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Abstract

We consider three classes of geodesic embeddings of graphs on Euclidean flat tori:
• A toroidal graph embedding Γ is positive equilibrium if it is possible to place positive

weights on the edges, such that the weighted edge vectors incident to each vertex of Γ
sum to zero.

• A toroidal graph embedding Γ is reciprocal if there is a geodesic embedding Γ ∗ of its
dual on the same flat torus, where each edge of Γ is orthogonal to the corresponding
dual edge in Γ ∗.

• A toroidal graph embedding Γ is coherent if it is possible to assign weights to the
vertices, so that Γ is the (intrinsic) weighted Delaunay graph of its vertices.

The classical Maxwell–Cremona correspondence and the well-known correspondence be-
tween convex hulls and weighted Delaunay triangulations imply that the analogous concepts
for planar graph embeddings (with convex outer faces) are equivalent. Indeed, all three
conditions are equivalent to Γ being the projection of the 1-skeleton of the lower convex hull
of points in R3. However, this three-way equivalence does not extend directly to geodesic
graph embeddings on flat tori. On any flat torus, reciprocal and coherent embeddings are
equivalent, and every reciprocal embedding is in positive equilibrium, but not every positive
equilibrium embedding is reciprocal. We establish a weaker correspondence: Every posi-
tive equilibrium embedding on any flat torus is affinely equivalent to a reciprocal/coherent
embedding on some flat torus.

∗Portions of this work were supported by NSF grant CCF-1408763. A preliminary version of this paper was presented at the
36th International Symposium on Computational Geometry [33].
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1 Introduction

The Maxwell–Cremona correspondence is a fundamental theorem establishing an equivalence between
three different structures on a straight-line embedding Γ of a graph G into the plane:

• An equilibrium stress on Γ is an assignment of non-zero weights to the edges of G, such that the
weighted edge vectors around every interior vertex p sum to zero:

∑

p : pq∈E

ωpq(p− q) =
�

0
0

�

• A reciprocal diagram for Γ is a straight-line embedding Γ ∗ dual to Γ , in which every dual edge e∗

is orthogonal to the corresponding primal edge e.

• A polyhedral lifting of Γ assigns z-coordinates to the vertices of Γ , so that the resulting lifted
vertices in R3 are not all coplanar, but the lifted vertices of each face of Γ are coplanar.

Building on earlier seminal work of Varignon [84], Rankine [69, 70], and others, Maxwell [56–58]
proved that any straight-line planar drawing Γ with an equilibrium stress has both a reciprocal diagram
and a polyhedral lifting. In particular, positive and negative stresses correspond to convex and concave
edges in the polyhedral lifting, respectively. Moreover, for any equilibrium stress ω on Γ , the vector
1/ω is an equilibrium stress for the reciprocal diagram Γ ∗. Finally, for any polyhedral liftings of Γ , one
can obtain a polyhedral lifting of the reciprocal diagram Γ ∗ via projective duality. Maxwell’s analysis
was later extended and popularized by Cremona [25, 26] and others; the correspondence has since
been rediscovered several times in other contexts [3, 42]. More recently, Whiteley [86] proved the
converse of Maxwell’s theorem: every reciprocal diagram and every polyhedral lift corresponds to an
equilibrium stress; see also Crapo and Whiteley [24]. For modern expositions of the Maxwell–Cremona
correspondence aimed at computational geometers, see Hopcroft and Kahn [41], Richter-Gebert [72,
Chapter 13], or Rote, Santos, and Streinu [74].

If the outer face of Γ is convex, the Maxwell–Cremona correspondence implies an equivalence
between equilibrium stresses in Γ that are positive on every interior edge, convex polyhedral liftings
of Γ , and reciprocal embeddings Γ ∗. Moreover, as Whiteley et al. [87] and Aurenhammer [3] observed,
the well-known equivalence between convex liftings and weighted Delaunay complexes [4, 5, 13, 32,85]
implies that all three of these structures are equivalent to a fourth:

• A Delaunay weighting of Γ is an assignment of weights to the vertices of Γ , so that Γ is the
(power-)weighted Delaunay graph [4,7] of its vertices.

Among many other consequences, combining the Maxwell–Cremona correspondence with Tutte’s
spring-embedding theorem [83] yields an elegant geometric proof of Steinitz’s theorem [77, 78] that
every 3-connected planar graph is the 1-skeleton of a 3-dimensional convex polytope. The Maxwell–
Cremona correspondence has been used for scene analysis of planar drawings [3, 5, 24, 42, 82], finding
small grid embeddings of planar graphs and polyhedra [15, 30, 31, 43, 67, 71, 72, 75], and several linkage
reconfiguration problems [22, 29,68,80,81].

It is natural to ask how or whether these correspondences extend to graphs on surfaces other than the
Euclidean plane. Lovász [53, Lemma 4] describes a spherical analogue of Maxwell’s polyhedral lifting
in terms of Colin de Verdière matrices [18, 21]; see also [48]. Izmestiev [46] provides a self-contained
proof of the correspondence for planar frameworks, along with natural extensions to frameworks in
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the sphere and the hyperbolic plane. Finally, and most closely related to the present work, Borcea and
Streinu [11], building on their earlier study of rigidity in infinite periodic frameworks [9,10], develop an
extension of the Maxwell–Cremona correspondence to infinite periodic graphs in the plane, or equiva-
lently, to geodesic graphs on the Euclidean flat torus. Specifically, Borcea and Streinu prove that periodic
polyhedral liftings correspond to periodic stresses satisfying an additional homological constraint.1

1.1 Our Results

In this paper, we develop a different generalization of the Maxwell–Cremona–Delaunay correspondence
to geodesic embeddings of graphs on Euclidean flat tori. Our work is inspired by and uses Borcea and
Streinu’s results [11], but considers a different aim. Stated in terms of infinite periodic planar graphs,
Borcea and Streinu study periodic equilibrium stresses, which necessarily include both positive and
negative stress coefficients, that include periodic polyhedral lifts; whereas, we are interested in periodic
positive equilibrium stresses that induce periodic reciprocal embeddings and periodic Delaunay weights.
This distinction is aptly illustrated in Figures 8–10 of Borcea and Streinu’s paper [11].

Recall that a Euclidean flat torus T is the metric space obtained by identifying opposite sides of an
arbitrary parallelogram in the Euclidean plane. A geodesic embedding Γ of a graph G on the flat torus T
maps the vertices of G to distinct points in T and the edges of G to interior-disjoint “line segments”.
Equilibrium stresses, reciprocal embeddings, and weighted Delaunay complexes are all well-defined
in the intrinsic metric of the flat torus. We prove the following correspondences for any sufficiently
well-connected geodesic embedding Γ on any flat torus T.

• Any equilibrium stress for Γ is also an equilibrium stress for the affine image of Γ on any other flat
torus T′ (Lemma 2.4). Equilibrium depends only on the common affine structure of all flat tori.

• Any reciprocal embedding Γ ∗ on T—that is, any geodesic embedding dual to Γ such that corre-
sponding edges are orthogonal—defines unique equilibrium stresses in both Γ and Γ ∗ (Lemma 3.1).

