k is the
number of intersecting pairs. Finally, for each pair of intersecting boxes, we can test in O(1) time
whether the corresponding pair of facets intersect. Corollary3.4 implies that k = O(n log n), so
the overall running time of the algorithm is O(n logd−1 n). This algorithm can be made extremely
practical, at least in low dimensions, by combining it with simple heuristics [61]. In fact, we
can actually compute the intersection, or any other boolean combination, of two local polyhedra
within the same time bound, by performing an additional constant amount of work for each pair of
intersecting facets, plus a constant number of point-in-polyhedron tests to handle the special case
where no pair of facets intersects.

Theorem 3.5. Any boolean combination of two local simplicial polyhedra in IRd, each with n
vertices, can be computed in O(n logd n) time.

3.2 Graded Bounding Volume Hierarchies

We can obtain a faster and more general intersection algorithm by constructing a bounding volume
hierarchy, called a graded box-tree, for each polyhedron. A graded box-tree is (as usual) a rooted
tree with constant degree, where the root corresponds to the entire polyhedron, and the leaves
correspond to individual facets. Each internal node v stores the axis-aligned bounding box of the
facets (leaves) in its subtree. All the bounding volumes at the same level in a graded box-tree have
approximately the same diameter. In the interest of simplifying the analysis, we will describe a
bounding-volume hierarchy that can easily be improved in practice.

Let P be a local, simplicial polyhedron, or more generally, a local collection of (d− 1)-simplices
in IRd, and let �(P) be a minimal axis-aligned bounding cube for P . To each internal node v in
a graded box-tree, we associate an axis-aligned control cube �v, an axis-aligned bounding cube �v,
and a facet set Pv as follows.

8 Jeff Erickson

• The control cubes are defined by a 2d-tree of �(P)—a quadtree in IR2, an octtree in IR3,
and so forth. In particular, �root = �(P). Nodes at each level of the graded box-tree have
congruent, interior-disjoint control cubes. We emphasize that the control cubes are not the
actual bounding volumes.

• The bounding cube �v is the cube concentric with the corresponding control cube �v, whose
width is twice the width of �v. We will use these cubes as bounding volumes in our intersection
algorithm. (In practice, it would be more efficient to use bounding volumes that fit the
corresponding facet sets tightly, but this is not required for our analysis.)

• Finally, the facet set Pv contains every facet f of P that is contained in the bounding cube �v

and whose centroid lies inside the control cube �v. In particular, the facet set at the root
of the tree is the entire polyhedron. At any level of our tree, the bounding cubes are all the
same size, and at most 2d of them contain any point. The facet sets are not explicitly stored
in internal nodes of the tree, only their bounding cubes.

A facet f ∈ Pv is called an outlier if it is not a member of Pw for any child w of v, or equivalently,
if it is not contained in any child’s bounding cube �w. Each outlier is attached to v as a new child,
which becomes a leaf ` in our hierarchy. Because P is local, the proof of Lemma 2.4 implies that
each internal node has O(1) outlier children, in addition to its 2d subcube children. We easily verify
by induction that Pv is actually the set of facets that appear as leaves in the subtree rooted at v.

Figure 4. An internal node and its children in a graded box-tree. See the text for details.

A two-dimensional example of our construction is shown in Figure 4. The top of the figure
shows a control square (shaded) and the bounding box for a set of eleven triangles. This node has
three normal children (northwest, southwest, and southeast) and three outlier children. In each
child, the control square (if any) is shaded and the parent’s control square is dashed. Because none
of the triangles are contained in the southeast bounding square, there is no southeast child.

Local Polyhedra and Geometric Graphs 9

Each facet is stored in exactly one leaf. If we remove nodes w whose facet sets Pw are empty and
compress paths with no branches to single edges, we obtain a tree with constant degree, O(n) leaves
(by Corollary 2.3), and therefore O(n) internal nodes. The diameter of any local polyhedron is at
most nΣ times the length of its shortest edge. Thus, the graded box-tree of any local polyhedron
has has depth at most dlog2(nΣ)e = O(log n). We can easily construct a graded box-tree for any
local polyhedron in O(n log n) time.

Theorem 3.6. Given graded box-trees for two local simplicial polyhedra P and Q, each with n
vertices, we can determine whether P and Q intersect in O(n log n) time.

Proof: We use the following standard recursive algorithm, which can be used with any bounding
volume hierarchy. If the top-level bounding cubes �(P) and �(Q) are disjoint, we can halt imme-
diately. Otherwise we replace one of the two bounding cubes, say �(P), with its O(1) children, and
recursively check for intersections between each of those children and Q. (In practice, it is usually
more efficient to expand the larger of the two bounding volumes, but our analysis does not require
this choice.) The recursion stops when both polyhedra are reduced to individual facets—leaves in
their respective hierarchies—which we can test for intersection in O(1) time.

The running time of this algorithm is clearly dominated by the number of recursive calls, each
of which is caused by an intersection between two bounding cubes, or between a bounding cube
and a facet. Each bounding cube is the parent of O(1) leaves. Thus, to complete the proof, it
suffices to show that between the two graded box-trees, there are only O(n log n) intersecting pairs
of bounding cubes. (This is a conservative upper bound; not every pair of intersecting bounding
cubes is tested by the algorithm.)

We claim that each bounding cube in one hierarchy intersects only O(log n) larger bounding
cubes in the other hierarchy. Let v be a node in the graded box-tree of P , and let w be a node
in the graded box-tree of Q, such that the bounding cubes �v and �w intersect. We charge this
intersection to either v or w, whichever has the smaller bounding cube (breaking ties arbitrarily).
Suppose v has the smaller bounding cube. Let Bw be the set of bounding cubes of nodes in Q’s
box-tree at the same level as w. All the cubes in Bw are congruent (and larger than �v), and at
most 2d = O(1) of them overlap at any point. It follows that �v intersects at most a constant
number of cubes in Bw. Thus, v is charged only O(1) times for each level of Q’s hierarchy, or
O(log n) times overall. �

As we noted earlier, it is easy to modify this algorithm to actually compute any boolean com-
bination of the two polyhedra in the same asymptotic running time. Our algorithm allows for the
boxes in the two trees to have different orientations or extremely different sizes. Thus, if P and Q
undergo any type of rigid motion (or even scaling!), we can still test for intersection in O(n log n)
time without recomputing their hierarchies.