• Γ has a reciprocal embedding if and only if Γ is a weighted Delaunay complex. Specifically, each
reciprocal diagram for Γ induces an essentially unique set of Delaunay weights for the vertices
of Γ (Theorem 4.5). Conversely, each set of Delaunay weights for Γ induces a unique reciprocal
diagram Γ ∗, namely the corresponding weighted Voronoi diagram (Lemma 4.1). Thus, unlike in
the plane, a reciprocal diagram Γ ∗ may not be a weighted Voronoi diagram of the vertices of Γ ,
but some unique translation of Γ ∗ is.

• Unlike in the plane, Γ may have equilibrium stresses that are not induced by reciprocal embeddings;
more generally, not every equilibrium embedding on T is reciprocal (Theorem 3.2). Unlike
equilibrium, reciprocality depends on the conformal structure of T, which is determined by the
shape of its fundamental parallelogram. We derive a simple geometric condition that characterizes
which equilibrium stresses are reciprocal on T (Lemma 5.6).

• More generally, we show that for any equilibrium stress on Γ , there is a flat torus T′, unique up
to rotation and scaling of its fundamental parallelogram, such that the same equilibrium stress is
reciprocal for the affine image of Γ on T′ (Theorem 5.9). In short, every equilibrium stress for Γ is
reciprocal on some flat torus. This result implies a natural toroidal analogue of Steinitz’s theorem
(Theorem 6.1): Every essentially 3-connected torus graph Γ is homotopic to a weighted Delaunay
complex on some flat torus.

1Phrased in terms of toroidal frameworks, Borcea and Streinu consider only equilibrium stresses for which the corresponding
reciprocal toroidal framework contains no essential cycles. The same condition was also briefly discussed by Crapo and
Whiteley [24, Example 3.6].
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1.2 Other Related Results

Our results rely on a natural generalization (Theorem 2.5) of Tutte’s spring-embedding theorem to the
torus, first proved (in greater generality) by Colin de Verdière [19], and later proved again, in different
forms, by Delgado-Friedrichs [28], Lovász [54, Theorem 7.1] [55, Theorem 7.4], Gortler, Gotsman,
and Thurston [36], and (in greater generality) Hass and Scott [38]. Steiner and Fischer [76] and
Gortler et al. [36] observed that this toroidal spring embedding can be computed by solving the Laplacian
linear system defining the equilibrium conditions. We describe this result and the necessary calculation
in more detail in Section 2. Equilibrium and reciprocal graph embeddings can also be viewed as discrete
analogues of harmonic and holomorphic functions [54,55].

Our weighted Delaunay graphs are (the duals of) power diagrams [4, 6] or Laguerre-Voronoi dia-
grams [44] in the intrinsic metric of the flat torus. Toroidal Delaunay triangulations are commonly
used to generate finite-element meshes for simulations with periodic boundary conditions, and several
efficient algorithms for constructing these triangulations are known [8, 14, 37, 60]. Building on earlier
work of Rivin [73] and Indermitte et al. [45], Bobenko and Springborn [7] proved that on any piecewise-
linear surface, intrinsic Delaunay triangulations can be constructed by an intrinsic incremental flipping
algorithm, mirroring the classical planar algorithm of Lawson [52]; their analysis extends easily to in-
trinsic weighted Delaunay graphs. Weighted Delaunay complexes are also known as regular or coherent
subdivisions [27,88].

Finally, equilibrium and reciprocal embeddings are closely related to the celebrated Koebe-Andreev
circle-packing theorem: Every planar graph is the contact graph of a set of interior-disjoint circular
disks [1, 2, 47]; see Felsner and Rote [34] for a simple proof, based in part on earlier work of Brightwell
and Scheinerman [12] and Mohar [62]. The circle-packing theorem was generalized to higher-genus
surfaces by Colin de Verdière [17, 20] and Mohar [63, 64]. In particular, Mohar proved that any well-
connected graph embedding on the torus is homotopic to the contact graph of an essentially unique
circle packing for a unique Euclidean metric on the torus. This disk-packing representation immediately
yields a weighted Delaunay graph, where the areas of the disks are the vertex weights. We revisit and
extend this result in Section 6.

Discrete harmonic and holomorphic functions, circle packings, and intrinsic Delaunay triangulations
have numerous applications in discrete differential geometry; we refer the reader to monographs by
Crane [23], Lovász [55], and Stephenson [79].

2 Background and Definitions

2.1 Flat Tori

A flat torus is the metric surface obtained by identifying opposite sides of a parallelogram in the
Euclidean plane. Specifically, for any nonsingular 2× 2 matrix M =

�

a b
c d

�

, let TM denote the flat torus
obtained by identifying opposite edges of the fundamental parallelogram ◊M with vertex coordinates
�0

0

�

,
�a

c

�

,
�b

d

�

, and
�a+b

c+d

�

. In particular, the square flat torus T
�
= TI is obtained by identifying opposite

sides of the Euclidean unit square � = ◊I = [0,1]2. The linear map M : R2 → R2 naturally induces a
homeomorphism M from T� to TM .

Equivalently, TM is the quotient space of the plane R2 with respect to the lattice of translations
generated by the columns of M ; in particular, the square flat torus is the quotient space R2/Z2. The
quotient map πM : R2 → TM is called a covering map or projection. A lift of a point p ∈ TM is any
point in the preimage π−1

M (p) ⊂ R2. A geodesic in TM is the projection of any line segment in R2;
we emphasize that geodesics are not necessarily shortest paths. A closed geodesic is a geodesic whose
endpoints coincide.
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2.2 Graphs, Drawings, and Embeddings

We regard each edge of an undirected graph G as a pair of opposing darts, each directed from one
endpoint, called the tail of the dart, to the other endpoint, called its head. For each edge e, we arbitrarily
label the darts e+ and e−; we call e+ the reference dart of e. We explicitly allow graphs with loops and
parallel edges. At the risk of confusing the reader, we often write p�q to denote an arbitrary dart with
tail p and head q, and q�p for the reversal of p�q.

A drawing of a graph G on a torus T is any continuous function Γ from G (as a topological space)
to T, which maps vertices of G to points in T and edges of G to curves between the images of their
endpoints. A vertex of a drawing Γ is the image Γ (p) of some vertex p of G; similarly, an edge of Γ is the
curve Γ (e) (formally, the restriction Γ |e : [0,1]→ T) for some edge e of G.

An embedding is an injective drawing, which maps vertices to distinct points and edges to simple,
interior-disjoint curves. The faces of an embedding are the components of the complement of the image
of the graph; we consider only cellular embeddings, in which all faces are open disks. In any embedding,
left(d) and right(d) denote the faces immediately to the left and right of (the image of) any dart d;
these could be the same face. The complex of vertices, edges, and faces induced by a cellular embedding
is called a map.