Almost any type of bounding volume can be used in place of axis-aligned cubes in our hierarchy
with no loss of efficiency; the only requirement is that the diameter of each bounding volume is
at most a constant factor larger than the diameter of the set of objects it encloses. Similarly, the
underlying 2d-tree of control cubes can be replaced by any recursive decomposition into fat regions.
Our definition for the facet sets Fv is also quite flexible. For example, we could redefine Fv to be
the set of facets that are contained in the bounding cube �v and intersect the control cube �v.
This redefinition allows facets to be stored in multiple leaves, but the overall increase in the size of
the tree and the running time of the intersection is only a constant factor (exponential in d).

10 Jeff Erickson

3.3 Related Problems

All the arguments in this section apply directly to local self-intersecting polyhedra, local piecewise-
linear complexes, or more generally, any local ‘simplex soup’ whose edge graph is connected. For dis-
connected sets of simplices, however, our running-time analysis requires the spread of the vertices—
the ratio between the largest and smallest pairwise distance [20]—to be bounded by a polynomial
in n.

For example, given two local connected planar straight-line graphs, we can overlay them in
O(n log n) time in two different ways. One method is to use the standard sweep-line algorithm,
which runs in O(n log n + k) time, there k is the number of intersecting pairs of segments [8];
Corollary 3.2 implies that k = O(n log n) if each graph is local. Alternately, we can build a
graded (semi-)R-tree for each planar graph and then merge them using the recursive algorithm
described in the proof of Theorem 3.6; similar algorithms are described by Brinkoff et al. [9] and
van Oosterom [38].

Many finite-element applications require multiple meshes, either to partition to the domain
for parallel computation, to support the computation of different physical quantities over a single
domain, or to track the evolution of a domain over time. In these applications, solutions must be
transferred efficiently between overlapping meshes [29]. A key step in the solution transfer process
is identifying pairs of overlapping elements. If the meshes are local, we can find all such pairs in
near-linear time, using recursive bisection to define a graded bounding volume hierarchy. Similar
methods can be use to overlay non-matching meshes of similar (or identical) surfaces [27, 28, 30]. In
particular, this technique is efficient for the well-shaped tetrahedral meshes produced by Delaunay
refinement algorithms [44, 49], even if they contain slivers.

4 The Harpsicordion

We now show that the results from the previous section are asymptotically optimal for polyhedra
in IR3 by constructing a pair of local polyhedra that intersect in Ω(n log n) distinct points. Our
lower bound construction also implies that our near-linear upper bounds do not hold under two
obvious relaxations of our input model.

Our bad examples are variants of Chazelle’s polyhedron, which was originally used to prove
quadratic lower bounds for convex decomposition [10, 41]. Our version of Chazelle’s construction
consists of two polyhedra P and Q, each with total complexity O(n). Each of these two polyhedra
contains n edges on the saddle surface z = xy. Specifically, the ’vertical’ saddle edges of P lie on
the lines z = iy for integers 1 ≤ i ≤ n, and the ‘horizontal’ saddle edges of Q lie on the lines z = xj
for integers 1 ≤ j ≤ n. Otherwise, P lies entirely above the saddle and Q lie entirely below. P
and Q touch at Ω(n2) distinct points of the form (i, j, ij). If we build bounding volume hierarchies
for P and Q, the standard intersection algorithm must examine Ω(n2) leaf pairs, no matter what
shape the bounding volumes have.

A simple modification gives us a pair of disjoint polyhedra with similar worst-case behavior.
Let P+ = P + (0, 0, ε) and Q− = Q − (0, 0, ε) be translations of P and Q away from the saddle,
where ε = O(1/n2) is an arbitrarily small positive real number. Chazelle [10] proved that any
convex decomposition of IR3 \ (P+ ∪Q−) has Ω(n2) cells. The convex hull of any two saddle edges
of P+ intersects every saddle edge of Q−. It easily follows that for any convex bounding volume
hierarchies for P+ and Q−, the standard intersection algorithm requires Ω(n2) time to prove that
P+ and Q− are disjoint.

Local Polyhedra and Geometric Graphs 11

Figure 5. Chazelle’s polyhedra.

Theorem 4.1. For any sufficiently large n, σ, and Σ, there are two n-vertex polyhedra P and Q,
where σ(P) = σ(Q) = σ and Σ(P) = Σ(Q) = Σ, that intersect in Ω(nσ log Σ) = Ω(n log n) distinct
points.

Proof: In Chazelle’s original construction, the edges that meet along the saddle are all roughly the
same length, but this is clearly not necessary. Instead, we use two parallel sets of line segments of
exponentially decaying length, resembling the strings of a harpsichord; specifically, the ith segment
in each set has length (2 + σ)−i. See Figure 6. These segments can be placed arbitrarily close
together without increasing the local stretch above σ. If each set has m segments, the global
stretch of each set is ((2 + σ)/σ)m. Thus, for any desired σ and Σ, we can construct two local sets
of m segments that meet in an m×m grid, where

m =
lnΣ

ln(1 + 2
σ)

>
σ lnΣ

2
.

Figure 6. Replacing a regular grid with a harpsichord grid.

We now construct a local O(m)-vertex polyhedron with m edges on the saddle surface z = xy.
Since our polyhedron resembles an accordion, with several saddle edges resembling the strings of a
harpsichord, we call it a harpsicordion.

The harpsicordion is built by gluing together several copies of two local triangulated annuli A[

and A], shown in Figure 7. The annuli have the same convex outer boundary. The holes are similar
triangles; the hole in A[is (2 + σ)/σ times as large as the hole in A]. Moreover, if we scale A] by
a factor of (2 + σ)/σ and align the two holes, the bottom edges of the annuli become collinear.

12 Jeff Erickson

Figure 7. The template annuli A[and A].

The harpsicordion consist of a sequence of m folds. Each fold is built by gluing a copy of A] to
a copy of A[along their common outer boundary, and translating the holes slightly away from the
plane through this outer boundary. Successive folds, which differ in size by a factor of (2 + σ)/σ,
are glued together along a common hole boundary. We fill the holes in the first and last annuli
with triangles to close the polyhedron. Finally, we slightly tilt the bottom edges of the folds to lie
on the saddle surface. If A] and A[are constructed carefully, the resulting polyhedron has local
stretch σ and global stretch Σ, no matter how thin we make the folds.

Figure 8. A harpsicordion with four folds.

Finally, polyhedra P and Q each consist of O(n/m) harpsicordia, positioned so that each harp-
sicordion in P meets one harpsicordion in Q in m2 distinct points in some saddle. The total number
of intersection points is nm = Ω(nσ log Σ). We can make P and Q connected by adding prisms
between pairs of harpsicordia. �

Similar collections of harpsicordia can be used to prove the following lower bounds.

Theorem 4.2. There are two disjoint, local, simplicial, n-vertex polyhedra in IR3, such that for
any hierarchy of convex bounding volumes, the standard intersection algorithm requires Ω(n log n)
time.

Theorem 4.3. There is a local, simplicial, n-vertex polyhedron P in IR3 such that any convex
decomposition of IR3 \ P has Ω(n log n) cells.

Our lower bound construction implies that both the local stretch and the global stretch must be
bounded in order to obtain our near-linear upper bounds. Specifically, we obtain pairs of n-vertex

Local Polyhedra and Geometric Graphs 13

polyhedra with Ω(n2) intersection points either by setting σ = Ω(n) and Σ = 2, or by setting
Σ = 2Ω(n) and σ = 4. In fact, for the case σ = Ω(n), we can simplify our lower bound construction
by using a single annulus to construct a non-local accordion, as shown in Figure 9.

Figure 9. A non-local accordion and its template annulus.

5 Binary Space Partitions

A binary space partition tree, or BSP, is a binary tree where every internal node v has an associated
cutting hyperplane hv in IRd. We can recursively associate an open convex polyhedral cell ∆v with
every node v in a BSP as follows. The cell associated with the root is IRd. If u and w are the
children of some internal node v, then ∆u = ∆v ∩ h+

v and ∆w = ∆v ∩ h−v , where h+
v and h−v are

the open halfspaces bounded by the cutting hyperplane hv. The (closures of the) leaf cells of a
BSP form a convex decomposition of IRd. We say that a BSP B respects a polyhedron P—or less
formally, that B is a BSP for P—if no facet of P intersects the interior of any leaf cell of B. The
size of a BSP is the number of cuts, or equivalently, one less than the number of leaves.

Fuchs et al. [21] introduced BSP trees, following earlier work by Schumacker et al. [47], as a tool
for computing depth orders for rendering. Since their introduction, BSP trees have been used for
many other applications in computer graphics, including shadow generation [12, 13], solid modeling
[37, 57], geometric data repair [36], and visibility culling for interactive walkthroughs [55].

As in the case for intersection detection, the worst-case complexity bounds for BSPs of polyhedra
in IR3 are quite pessimistic. Chazelle’s polyhedron, described in the previous section, gives an Ω(n2)
lower bound in general [41]. For orthogonal polyhedra in IR3, a construction of Thurston gives a
lower bound of Ω(n3/2) [42]. In both cases, matching upper bounds were first proved by Paterson
and Yao [41, 42]. In fact, Paterson and Yao’s techniques imply that any set of n interior-disjoint
simplices in IRd has a BSP of size O(nd−1).

De Berg [5] defined the clutter factor κ of a set of objects to be the largest number of objects
that intersect a hypercube that does not contain a vertex of the axis-aligned bounding box of any
object. A set of objects is uncluttered if its clutter factor is smaller than some fixed constant. de
Berg also proved that any uncluttered set of n objects has a BSP of size O(n). For scenes with
non-constant clutter factor κ, de Berg’s construction, combined with the earlier results of Paterson
and Yao [41], yields a BSP of size O(κd−1n). By adapting and slightly improving de Berg’s results,
we show that any local polyhedron has a BSP of near-linear size.

Lemma 5.1. The facets of any local, simplicial, n-vertex polyhedron in IRd have clutter factor
O(log n).

Proof: Let 4 be a simplex and let � be a hypercube of width w, such that 4 and � intersect, but
no vertex of the bounding box of 4 lies inside �. The longest edge of 4 must have length greater

14 Jeff Erickson

than w. Following the proof of Lemma 3.3, we conclude that this edge must be close to some edge
of �.

Let P be a local simplicial polyhedron, such that no facet of P has a bounding box vertex
inside �. We charge each facet that intersects � to its longest edge, which is close to some edge
of � by the previous argument. Lemma 2.5 implies that at most O(log n) edges of P are close to
any edge of �, and by Lemma 2.1, each edge belongs to O(1) facets. Finally, � has d2d−1 = O(1)
edges. �

Lemma 5.2. Let P be a set of n interior-disjoint simplices in IRd with clutter factor κ. We can
construct a BSP of size O(nκd−2) for P in time O(nκd−2 + n log n).