Let Γ be any drawing of a graph G on the torus TM . The universal cover of the drawing Γ is the
unique infinite planar graph drawing eΓ : eG ,→ R2 that is periodic with respect to the lattice generated
by the columns of M , such that the covering map πM projects the image of eΓ onto the image of Γ . (The
infinite graph eG is a function of the embedding Γ , not just the underlying graph G.) In particular, the
covering map πM projects each vertex or edge of eΓ to a vertex or edge of Γ , respectively, and each vertex
of Γ lifts to an infinite lattice of vertices of eΓ . Moreover, if Γ is an embedding, then its universal cover eΓ
is also an embedding, and the covering map πM projects each face of eΓ to a face of Γ .

A drawing Γ is geodesic if it maps each edge to a geodesic, or equivalently, if its universal cover eΓ
maps each edge to a straight line segment.

We call Γ essentially simple if the graph eG is simple, and essentially 3-connected if eG is 3-
connected [35,63–66]. We emphasize that essential simplicity and essential 3-connectivity are features
of embeddings, not abstract graphs; Figure 1 shows an essentially simple, essentially 3-connected toroidal
embedding of a graph that is neither simple nor 3-connected.
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Figure 1. An essentially simple, essentially 3-connected geodesic graph embedding on the square flat torus (showing the homology
vectors of all four darts from u to v), a small portion of its universal cover, and a geometric dual embedding.
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2.3 Homology and Circulations

For any drawing Γ of a graph G on the square flat torus T�, we associate a homology vector [d]Γ ∈ Z2

with each dart d, which records how the dart crosses the boundary edges of the unit square. Specifically,
the first coordinate of [d]Γ is the number of times the curve Γ (d) crosses the vertical boundary rightward,
minus the number of times Γ (d) crosses the vertical boundary leftward; and the second coordinate of [d]Γ
is the number of times Γ (d) crosses the horizontal boundary upward, minus the number of times Γ (d)
crosses the horizontal boundary downward. In particular, reversing a dart negates its homology vector:
[e+]Γ = −[e−]Γ . Again, see Figure 1. For drawings on any other flat torus TM , homology vectors are
similarly defined by how darts cross the boundary of the fundamental parallelogram ◊M .

The (integer) homology class [γ]Γ of a directed cycle γ in G, with respect to the drawing Γ , is the
sum of the homology vectors of its forward darts. A cycle is contractible in Γ if its homology class is

�0
0

�

and essential otherwise. In particular, the boundary cycle of each face of Γ is contractible.
A circulation φ in G is a function from the darts of G to the reals, such that φ(p�q) = −φ(q�p) for

every dart p�q and
∑

p�qφ(p�q) = 0 for every vertex p. We represent circulations by column vectors
in RE , indexed by the edges of G, where φe = φ(e+). Let ΛΓ denote the 2× E matrix whose columns
are the homology vectors of the reference darts in G. The (real) homology class of a circulation is the
matrix-vector product

[φ]Γ = ΛΓφ =
∑

e∈E

φ(e+) · [e+]Γ .

(This identity directly generalizes our earlier definition of the homology class [γ]Γ of a cycle γ.)
We will omit the subscript Γ from our homology notation when the drawing is clear from context.

2.4 Homotopy

Two closed curves γ and γ′ on a torus T are homotopic if one can be continuously deformed into the
other, or more formally, if there is a continuous family (γt)t∈[0,1] of closed curves γt : S1→ T such that
γ0 = γ and γ1 = γ′. Similarly, two drawings of the same graph G on the same flat torus T are homotopic
if one can be continuously deformed into the other through drawings of the same graph. The continuous
family of cycles or drawings is called a homotopy.

Two closed curves on any torus are homotopic if and only if they have the same homology class.
The following lemma characterizes when two drawings are homotopic; a similar characterization of
homotopic embeddings was proved by Ladegaillerie [16,49–51].

Lemma 2.1. Two drawings Γ and Γ ′ of the same graph G on the same flat torus T are homotopic if and
only if every cycle in G has the same homology class in both drawings.

Proof: Suppose Γ and Γ ′ are homotopic. For any cycle γ in G, the homotopy from Γ to Γ ′ restricts to a
homotopy from Γ (γ) to Γ ′(γ). It follows that γ has the same homology class in both drawings.

Conversely, suppose [γ]Γ = [γ]Γ ′ for every cycle γ in G. We construct a homotopy from Γ to Γ ′ as
follows. Let T be any spanning tree of G. We first continuously deform Γ to an intermediate geodesic
drawing Γ∗ by contracting T to a point, translating that point to some fixed location p, and then
deforming the non-tree edges of G to geodesic loops. We can similarly homotope Γ ′ to an intermediate
geodesic drawing Γ ′∗. To complete the proof, it suffices to show that Γ∗ and Γ ′∗ are identical drawings.

Let e be an arbitrary edge of G. If e is in the spanning tree T , then the image of e in both drawings
is the point p. Otherwise, let γe be the unique fundamental cycle in T + e. The homotopy from Γ to Γ∗
preserves the homology class of γe. Thus, Γ∗(e) = Γ∗(γe) is a geodesic cycle through p with homology
class [γe]Γ . Similarly, Γ ′∗(e) is a geodesic cycle through p in the same homology class. Each homology
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class of cycles on T contains a unique closed geodesic through any point. In all cases, we conclude that
Γ∗(e) = Γ ′∗(e). �

2.5 Geodesic Drawings and Embeddings

Recall that a graph drawing is geodesic if it maps edges to geodesics. Any geodesic drawing Γ : G→ TM is
uniquely determined by its coordinate representation, which consists of a coordinate vector 〈p〉Γ ∈ ◊M
for each vertex p, together with the homology vector [e+]Γ ∈ Z2 of each edge e. (Again, we will omit
the subscript Γ when the drawing is clear from context.)

The displacement vector ∆d of any dart d (with respect to a fixed drawing Γ ) is the difference
between the head and tail coordinates of any lift of d in the universal cover eΓ . Displacement vectors
can be equivalently defined in terms of vertex coordinates, homology vectors, and the shape matrix M
as follows:

∆p�q := 〈q〉 − 〈p〉+M [p�q].

Reversing a dart negates its displacement: ∆q�p = −∆p�q. We sometimes write∆xd and∆yd to denote
the first and second coordinates of ∆d . The displacement matrix ∆ = ∆(Γ ) of a geodesic drawing Γ
is the 2× E matrix whose columns are the displacement vectors of the reference darts. Every geodesic
drawing on TM is determined up to translation by its displacement matrix. Finally, we let |e| denote the
length of any edge e, or equivalently, the Euclidean length of the displacement vectors ∆e± .

On the square flat torus, the integer homology class of any directed cycle is also equal to the sum of
the displacement vectors of its darts:

[γ] =
∑

p�q∈γ
[p�q] =

∑

p�q∈γ
∆p�q.

In particular, the total displacement of any contractible cycle is zero, as expected. Extending this identity
to circulations by linearity gives us the following useful lemma:

Lemma 2.2. Let Γ : G→ T� be any geodesic drawing of a graph G on the square flat torus, and let ∆Γ
be the displacement matrix of Γ . For every circulation φ in G, we have ∆Γφ = ΛΓφ = [φ]Γ .

The following lemma is essentially the converse of Lemma 2.2.