Proof: De Berg [5] describes a two-level BSP of linear complexity for any uncluttered collection of
n objects. The first level is an orthogonal BSP of size O(n) that covers the vertices of the bounding
boxes of the objects; this bound does not depend at all on the clutter factor. Moreover, each leaf cell
in this orthogonal BSP can be covered by O(1) hypercubes that contain no bounding box vertices.
This orthogonal BSP can be constructed in O(n log n) time. We modify this construction slightly,
building an orthogonal BSP of size O(n/κ), where every leaf cell contains at most κ bounding box
vertices.2

We build the orthogonal BSP recursively as follows. Let � be an axis-aligned bounding hyper-
cube for P , and let V be the set of bounding box vertices that lie inside �. (Initially, V contains
all 2dn bounding box vertices.) If |V | ≤ κ, we return the trivial BSP. Otherwise, we split � into
2d smaller hypercubes, each with half the width of �. If no subcube contains |V | − κ points in V ,
we cut along the d bisecting planes to construct d complete levels of the BSP, and then continue
recursively in each subcube. Otherwise, let �′ be the subcube containing at least |V | − κ points
in V , let v be the only vertex of � that is also a vertex of �′, and let �′′ be the smallest cube that
contains |V | − κ points in V and has v as a vertex. We cut along the facets of �′′ that are not also
facets of �, forming the first d levels of a kd-tree, and continue recursively inside �′′. The entire
orthogonal BSP can be constructed in time O(n log n).

There are clearly at most 2d leaves of depth less than d. If ` is a leaf with depth at least d,
the dth direct ancestor of ` (for example, the grandparent of ` if d = 2) has a cell containing more
than κ bounding box vertices. Thus, the BSP has at most 2dn/κ such leaf-ancestors, and therefore
at most 4dn/κ + 2d = O(n/κ) leaves altogether.

By construction, each leaf cell in our orthogonal BSP contains at most κ bounding box vertices,
and each leaf cell can be covered by at most 2d−1 = O(1) hypercubes. It follows that each leaf
cell intersects at most (2d−1 + 1)κ = O(κ) simplices in P . Using an auxiliary data structure, de
Berg [5] describes an algorithm to determine the k leaf cells that intersect any constant-complexity
query range in O(k log n) time. Using this query structure, we can determine the simplices in P
that intersect each leaf cell in time O(n log n).

To construct the second level of our BSP, we apply the algorithm of Paterson and Yao [41] to
the set of O(κ) simplices that intersect any leaf of the orthogonal BSP. Each second-level BSP has
size O(κd−1) and can be constructed in time O(κd−1). (Paterson and Yao claim a running time
of O(kd+1), where k is the number of input objects, but this can be reduced to O(kd−1) using
standard randomized techniques [14].) Since there are O(n/κ) second-level BSPs, the overall size
of the resulting BSP is O((n/κ)κd−1) = O(nκd−2). �

The following theorem is now almost immediate.

2This modification was suggested by Mark de Berg (personal communication).

Local Polyhedra and Geometric Graphs 15

Theorem 5.3. Any local, simplicial, n-vertex polyhedron P in IRd has a BSP of size O(n logd−1 n)
and depth O(log n), which can be constructed in O(n logd−1 n) time.

Proof: We construct the two-level BSP described in the proof of the previous lemma. The upper
bounds on the size and construction time follow immediately from Lemmas 5.1 and 5.2. It remains
only to show that the resulting BSP has logarithmic depth. Without loss of generality, assume that
the shortest edge of P has length 1. The diameter of P , and thus the width of the initial control
cube, is at most nΣ, where Σ = Σ(P) = nO(1) is the global stretch of P .

Consider an internal node v with depth d log(Σn) in the first-stage orthogonal BSP. The corre-
sponding cell �v is a hypercube of width at most 1. If �v contains a vertex of the bounding box of
any facet 4 of P , then (following the proof of Lemma 3.3) at least one edge of 4 is close to at least
one edge of �v. Lemma 2.4 implies that each edge of �v is close to O(log n) edges of P , and and
Lemma 2.1 implies that each edge of P lies on O(1) facets. Thus, �v contains O(log n) bounding
box vertices. Our construction guarantees that v is the ancestor of O(1) leaves in the orthogonal
BSP. We conclude that depth of the orthogonal BSP is at most d log(Σn) + O(1) = O(log n).

Let k be the number of facets intersecting some leaf cell in the orthogonal BSP; Paterson and
Yao’s algorithm [41] constructs a BSP of depth at most k for these k facets. Since our construction
guarantees that k = O(log n), every second-level BSP also has depth O(log n). �

Theorem 4.3 implies that the size bound is tight in the worst case when d ≤ 3. All of these results
apply directly to any local collection of interior-disjoint simplices. If we allow self-intersections,
however, the worst-case complexity increases by a single logarithmic factor.

Lemma 5.4. Any set of n (d−1)-simplices in IRd with clutter factor κ has a BSP of size O(nκd−1),
which can be constructed in time O(n log n + nκd−1).

Proof: Again we start with by constructing an orthogonal BSP of size O(n/κ). We can then
trivially construct a BSP of size O(κd) for the O(κ) simplices that intersect each leaf cell, in O(κd)
time, by incrementally constructing the arrangement of hyperplanes through those simplices. �

Corollary 5.5. Any local set of n (d− 1)-simplices in IRd has a BSP of size O(n logd−1 n), which
can be constructed in O(n logd−1 n) time.

The following theorem shows that this bound is tight in the worst case.

Theorem 5.6. For any d and any sufficiently large n, σ, and Σ, there is a set X of n (d − 1)-
dimensional simplices in IRd, with σ(X) = σ and Σ(X) = Σ, such that any BSP for X has
Ω(σd−1n logd−1 Σ) = Ω(n logd−1 n) cells.