Lemma 2.3. Fix an essentially simple, essentially 3-connected embedding Γ : G → T� and a 2 × E
matrix ∆. Suppose for every directed cycle (and therefore every circulation) φ in G, we have ∆φ =
ΛΓφ = [φ]Γ . Then ∆ is the displacement matrix of a geodesic drawing Γ ′ : G→ T� that is homotopic
to Γ .

Proof: We can construct a coordinate representation of a drawing Γ ′ whose displacement matrix is ∆
as follows. Fix an arbitrary spanning tree T of G, rooted at an arbitrary vertex r. Define 〈r〉Γ ′ =

�0
0

�

,
and for any other vertex q with parent p in T , define 〈q〉Γ ′ = 〈p〉Γ ′ +∆p�q and [p�q]Γ ′ = [q�p]Γ ′ =

�0
0

�

.
Finally, for every edge e that is not in T , let γ+e denote the unique fundamental cycle in the subgraph
T + e, directed so that it contains the reference dart e+, and define [e+]Γ ′ = [γ+e ]Γ and [e−]Γ ′ = −[γ+e ]Γ .

By construction, we have ∆p�q = 〈q〉Γ ′ − 〈p〉Γ ′ + [p�q]Γ ′ for every dart p�q, so ∆ is in fact the
displacement matrix of Γ ′. By construction, for every fundamental cycle γ= γ+e , we also have

[γ]Γ ′ :=
∑

p�q∈γ
[p�q]Γ ′ =

∑

p�q∈γ
∆p�q = [γ]Γ

It follows by linearity that [φ]Γ ′ = [φ]Γ for every circulation φ in G. Thus, Lemma 2.1 implies that Γ ′ is
homotopic to Γ . �
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2.6 Equilibrium Stresses and Spring Embeddings

A stress in a geodesic torus drawing Γ : G→ T is a real vectorω ∈ RE indexed by the edges of G. Unlike
homology vectors, circulations, and displacement vectors, stresses can be viewed as symmetric functions
on the darts of G. An equilibrium stress in Γ is a stress ω that satisfies the following identity at every
vertex p:

∑

p�q

ωpq∆p�q =
�

0
0

�

.

Unlike Borcea and Streinu [9–11], we primarily consider positive equilibrium stresses, where ωe > 0
for every edge e. It may be helpful to imagine each stress coefficient ωe as a linear spring constant;
intuitively, each edge pulls its endpoints inward, with a force equal to the length of e times the stress
coefficient ωe.

Recall that the linear map M : R2 × R2 associated with any nonsingular 2 × 2 matrix induces a
homeomorphism M : T� → TM . In particular, this homeomorphism transforms a geodesic embedding
Γ : G→ T� with displacement matrix ∆ into a geodesic embedding M ◦ Γ : G→ TM with displacement
matrix M∆. We refer to the embedding M ◦Γ as the affine image of Γ on TM . Routine definition-chasing
now implies the following lemma.

Lemma 2.4. Let Γ : G → T� be a geodesic drawing on the square flat torus T�. If ω is an equilibrium
stress for Γ , then ω is also an equilibrium stress for its affine image on any other flat torus TM .

Our results rely on the following natural generalization of Tutte’s spring embedding theorem to flat
torus embeddings.

Theorem 2.5 (Colin de Verdière [19]; see also [28,36,38,54]). Let Γ be any essentially simple, es-
sentially 3-connected embedding on any flat torus T, and let ω be any positive stress on the edges of Γ .
Up to translation, there is a unique drawing homotopic to Γ that is in equilibrium with respect to ω,
and that drawing is an embedding with convex faces.

Lemma 2.3 and Theorem 2.5 immediately imply the following sufficient condition for a displacement
matrix to describe a geodesic embedding on the square torus.

Corollary 2.6. Fix an essentially simple, essentially 3-connected embedding Γ : G → T�, a 2× E ma-
trix ∆. Suppose for every directed cycle φ in G, we have ∆φ = ΛΓφ = [φ]Γ . Then ∆ is the
displacement matrix of a geodesic drawing Γ ′ : G → T� that is homotopic to Γ . If in addition Γ ′ has a
positive equilibrium stress, then Γ ′ is an embedding.

Following Steiner and Fischer [76] and Gortler, Gotsman, and Thurston [36], given the coordinate
representation of any geodesic embedding Γ on the square flat torus, with any positive stress vector
ω> 0, we can compute an equilibrium embedding homotopic to Γ by solving the linear system

∑

p�q

ωpq

�〈q〉 − 〈p〉+ [p�q]
�

=
�

0
0

�

for every vertex q (2.1)

for the vertex locations 〈p〉, treating the homology vectors [p�q] as constants. Alternatively, Corollary 2.6
implies that we can compute the displacement vectors of an equilibrium embedding homotopic to Γ
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directly, by solving the linear system
∑

p�q

ωpq∆p�q =
�

0
0

�

for every vertex q

∑

left(d)= f

∆d =
�

0
0

�

for every face f

∑

d∈γ1

∆d = [γ1]

∑

d∈γ2

∆d = [γ2]

where γ1 and γ2 are any two directed cycles with independent non-zero homology classes.

2.7 Duality and Reciprocality

Two embeddings Γ : G → T and Γ ∗ : G∗ → T are geometric duals if there is a bijection between the
edges of G and G∗, such that each edge e of Γ crosses only the corresponding edge e∗ of Γ ∗, each vertex v
of Γ lies inside a unique face v∗ of Γ ∗, and each face f of Γ contains a unique vertex f ∗ of Γ ∗. Each dart d
in G has a corresponding dart d∗ in G∗, defined by setting head(d∗) = left(d)∗ and tail(d∗) = right(d∗);
intuitively, the dual of a dart in Γ is obtained by rotating the dart counterclockwise. More generally, we
call two embeddings Γ and Γ ∗ duals if Γ ∗ is homotopic to a geometric dual of Γ . We emphasize that if Γ
and Γ ∗ are dual embeddings, an edge e in Γ need not intersect the corresponding dual edge e∗ in Γ ∗.

Two dual geodesic embeddings Γ and Γ ∗ on the same flat torus T are reciprocal if every edge e of Γ
is orthogonal to its dual edge e∗ in Γ ∗. Again, we emphasize that e and e∗ may not intersect. We call a
single embedding Γ reciprocal if it is reciprocal to some dual embedding Γ ∗.

It will prove convenient to treat vertex coordinates, displacement vectors, homology vectors, and
circulations in any dual embedding Γ ∗ as row vectors. For any vector v ∈ R2 we define v⊥ := (J v)T ,
where J :=

�

0 −1
1 0

�

is the matrix for a 90◦ counterclockwise rotation. Note that J T = J−1 = −J . Similarly,
for any 2× n matrix A, we define A⊥ := (JA)T = −AT J .

2.8 Coherent Subdivisions

Let Γ : G→ TM be a fixed geodesic embedding, and fix arbitrary real weights πp for every vertex p of G.
Let p�q, p�r, and p�s be three consecutive darts around a common tail p in counterclockwise order,
so that left(p�q) = right(p�r) and left(p�r) = right(p�s). We call the edge pr locally Delaunay if the
following determinant is positive:

�

�

�

�

�

�

�

∆xp�q ∆yp�q
1
2 |∆p�q|2 +πp −πq

∆xp�r ∆yp�r
1
2 |∆p�r |2 +πp −πr

∆xp�s ∆yp�s
1
2 |∆p�s|2 +πp −πs

�

�

�

�

�

�

�

> 0. (2.2)

This inequality follows by elementary row operations and cofactor expansion from the standard deter-
minant test for appropriate lifts of the vertices p, q, r, s to the universal cover:

�

�

�

�

�

�

�

�

�

1 xp yp
1
2(x

2
p + y2

p )−πp

1 xq yq
1
2(x

2
q + y2

q )−πq

1 xr yr
1
2(x

2
r + y2

r )−πr

1 xs ys
1
2(x

2
s + y2

s )−πs

�

�

�

�

�

�

�

�

�

> 0. (2.3)
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(The factor 1/2 simplifies our later calculations, and is consistent with Maxwell’s construction of polyhe-
dral liftings and reciprocal diagrams.) Similarly, we say that an edge is locally flat if the corresponding
determinant is zero. Finally, Γ is the weighted Delaunay complex of its vertices if every edge of Γ is
locally Delaunay and every diagonal of every non-triangular face is locally flat.

Equivalently, Γ is the weighted Delaunay complex of its vertices if and only if Γ is the projection of the
weighted Delaunay complex of the lift π−1

M (V ) of its vertices V to the universal cover. Results of Bobenko
and Springborn [7] imply that any finite set of weighted points on any flat torus has a unique weighted
Delaunay complex. We emphasize that weighted Delaunay complexes are not necessarily either simple
or triangulations; however, every weighted Delaunay complex on any flat torus is both essentially simple
and essentially 3-connected. The dual weighted Voronoi diagram of a set of points P ⊂ TM , also known
as its power diagram [4,6], can be defined similarly by projection from the universal cover.

Finally, a geodesic torus embedding is coherent if it is the weighted Delaunay complex of its vertices,
with respect to some vector of weights.

3 Reciprocal Implies Equilibrium

Fix two dual geodesic embeddings Γ : G → TM and Γ ∗ : G∗ → TM . We write |e| to denote the length of
any edge e in Γ and |e∗| to denote the length of the corresponding dual edge e∗ in Γ ∗.

Lemma 3.1. Suppose Γ and Γ ∗ are reciprocal geodesic embeddings on TM . Then the vector ω defined
by ωe = |e∗|/|e| is an equilibrium stress for Γ , and symmetrically, the vector ω∗ defined by ω∗e∗ =
1/ωe = |e|/|e∗| is an equilibrium stress for Γ ∗.

Proof: Let ωe = |e∗|/|e| and ω∗e∗ = 1/ωe = |e|/|e∗| for each edge e. Let ∆ denote the displacement
matrix of Γ , and let ∆∗ denote the (transposed) displacement matrix of Γ ∗. We immediately have
∆∗e∗ =ωe∆

⊥
e for every edge e of Γ . The darts leaving each vertex p of Γ dualize to a facial cycle around

the corresponding face p∗ of Γ ∗, and thus
 

∑

q : pq∈E

ωpq∆p�q

!⊥
=

∑

q : pq∈E

ωpq∆
⊥
p�q =

∑

q : pq∈E

∆∗(p�q)∗ = (0,0) .

We conclude that ω is an equilibrium stress for Γ , and thus (by swapping the roles of Γ and Γ ∗) that ω∗
is an equilibrium stress for Γ ∗. �

A positive stress vectorω is a reciprocal stress for Γ if there is a reciprocal embedding Γ ∗ on the same
flat torus such that ωe = |e∗|/|e| for each edge e. Thus, a geodesic toroidal embedding is reciprocal if
and only if it has a reciprocal stress, and Lemma 3.1 implies that every reciprocal stress is an equilibrium
stress. The following simple construction shows that the converse of Lemma 3.1 is false.

Theorem 3.2. Not every positive equilibrium stress for a geodesic toroidal embedding Γ is a reciprocal
stress. More generally, not every equilibrium embedding on T is reciprocal/coherent on T.

Proof: Let Γ1 be the geodesic triangulation in the flat square torus T� with a single vertex p and three
edges, whose reference darts have displacement vectors

�1
0

�

,
�1

1

�

, and
�2

1

�

. Every stress ω in Γ is an
equilibrium stress, because the forces applied by each edge cancel out. The weighted Delaunay complex
of a single point is identical for all weights, so it suffices to verify that Γ1 is not an intrinsic Delaunay
triangulation. We easily observe that the longest edge of Γ1 is not Delaunay. See Figure 2.
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Figure 2. A one-vertex triangulation Γ1 on the square flat torus, and a li� of its faces to the universal cover. Every stress in Γ1 is an
equilibrium stress, but Γ1 is not a (weighted) intrinsic Delaunay triangulation.

More generally, for any positive integer k, let Γk denote the k × k covering of Γ1. The vertices of Γk
form a regular k × k square toroidal lattice, and the edges of Γk fall into three parallel families, with
displacement vectors

�1/k
1/k

�

,
�2/k

1/k

�

, and
�1/k

0

�

. Every positive stress vector where all parallel edges have
equal stress coefficients is an equilibrium stress.

For the sake of argument, suppose Γk is coherent. Let p�r be any dart with displacement vector
�2/k

1/k

�

, and let q and s be the vertices before and after r in clockwise order around p. The local
Delaunay determinant test (2.2) implies that the weights of these four vertices satisfy the inequality
πp +πr +1< πq +πs. Every vertex of Γk appears in exactly four inequalities of this form—twice on the
left and twice on the right—so summing all k2 such inequalities and canceling equal terms yields the
obvious contradiction 1< 0. �

3.1 Example

As a running example, let Γ be the (unweighted) intrinsic Delaunay triangulation of the seven points
�0

0

�

,
�1/7

3/7

�

,
�2/7

6/7

�

,
�3/7

2/7

�

,
�4/7

5/7

�

,
�5/7

1/7

�

,
�6/7

4/7

�

on the square flat torus T�, and let Γ ∗ be the corresponding
intrinsic Voronoi diagram, as shown in Figure 3. The triangulation Γ is a highly symmetric geodesic
embedding of the complete graph K7; torus embeddings isomorphic to Γ and Γ ∗ were studied in several
early seminal works on combinatorial topology [39,40,61].

1/7

1/7

1/7

1/7

1/7

1/7

1/7

4/7

4/7

4/7

4/7

4/7

4/7

4/7

9/7

9/7

9/7

9/7

9/7

9/7

9/7

7

7

7

7

7

7

7

7/9

7/9

7/9

7/9

7/9

7/9

7/9

7/4

7/4

7/4

7/4

7/4

7/4

7/4

Figure3. An intrinsic Delaunay triangulation, its dual Voronoi diagram, and their induced equilibrium stresses. Compare with Figures 4
and 6.