Proof: Generalizing the planar harpsichord grid used in the proof of Theorem 4.3, we can con-
struct d sets, each containing m = (σ lnΣ)/2 parallel (d − 1)-simplices, that intersect in a regular
cubical grid. The complement of the union of these simplices has Ω(σd logd Σ) connected compo-
nents. Collecting n/md well-separated copies of these sets, we obtain a set of n simplices whose
complement has Ω(σd−1n logd−1 Σ) connected components. Any BSP has at least one leaf cell in
each component. �

16 Jeff Erickson

6 Larger Combinations

Unions and intersections of local polyhedra are not necessarily local. Thus, if we want to efficiently
construct a boolean combination of more than two local polyhedra, we cannot combine the objects
in pairs; we must combine everything at once.

Theorem 6.1. Any boolean combination of r local, simplicial polyhedra in IR3, each with n ver-
tices, has complexity O(r3n log2 n).

Proof: Let P1, P2, . . . , Pr be local polyhedra. We will show that the arrangement of these poly-
hedra has total complexity O(r3n log2 n); any boolean combination of the polyhedra consists of a
subset of the faces of the arrangement, possibly with some faces merged together. We can analyze
the complexity of this arrangement using an argument similar to Paterson and Yao’s analysis of
their three-dimensional binary space partition trees [41].

First we count the vertices of the arrangement. Each arrangement vertex is either a vertex
of a polyhedron Pi, the intersection of the edge of some polyhedron Pi with a facet of another
polyhedron Pj , or the mutual intersection of three facets of three different polyhedra. There are
clearly rn vertices of the first type, and Corollary 3.2 implies there are O(r2n log n) vertices of the
second type. We charge each triple intersection point to the triangle whose longest edge is shortest
among the three intersectors. By Lemma 3.1, the longest edge of the charged triangle is close to
the longest edges of the other two triangles.

Consider three polyhedra Pi, Pj , Pk. Each polyhedron has O(n) edges, and each edge lies on
O(1) facets. Each edge of Pi is close to O(log n) longer edges in Pj and O(log n) longer edges in Pj .
Thus, each edge of Pi is charged O(log2 n) times by triple intersections with Pj and Pk. Since
there are O(r2) choices for j and k, each edge of Pi is charged O(r2 log2 n) times, so Pi is charged
O(r2n log2 n) times altogether. We conclude that the total number of triple intersections, and thus
the total number of vertices, is O(r3n log2 n).

The edges of the arrangement can be grouped into collinear super-edges, where each super-edge
is either an edge of some polyhedron Pi, or the intersection of two facets of different polyhedra.
Corollary 3.2 implies that there are O(k2n log n) super-edges. To count the actual arrangement
edges, we charge each edge to one of its endpoints. Each triple intersection point is charged at
most six times; all the remaining charges go to endpoints of super-edges. Thus, the total number
of edges is O(r3n log2 n).

Finally, each facet of each polyhedron Pi is decomposed into several arrangement facets, which
we will call fragments, by the other polyhedra. Let F be a facet of Pi. Euler’s formula implies that
the number of fragments of F is less than 2vF − 4, where vF is the number of arrangement vertices
on F . If F charges two of its fragments to every vertex on F except its original vertices from Pi,
only 2 fragments are uncharged. Except for polyhedra vertices, each vertex in the arrangement
lies on exactly three polyhedron facets and thus is charged at most six times. Therefore, the total
number of fragments is twice the number of facets plus six times the number of vertices, which by
our earlier analysis is O(r3n log2 n). �

Theorem 6.2. We can compute any boolean function of any r local, simplicial polyhedra in IR3,
each with n vertices, in time O(r3n log2 n).

Local Polyhedra and Geometric Graphs 17

7 Minkowski Sums of Local Polygons and Polyhedra

Finally, we consider the complexity of Minkowski sums of local polyhedra in two and three di-
mensions. In the worst case, the Minkowski sum of two n-gons has complexity Θ(n4), and the
Minkowski sum of two polyhedra in IR3, each with n faces, has complexity Θ(n6).

Theorem 7.1. The Minkowski sum of any two local n-gons in the plane has complexity O(n3 log n)
and Ω(n3) in the worst case.

Proof: Let P and Q be two local n-gons with vertices labeled p1, . . . , pn and q1, . . . , qn, respectively.
The Minkowski sum P + Q is the union of cells in the arrangement of the r = 2n polygons pi + Q
and P + qj . Simplifying the proof of Theorem 6.1 to the two-dimensional case, we can prove that
the arrangement of r local n-gons has complexity O(r2n log n).

For the lower bound, we construct two local O(n)-gons P and Q, with σ ≈ 2 and Σ = Θ(n),
whose Minkowski sum has complexity Ω(n3). Each polygon consists of a comb with n widely-spaced
extremely thin spikes, each of length O(n), and a vertical zigzag of 2n edges, each of length 1. To
maintain locality, a series of O(log n) edges interpolates between the large and small features of
each polygon. Figure 10(a) shows the comb polygon, plus a simplified geometric graph with the
same salient features.

(a) (b) (c)

Figure 10. (a) One comb polygon and its salient features. (b) The Minkowski sum of two combs has several bundles of
spikes. (c) The Minkowski sum of two zigzags cutting through a bundle.

The distance between the spikes in P is very slightly larger than in Q, so that the Minkowski
sum of the two cones has n2 spikes, grouped into 2n − 1 bundles; see Figure 10(b). Similarly, the
Minkowski sum of the two zigzags has n2 teeth. The zigzags of P and Q are positioned so that
their Minkowski sum cuts through the middle bundle of n spikes. Each of the n2 teeth cuts all
the way through this bundle, intersecting all n spikes; see Figure 10(c). Thus, P + Q has Ω(n3)
vertices. �

Theorem 7.2. The Minkowski sum of any two local, simplicial polyhedra in IR3, each with n
vertices, has complexity O(n4 log2 n) and Ω(n4) in the worst case.

Proof: Let P and Q be two local n-vertex polyhedra. The Minkowski sum P + Q is the union of
cells in the arrangement of the r = 2n polyhedra pi + Q and P + qj . The proof of Theorem 6.1
implies that this arrangement has complexity O(r3n log2 n) = O(n4 log2 n).

The lower bound construction is a generalization of the two-dimensional case. Each polyhedron
approximates a piecewise linear complex consisting of two sets of square ‘shelves’, one set parallel

18 Jeff Erickson

to the xz plane and one set parallel to the yz plane, along with a vertical ‘staircase’ with edges
parallel to the plane x = y. The Minkowski sum of the two sets of shelves contains a tight n × n
grid of planes, all parallel to the z axis. The Minkowski sum of the two staircases cuts through
this grid n2 times to create Ω(n4) vertices. We can construct a local polyhedron with the same
salient features as this complex by gluing together several annuli, similarly to the harpsicordion
construction in Section 4. See Figure 11. We omit the straightforward but tedious details. �

Figure 11. The shelves-and-staircases polyhedron; compare with Figure 10(a).

8 Discussion and Open Problems

We have introduced a new realistic input model, called locality, for nonconvex simplicial polyhedra
and other sets of simplices. Unlike many other realistic input models, our model permits objects
with arbitrarily sharp features.

Unlike most previously studied models, locality is not a function of the shape of geometric
objects, but rather a function of their representation. Any polyhedron can be “localized” by
carefully decomposing each face with a graded mesh. For example, the n × n × 1 rectangular box
has a local boundary mesh with O(log n) vertices; see Figure 12. On the other hand, our results
imply that any local boundary mesh of Chazelle’s polyhedron, or of a regular convex n-gonal
cylinder with constant height and radius, must have Ω(n2/ log n) vertices.

Figure 12. A local triangulation of an n× n× 1 ‘pizza box’ with O(log n) facets.

Local Polyhedra and Geometric Graphs 19

In order to gauge the realism of our ‘realistic’ input model, we measured the local and global
stretches of several geometric models. While the global stretch Σ was less than the number of
vertices for every model we tested, the local stretch σ was not as well-behaved.

Not surprisingly, for most of the CAD models we tested, the local stretch σ was extremely large,
usually because the model contained nearly-coincident vertices from different components of the
model, or several long skinny rectangles modeling a portion of a cylinder or cone. Our analysis can
be modified to work for models with nearly-coincident vertices, but for objects with large cylindrical
or conical regions, this bad behavior is simply unavoidable without introducing a large number of
additional vertices.

We also tested standard models that were automatically reconstructed from scattered surface
points [15, 58]. The maximum local stretch σ was often extremely large, especially for models like
the happy Buddha and the dragon that were reconstructed from several two-dimensional range
images. Even for these models, however, the kth-order stretch σk decayed quickly as a function
of k; even for the worst model we tried, the 10th-order stretch was a small constant. See Table 1.

model n Σ σ σ2 σ3 σ4 σ6 σ8 σ10

teapot 1177 59.00 17.675 12.325 8.215 6.519 5.775 4.916 4.008
bunny 35947 27.59 302.626 8.818 4.720 4.096 3.400 2.718 2.045

armadillo 172974 2683.81 1705.08 1160.72 921.857 3.240 2.475 2.075 1.726
hand 327323 129.31 122.274 100.082 48.427 7.358 2.098 1.680 1.500

dragon 437645 315093. 80172.9 35132.0 991.039 294.512 68.046 22.458 21.611
buddha 543652 261019. 42065.3 26466.3 4105.940 608.669 14.324 10.277 8.960
blade 882954 214.27 210.559 197.254 80.889 27.025 3.931 2.936 2.219

Table 1. Global and local stretch of some large geometric models

We also examined the distribution of local stretch over the vertices of each model. Rather
surprisingly, this distribution often had an extremely heavy tail, suggesting that the average local
stretch might be a more realistic measure than the maximum. (Although most realistic input
models restrict the worst-case behavior of some parameter, a few results are known for sets of
objects that are fat on average [40, 60].) Higher-order local stretch, on the other hand, was more
tightly concentrated around the mean. First- and tenth-order local stretch distributions for the
dragon model are displayed in Figure 13; the other models had similar (but tighter) distributions.

σ10σ1 10 100 1000 10000 100000

nu
m

be
r

of
 v

er
tic

es

1

10

100

1000

10000

100000

1 100.1

1

10

100

1000

10000

100000

nu
m

be
r

of
 v

er
tic

es

Figure 13. Distributions of σ and σ10 for the dragon model.

We derived nearly-matching upper and lower bounds for the Minkowski sum of two local poly-
hedra in two or three dimensions. The closeness of these bounds is somewhat misleading, however,
since they have very different dependencies on the global stretch Σ; the two-dimensional bounds

20 Jeff Erickson

are more accurately written as O(n3 log Σ) and Ω(n2Σ). How complex is the Minkowski sum of two
civilized polyhedra, where Σ = O(1)? Our input model allows vertices to be arbitrarily close to
higher-dimensional facets. Can we obtain better bounds by replacing the nearest neighbor distance
in the definition of σ with, say, the local feature size at each vertex?

Intersection, convex decomposition, and Minkowski sum are only three of many problems in-
volving nonconvex polyhedra that are that are difficult in the worst case, but may be easier for
local or other ‘realistic’ polyhedra. For example, can local polyhedra be triangulated using only a
near-linear number of simplices? How hard is constructing the triangulation of a local polyhedron
with the minimum number of Steiner points [45] or tetrahedra [3]? How complex is the medial axis
of a local polyhedron in the worst case?

Acknowledgments. Thanks to Pankaj Agarwal, Mark de Berg, Leo Guibas, Sariel Har-Peled,
and Mark van Kreveld for helpful discussions, questions, and observations. I am especially grateful
to an anonymous SoCG reviewer for pointing out de Berg’s BSP results [5], Mark de Berg for
outlining the improvement in the results of Section 5, and Sariel Har-Peled for writing code to
measure σ and Σ in real world models. Thanks also to the graphics groups at Stanford [15] and
Georgia Tech [58] for making their models publicly available.