The edges of Γ fall into three equivalence classes, with slopes 3, 2/3, −1/2 and lengths
p

10/7,p
5/7, p14/7, respectively. The triangle

�0
0

�

,
�1/7

3/7

�

,
�3/7

2/7

�

, shaded in Figure 3, has circumcenter
�19/98

17/98

�

.
Measuring slopes and distances to the nearby edge midpoints, we find that corresponding dual edges
in Γ ∗ have slopes −1/3, −3/2, and 2 and lengths 4

p
10/49, p5/49, and 9

p
14/49, respectively. These

dual slopes confirm that Γ and Γ ∗ are reciprocal (as are any Delaunay triangulation and its dual Voronoi
diagram). The dual edge lengths imply that assigning stress coefficients 4/7, 1/7, and 9/7 to the edges
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of Γ yields an equilibrium stress for Γ , and symmetrically, the stress coefficients 7/4, 7, and 7/9 yield
an equilibrium stress for Γ ∗.

Of course, this is not the only equilibrium stress for Γ ; indeed, symmetry implies that Γ is in
equilibrium with respect to the uniform stress ω ≡ 1. However, there is no reciprocal embedding Γ ∗
such that every edge in Γ has the same length as the corresponding dual edge in Γ ∗.

The doubly-periodic universal cover eΓ is also in equilibrium with respect to the uniform stressω≡ 1.
Thus, the classical Maxwell–Cremona correspondence implies a dual embedding (eΓ )∗ in which every
dual edge is orthogonal to and has the same length as its corresponding primal edge in eΓ . (Borcea
and Streinu [11, Proposition 2] discuss how to solve the infinite linear system giving the heights of
the corresponding polyhedral lifting of eΓ .) Symmetry implies that (eΓ )∗ is doubly-periodic. Crucially,
however, eΓ and (eΓ )∗ have different period lattices. Specifically, the period lattice of (eΓ )∗ is generated by
the vectors

� 2
−1

�

and
�−1

2

�

; see Figure 4.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 4. A “reciprocal” embedding (at half scale) induced by the uniform equilibrium stressω≡ 1. Compare with Figures 3 and 6.

Understanding which equilibrium stresses correspond to reciprocal embeddings is the topic of Sec-
tion 5. In particular, in that section we describe a simple necessary and sufficient condition for an
equilibrium stress to be reciprocal, which the unit stress for Γ fails.

4 Coherent = Reciprocal

Unlike in the previous and following sections, the equivalence between coherent embeddings and
reciprocal embeddings generalizes fully from the plane to every flat torus. However, there is an important
difference from the planar setting. In both the plane and the torus, every translation of a reciprocal
diagram is another reciprocal diagram. For a coherent planar embedding Γ , every reciprocal diagram
is a weighted Voronoi diagram of the vertices of Γ , but exactly one reciprocal diagram of a coherent
toroidal embedding Γ is a weighted Voronoi diagram of the vertices of Γ . Said differently, every coherent
planar embedding is a weighted Delaunay complex with respect to a three-dimensional space of vertex
weights, which correspond to translations of any convex polyhedral lifting, but every coherent toroidal
embedding is a weighted Delaunay complex with respect to only a one-dimensional space of vertex
weights.
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4.1 Notation

Throughout this section, we fix a non-singular matrix M = (u, v) where u, v ∈ R2 are column vectors
and det M > 0; we also fix a toroidal embedding Γ : G ,→ TM . We primarily work with the universal
cover eΓ of Γ ; if we are given a reciprocal embedding Γ ∗, we also work with its universal cover eΓ ∗ (which
is reciprocal to eΓ ). Vertices of eΓ are denoted by the letters p and q and treated as column vectors in R2.
A generic face in eΓ is denoted by the letter f ; the corresponding dual vertex in eΓ ∗ is denoted f ∗ and
interpreted as a row vector. To avoid nested subscripts when darts are indexed, for displacement vectors
we write ∆i =∆di

and ωi =ωdi
, and therefore by Lemma 3.1, the dual displacement vectors are given

by ∆∗i = ωi∆
⊥
i . For any integers a and b, the translation p + au+ bv of any vertex p of eΓ is another

vertex of eΓ , and the translation f + au + bv of any face f of eΓ is another face of eΓ . It follows that
( f + au+ bv)∗ = f ∗ + auT + bvT .

4.2 Results

The following lemma follows directly from the definitions of weighted Delaunay graphs and their dual
weighted Voronoi diagrams; see, for example, Aurenhammer [4,6].

Lemma 4.1. Let Γ be a weighted Delaunay complex on some flat torus TM , and let Γ ∗ be the corre-
sponding weighted Voronoi diagram on TM . Every edge e of Γ is orthogonal to its dual e∗. In short,
every coherent toroidal embedding is reciprocal.

The converse of this lemma is false; unlike in the plane, a reciprocal diagram Γ ∗ for a fixed weighted
Delaunay complex Γ is not necessarily a weighted Voronoi diagram of the vertices of Γ . Rather, as we
describe below, a unique translation of Γ ∗ is such a weighted Voronoi diagram.

Fix a toroidal geodesic embedding Γ : G → TM . Maxwell’s theorem implies a (non-unique) convex
polyhedral lifting z : R2 → R of the universal cover eΓ of Γ , where the gradient vector ∇z| f within any
face f is equal to the coordinate vector of the dual vertex f ∗ in a planar reciprocal embedding eΓ ∗. To
make this lifting unique, we fix a vertex o of eΓ to lie at the origin

�0
0

�

, and we require z(o) = 0.
Define the weight of each vertex p ∈ eΓ as

πp =
1
2 |p|2 − z(p).

By definition, πo = 0. The determinant conditions (2.2) and (2.3) for an edge e to be locally Delaunay
with respect to these vertex weights πp are both equivalent to the restriction of the lifting z to the faces
incident to e being convex. Because z is a convex polyhedral lifting, these weights establish that eΓ is the
intrinsic weighted Delaunay graph of its vertex set.

Translating the universal cover eΓ ∗ of the reciprocal graph Γ ∗ adds a global linear term to the lifting
function z, and therefore to the Delaunay weights πp. The main result of this section is that there is
a unique translation such that the corresponding Delaunay weights πp are periodic with respect to the
lattice generated by the columns of M .

To compute z(q) for any point q ∈ R2, we choose an arbitrary face f of eΓ that contains q and identify
the equation z| f (q) = ηq+ c of the plane through the lift of f , where η ∈ R2 is a row vector and c ∈ R.
Borcea and Streinu [11] give a calculation for η and c, which for our setting can be written as follows:

Lemma 4.2 (Borcea and Streinu [11, Eq. 7]). Let Γ and Γ ∗ be reciprocal toroidal embeddings, and
let eΓ and eΓ ∗ be respective universal covers of Γ and Γ ∗, with positive equilibrium stress ω on eΓ and
lifting of eΓ as induced by Maxwell’s theorem. Fix the coordinates of a vertex o of eΓ to

�0
0

�

, and fix
z(o) = 0. Then for any face f of eΓ , the function z| f can be computed as follows:
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• Pick an arbitrary root face f0 incident to o.

• Pick an arbitrary path from f ∗0 to f ∗ in eΓ ∗, and let d∗1 , . . . , d∗
`
be the dual darts along this path. By

definition, we have f ∗ = f ∗0 +
∑`

i=1∆
∗
i . Set C( f ) =

∑`
i=1ωi det (pi , qi), where di = pi�qi .