References

[1] P. K. Agarwal, L. Guibas, A. Nguyen, D. Russel, and L. Zhang. Collision detection for
deforming necklaces. To appear in Comput. Geom. Theory Appl., 2003.

[2] G. Barequet, B. Chazelle, L. Guibas, J. Mitchell, and A. Tal. BOXTREE: A hierarchical
representation for surfaces in 3D. Comput. Graph. Forum 15(3):C387–C396, C484, 1996.
Proc. Eurographics’96.

[3] A. Below, J. A. de Loera, and J. Richter-Gebert. Finding minimal triangulations of convex
3-polytopes is NP-hard. Proc. 11th Annu. ACM-SIAM Sympos. Discrete Algorithms, 65–66,
2000.

[4] M. Ben-Or. Lower bounds for algebraic computation trees. Proc. 15th Annu. ACM Sympos.
Theory Comput., 80–86, 1983.

[5] M. de Berg. Linear size binary space partitions for uncluttered scenes. Algorithmica 28:353–
366, 2000.

[6] M. de Berg, M. Katz, M. Overmars, A. F. van der Stappen, and J. Vleugels. Models and
motion planning. Proc. 6th Scand. Workshop Algorithm Theory, 83–94, 1998. Lecture Notes
Comput. Sci. 1432, Springer-Verlag.

[7] M. de Berg, M. J. Katz, A. F. van der Stappen, and J. Vleugels. Realistic input models for
geometric algorithms. Proc. 13th Annu. ACM Sympos. Comput. Geom., 294–303, 1997.

[8] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Berlin, 1997.

[9] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient processing of spatial joins using R-trees.
Proc. ACM SIGMOD Conf. on Management of Data, 237–246, 1993.

Local Polyhedra and Geometric Graphs 21

[10] B. Chazelle. Convex partitions of polyhedra: a lower bound and worst-case optimal algorithm.
SIAM J. Comput. 13:488–507, 1984.

[11] B. Chazelle, H. Edelsbrunner, L. J. Guibas, and M. Sharir. Algorithms for bichromatic line
segment problems and polyhedral terrains. Algorithmica 11:116–132, 1994.

[12] N. Chin and S. Feiner. Near real-time shadow generation using BSP trees. Proc. SIGGRAPH
’89, 99–106, 1989.

[13] N. Chin and S. Feiner. Fast object-precision shadow generation for areal light sources using
BSP trees. Comput. Graph. 25:21–30, 1992. Proc. 1992 Sympos. Interactive 3D Graphics.

[14] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry,
II. Discrete Comput. Geom. 4:387–421, 1989.

[15] B. Curless. The Stanford 3D Scanning Repository, June 2003. 〈http://graphics.stanford.edu/
data/3Dscanrep/〉.

[16] H. Edelsbrunner. A new approach to rectangle intersections, Part I. Internat. J. Comput.
Math. 13:209–219, 1983.

[17] J. Erickson. On the relative complexities of some geometric problems. Proc. 7th Canad. Conf.
Comput. Geom., 85–90, 1995. 〈http://www.uiuc.edu/∼jeffe/pubs/relative.html〉.

[18] J. Erickson. New lower bounds for Hopcroft’s problem. Discrete Comput. Geom. 16:389–418,
1996.

[19] J. Erickson. Local polyhedra and geometric graphs. Proc. 19th Annu. ACM Sympos. Comput.
Geom., 171–180, 2003.

[20] J. Erickson. Nice point sets can have nasty Delaunay triangulations. Discrete Comput. Geom.
30(1):109–132, 2003.

[21] H. Fuchs, Z. M. Kedem, and B. Naylor. On visible surface generation by a priori tree structures.
Comput. Graph. 14(3):124–133, 1980. Proc. SIGGRAPH ’80.

[22] S. Gottschalk, M. C. Lin, and D. Manocha. OBB-tree: A hierarchical structure for rapid
interference detection. Proc. SIGGRAPH ’96, 171–180, 1996.

[23] L. Guibas, A. Nguyen, D. Russel, and L. Zhang. Collision detection for deforming necklaces.
Proc. 18th Annu. ACM Sympos. Comput. Geom., 33–42, 2002.

[24] A. Guttman. R-trees: A dynamic index structure for spatial searching. Proc. ACM SIGMOD
Conf. Principles Database Systems, 47–57, 1984.

[25] H. H. Haverkort, M. de Berg, and J. Gudmundsson. Box-trees for collision checking in industrial
applications. Proc. 18th Annu. ACM Sympos. Comput. Geom., 53–62, 2002.

[26] P. M. Hubbard. Approximating polyhedra with spheres for time-critical collision detection.
ACM Trans. Graph. 15(3):179–210, 1996.

[27] X. Jiao, H. Edelsbrunner, and M. T. Heath. Mesh association: Formulation and algorithms.
Proc. 8th International Meshing Roundtable, 75–82, 1999. 〈http://www.andrew.cmu.edu/user/
sowen/abstracts/Ji681.html〉.

22 Jeff Erickson

[28] X. Jiao and M. T. Heath. Efficient and robust algorithms for overlaying surface meshes. Proc.
10th International Meshing Roundtable, 281–292, 2001. 〈http://www.andrew.cmu.edu/user/
sowen/abstracts/Ji834.html〉.

[29] X. Jiao and M. T. Heath. Common-refinement based data transfer between nonmatching
meshes in multiphysics simulations. Preprint, April 2003. 〈http://www.cse.uiuc.edu/∼jiao/
papers/datatransfer.pdf〉.

[30] X. Jiao and M. T. Heath. Overlaying surface meshes, part I: Algorithms. Preprint, February
2003. 〈http://www.cse.uiuc.edu/∼jiao/papers/overlay p1.pdf〉.

[31] J. Klosowski, M. Held, J. S. B. Mitchell, K. Zikan, and H. Sowizral. Efficient collision detec-
tion using bounding volume hierarchies of k-DOPs. IEEE Trans. Visualizat. Comput. Graph.
4(1):21–36, 1998.

[32] X.-Y. Li and S.-H. Teng. Generating well-shaped Delaunay meshes in 3D. Proc. 12th Annu.
ACM-SIAM Sympos. Discrete Algorithms, 28–37, 2001.

[33] I. Lotan, F. Schwarzer, D. Halperin, and J.-C. Latombe. Efficient maintenance and self-collision
testing for kinematic chains. Proc. 18th Annu. ACM Sympos. Comput. Geom., 43–52, 2002.

[34] G. L. Miller, D. Talmor, S.-H. Teng, and N. Walkington. A Delaunay based numerical method
for three dimensions: generation, formulation, and partition. Proc. 27th Annu. ACM Sympos.
Theory Comput., 683–692, 1995.

[35] B. Mirtich and J. Canny. Impulse-based dynamic simulation. The Algorithmic Foundations of
Robotics, 1995. A. K. Peters.

[36] T. M. Murali and T. A. Funkhouser. Consistent solid and boundary representations from
arbitrary polygonal data. Proc. 1997 Sympos. Interactive 3D Graphics, 1997.

[37] B. Naylor, J. A. Amanatides, and W. Thibault. Merging BSP trees yields polyhedral set
operations. Comput. Graph. 24(4):115–124, 1990. Proc. SIGGRAPH ’90.

[38] P. van Oosterom. An R-tree based map-overlay algorithm. Proc. EGIS ’94, 318–327, 1994.

[39] M. H. Overmars and A. F. van der Stappen. Range searching and point location among fat
objects. J. Algorithms 21:629–656, 1996.

[40] J. Pach and G. Tardos. On the boundary complexity of the union of fat triangles. Proc. 41th
Annu. IEEE Sympos. Found. Comput. Sci., 423–431, 2000.

[41] M. S. Paterson and F. F. Yao. Efficient binary space partitions for hidden-surface removal and
solid modeling. Discrete Comput. Geom. 5:485–503, 1990.

[42] M. S. Paterson and F. F. Yao. Optimal binary space partitions for orthogonal objects. J.
Algorithms 13:99–113, 1992.

[43] M. Pellegrini. Ray shooting on triangles in 3-space. Algorithmica 9:471–494, 1993.

[44] J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J.
Algorithms 18:548–585, 1995.

Local Polyhedra and Geometric Graphs 23

[45] J. Ruppert and R. Seidel. On the difficulty of triangulating three-dimensional non-convex
polyhedra. Discrete Comput. Geom. 7:227–253, 1992.

[46] E. Schömer and C. Thiel. Efficient collision detection for moving polyhedra. Proc. 11th Annu.
ACM Sympos. Comput. Geom., 51–60, 1995.

[47] R. A. Schumacker, R. Brand, M. Gilliland, and W. Sharp. Study for applying computer-
generated images to visual simulation. Tech. Rep. AFHRL–TR–69–14, U.S. Air Force Human
Resources Laboratory, 1969.

[48] O. Schwarzkopf and J. Vleugels. Range searching in low-density environments. Inform. Process.
Lett. 60:121–127, 1996.

[49] J. R. Shewchuk. Tetrahedral mesh generation by Delaunay refinement. Proc. 14th Annu. ACM
Sympos. Comput. Geom., 86–95, 1998.

[50] H.-W. Six and D. Wood. Counting and reporting intersections of D-ranges. IEEE Trans.
Comput. C-31:181–187, 1982.

[51] A. F. van der Stappen. Motion Planning amidst Fat Obstacles. Ph.D. dissertation, Dept.
Comput. Sci., Utrecht Univ., Utrecht, Netherlands, 1994.

[52] J. M. Steele and A. C. Yao. Lower bounds for algebraic decision trees. J. Algorithms 3:1–8,
1982.

[53] S. Suri, P. M. Hubbard, and J. F. Hughes. Collision detection in aspect and scale bounded
polyhedra. Proc. 9th ACM-SIAM Sympos. Discrete Algorithms, 127–136, 1998.

[54] D. Talmor. Well-Spaced Points and Numerical Methods. Ph.D. thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, August 1997. Technical report CMU-
CS-97-164. 〈http://reports-archive.adm.cs.cmu.edu/anon/1997/abstracts/97-164.html〉.

[55] S. J. Teller and C. H. Séquin. Visibility preprocessing for interactive walkthroughs. Comput.
Graph. 25(4):61–69, 1991. Proc. SIGGRAPH ’91.

[56] S.-H. Teng. Points, Spheres, and Separators: A Unified Geometric Approach to Graph Par-
titioning. Ph.D. thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, 1992. Technical report CMU-CS-91-184.

[57] W. C. Thibault and B. F. Naylor. Set operations on polyhedra using binary space partitioning
trees. Comput. Graph. 21(4):153–162, 1987. Proc. SIGGRAPH ’87.

[58] G. Turk and B. Mullins. Large Geometric Models Archive, 2003. 〈http://www.cc.gatech.edu/
projects/large models/〉.

[59] J. Vleugels. On Fatness and Fitness — Realistic Input Models for Geometric Algorithms.
Ph.D. thesis, Dept. Comput. Sci., Univ. Utrecht, Utrecht, The Netherlands, 1997.

[60] Y. Zhou and S. Suri. Analysis of a bounding box heuristic for object intersection. Proc. 10th
Annu. ACM-SIAM Sympos. Discrete Algorithms, 830–839, 1999.

[61] A. Zomorodian and H. Edelsbrunner. Fast software for box intersection. Proc. 16th Annu.
ACM Sympos. Comput. Geom., 129–138, 2000.