• Then z| f (q) = f ∗q+C( f ) for all q ∈ f . In particular, C( f ) is the height of the intersection of this
plane with the z-axis.

Reciprocality of eΓ and eΓ ∗ implies that the actual choice of root face f ∗0 and the path to f ∗ do not matter.

Fix two reciprocal embeddings Γ and Γ ∗ on TM where M = (u, v). We use this explicit computation
in to establish the existence of a translation of Γ ∗ such that πo = πu = πv = 0. We then show that after
this translation, every lift of the same vertex of Γ has the same Delaunay weight.

Lemma 4.3. There is a unique translation ofeΓ ∗ such thatπo = πu = πv = 0. Specifically, this translation
places the dual vertex of the root face f0 at the point

f ∗0 =
�−1

2

�|u|2, |v|2�− (C( f0 + u), C( f0 + v))
�

M−1.

Proof: Lemma 4.2 implies that

z(u) = ( f0 + u)∗u+ C( f0 + u) = f ∗0 u+ |u|2 + C( f0 + u),

and by definition, πu = 0 if and only if z(u) = 1
2 |u|2. Thus, πu = 0 if and only if f ∗0 u= −1

2 |u|2−C( f0+u).
A symmetric argument implies πv = 0 if and only if f ∗0 v = −1

2 |v|2 − C( f0 + v). �

Lemma 4.4. If πo = πu = πv = 0, then πp = πp+u = πp+v for each vertex p of eΓ . In other words, all
lifts of any vertex of Γ have equal weight.

Proof: Let f be any face incident to p, and let P = d∗1 , . . . , d∗
`
be an arbitrary path from f ∗0 to f ∗

in eΓ ∗. We compute C( f + u) by traversing an arbitrary path from f ∗0 to ( f0 + u)∗ = f ∗0 + uT followed
by the translated path P + u from f ∗0 + uT to f ∗ + uT . Thus by Lemma 4.2, C( f + u) = C( f0 + u) +
∑`

i=1ωi det ((pi + u), (qi + u)), and f ∗ = f ∗0 +
∑`

i=1∆
∗
i . We thus have

C( f + u) = C( f0 + u) +
∑̀

i=1

ωi det ((pi + u), (qi + u))

= C( f0 + u) +
∑̀

i=1

ωi det (pi , qi)−
∑̀

i=1

∆∗i u

= C( f0 + u) + C( f )−
∑̀

i=1

∆∗i u

= −1
2 |u|2 − f ∗0 u+ C( f )−

∑̀

i=1

∆∗i u

= −1
2 |u|2 − f ∗u+ C( f ).

It follows that

πp+u =
1
2 |p+ u|2 − z(p+ u)
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= 1
2 |p+ u|2 − �C( f + u) + ( f ∗ + uT )(p+ u)

�

= 1
2 |p+ u|2 − �−1

2 |u|2 − f ∗u+ C( f ) + f ∗p+ f ∗u+ uT p+ |u|2�

= 1
2 |p+ u|2 − z(p)− 1

2 |u|2 − uT p

= 1
2 |p|2 + 1

2 |u|2 + uT p− z(p)− 1
2 |u|2 − uT p

= 1
2 |p|2 − z(p)

= πp.

A similar computation implies πp+v = πp. �

Projecting from the universal cover back to the torus, we obtain weights for the vertices of Γ , with
respect to which Γ is an intrinsic weighted Delaunay complex, and a unique translation of Γ ∗ that is the
corresponding intrinsic weighted Voronoi diagram. Moreover, these Delaunay vertex weights become
unique if we fix the weight of an arbitrary vertex to be 0.

Theorem 4.5. Let Γ and Γ ∗ be reciprocal geodesic embeddings on some flat torus TM . Γ is a weighted
Delaunay complex, and a unique translation of Γ ∗ is the corresponding weighted Voronoi diagram. In
short, every reciprocal toroidal embedding is coherent.

5 Equilibrium Implies Reciprocal, Sort Of

Now fix an essentially simple, essentially 3-connected geodesic embedding Γ on the square flat torus T�,
along with a positive equilibrium stress ω for Γ . In this section, we describe simple necessary and
sufficient conditions for ω to be a reciprocal stress for Γ . More generally, we show that when ω is a
positive equilibrium stress, there is an essentially unique flat torus TM such that a unique scalar multiple
of ω is a reciprocal stress for the image of Γ on TM .

5.1 Cocirculations and Cohomology

Fix arbitrary dual geodesic embeddings Γ : G → T and Γ ∗ : G∗ → T. A cocirculation in Γ is a row
vector θ ∈ RE whose transpose describes a circulation in G∗. The cohomology class [θ]∗ = [θ]∗Γ of
any cocirculation (with respect to Γ ) is the transpose of the homology class of the circulation θ T in Γ ∗.
Recall that ΛΓ is the 2× E matrix whose columns are homology vectors of edges in Γ . Let λ1 and λ2
denote the first and second rows of ΛΓ .

Lemma 5.1. Fix a geodesic embedding Γ : G → T. The row vectors λ1 and λ2 describe cocirculations
in Γ with cohomology classes [λ1]∗ = (0,1) and [λ2]∗ = (−1,0).

Proof: Without loss of generality, assume that T = T� and no vertices of Γ lie on the boundary of the
fundamental square �. Let γ1 and γ2 denote directed cycles in T� (not in Γ ) induced by the boundary
edges of �, directed respectively rightward and upward.

Let d0, d1, . . . , dk−1 be the sequence of darts in Γ whose images in Γ cross γ2 from left to right, indexed
by the upward order of their intersection points. Each dart d that appears in this sequence appears
exactly λ1(d) times, once for each crossing. For each index i, we have left(di) = right(di+1 mod k); thus,
the corresponding sequence of dual darts d∗0 , d∗1 , . . . , d∗k−1 describes a closed walk in Γ ∗. This closed walk
can be continuously deformed to γ2, so it has the same homology class as γ2; see Figure 5. We conclude
that [λ1]∗ = (0,1).

Symmetrically, the darts crossing γ1 upward define a closed walk in Γ ∗ in the same homology class
as the reversal of γ1, and therefore [λ2]∗ = (−1, 0). �
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Γ Γ* Γ Γ*

Figure 5. Proof of Lemma 5.1: The darts in Γ crossing either boundary edge of the fundamental square dualize to a closed walk in Γ ∗

parallel to that boundary edge.

5.2 The Square Flat Torus

Before considering arbitrary flat tori, we first establish necessary and sufficient conditions for reciprocal
stresses for embeddings on the square flat torus. Fix an essentially simple, essentially 3-connected
embedding Γ : G→ T� and let ω be a positive equilibrium stress on Γ . Let ∆ be the 2× E displacement
matrix of Γ , and let Ω be the E× E matrix whose diagonal entries are Ωe,e =ωe and whose off-diagonal
entries are all 0. Our results will be in terms of the covariance matrix ∆Ω∆T . Recall that A⊥ = (JA)T

and that |e| denotes the length of an edge e in Γ .

Lemma 5.2. If ω is a reciprocal stress for a geodesic embedding Γ on T�, then ∆Ω∆T =
�

1 0
0 1

�

.

Proof: Suppose ω is a reciprocal stress for Γ . Then by definition, there is a geodesic embedding
Γ ∗ : G∗→ T� such that e ⊥ e∗ and |e∗| =ωe|e| for every edge e of Γ . Let ∆∗ = (∆Ω)⊥ denote the E × 2
matrix whose rows are the displacement row vectors of Γ ∗.

Recall from Lemma 5.1 that the first and second rows of ΛΓ describe cocirculations of Γ with
cohomology classes (0,1) and (−1, 0), respectively. Applying Lemma 2.2 to Γ ∗ implies θ∆∗ = [θ]∗ for
any cocirculation θ in Γ . It follows immediately that ΛΓ∆∗ =

�

0 1−1 0

�

= −J .
Because the rows of ∆∗ are the displacement vectors of Γ ∗, for every vertex p of Γ we have

∑

q : pq∈E

∆∗(p�q)∗ =
∑

d : tail(d)=p

∆∗d∗ =
∑

d : left(d∗)=p∗
∆∗d∗ = (0, 0) . (5.1)

It follows that the columns of ∆∗ describe circulations in Γ . Lemma 2.2 now implies that ∆∆∗ = −J . We
conclude that ∆Ω∆T =∆∆∗J =

�

1 0
0 1

�

. �

Lemma 5.3. Fix an essentially simple, essentially 3-connected geodesic embedding Γ : G→ T� and an
E×2 matrix∆∗. If ΛΓ∆∗ = −J , then∆∗ is the displacement matrix of a geodesic drawing Γ ∗ on T� that
is homotopic to a geometric dual of Γ . Moreover, if that drawing admits a positive equilibrium stress,
it is actually an embedding.

Proof: Let λ1 and λ2 denote the rows of ΛΓ . Rewriting the identity ΛΓ∆∗ = −J in terms of these row
vectors gives us

∑

e∆
∗
eλ1,e = (0,1) = [λ1]∗ and

∑

e∆
∗
eλ2,e = (−1,0) = [λ2]∗. Extending by linearity, we

have
∑

e∆
∗
eθe = [θ]∗ for every cocirculation θ in Γ ∗. The result now follows from Corollary 2.6. �

Lemma 5.4. Fix an essentially simple, essentially 3-connected geodesic embedding Γ : G → T� with a
positive equilibrium stress ω. If ∆Ω∆T =

�

1 0
0 1

�

, then ω is a reciprocal stress for Γ .

Proof: Set ∆∗ = (∆Ω)⊥. Because ω is an equilibrium stress for Γ , for every vertex p of Γ we have
∑

q : pq∈E

∆∗(p�q)∗ =
∑

q : pq∈E

ωpq∆
⊥
p�q = (0,0) . (5.2)
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It follows that the columns of ∆∗ describe circulations in Γ , and therefore Lemma 2.2 implies ΛΓ∆∗ =
∆∆∗ =∆(∆Ω)⊥ =∆Ω∆T J T = −J .

Lemma 5.3 now implies that∆∗ is the displacement matrix of a drawing Γ ∗ homotopic to a dual to Γ .
Moreover, the stress vector ω∗ defined by ω∗e∗ = 1/ωe is an equilibrium stress for Γ ∗: under this stress
vector, the darts leaving any dual vertex f ∗ are dual to the clockwise boundary cycle of face f in Γ . Thus
since ω∗ is positive, Γ ∗ is in fact a dual embedding. By construction, each edge of Γ ∗ is orthogonal to
the corresponding edge of Γ . �

5.3 Force Diagrams

The results of the previous section have an alternative interpretation that may be more intuitive. Let Γ be
any geodesic embedding on the unit square flat torus T�. Recall from Section 3.1 that any equilibrium
stress ω on Γ induces an equilibrium stress on its universal cover eΓ , which in turn induces a reciprocal
diagram (eΓ )∗, which is unique up to translation, by the classical Maxwell–Cremona correspondence.
This infinite plane graph (eΓ )∗ is doubly-periodic, but in general with a different period lattice from the
universal cover eΓ .

Said differently, we can always construct another geodesic torus embedding Γ- that is combinatorially
dual to Γ , such that for every edge e of Γ , the corresponding edge e∗ of Γ- is “orthogonal” to e (insofar as
their displacement vectors, considered as vectors in R2, are orthogonal) and has lengthωe · |e|; however,
this embedding Γ- does not necessarily lie on the square flat torus. Specifically, Γ- is the quotient of
some reciprocal diagram (eΓ )∗ of the universal cover with respect to its period lattice. We call Γ- a force
diagram of Γ with respect to ω. Force diagrams are unique up to translation. A force diagram Γ- lies on
the same flat torus T� as Γ if and only if ω is a reciprocal stress for Γ .

Lemma 5.5. Fix an essentially simple, essentially 3-connected geodesic embedding Γ : G → T�, and
let ω be a positive equilibrium stress for Γ . Every force diagram of Γ with respect to ω lies on the flat
torus TM , where M = J∆Ω∆T J T .

Proof: As usual, let∆ be the displacement matrix of Γ . Let∆∗ denote the displacement matrix of some
force diagram Γ- ; by definition, we have∆∗ = (∆Ω)⊥ = Ω∆T J T . Equation (5.2) implies that the columns
of ∆∗ are circulations in Γ . Thus, Lemma 2.2 implies that Λ∆∗ =∆∆∗ =∆Ω∆T J T .

Set M = J∆∆∗ = J∆Ω∆T J T . We immediately have Λ∆∗ = J−1M = −J M = −J M T and therefore
Λ∆∗(M T )−1 = −J . Lemma 5.3 implies that ∆∗(M T )−1 is the displacement matrix of a geodesic em-
bedding Γ ∗ : G∗→ T� dual to Γ . It follows that ∆∗ is the displacement matrix of the affine image of Γ ∗
on TM . We conclude that the force diagram Γ- is a translation of M ◦ Γ ∗. �

5.4 Arbitrary Flat Tori

Now we generalize our earlier analysis to embeddings on arbitrary flat tori.
Fix a reference embedding Γ on the square flat torus T�, and let ω be a positive equilibrium stress

on Γ . Let ∆ be the displacement matrix of Γ , and Ω be the matrix whose diagonal entries are Ωe,e =ωe
and whose off-diagonal entries are all 0.

Now fix a non-singular 2× 2 matrix M . Recall from Lemma 2.4 that ω is also a positive equilibrium
stress for the induced embedding M ◦ Γ : G→ TM . In this section, we establish necessary and sufficient
conditions for ω to be a reciprocal stress on M ◦ Γ . We state these conditions in terms of the (entries of
the) covariance matrix ∆Ω∆T =

�α γ
γ β

�

, where

α=
∑

e

ωe∆x2
e , β =

∑

e

ωe∆y2
e , γ=

∑

e

ωe∆xe∆ye. (5.3)
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We emphasize that these covariance parameters are defined with respect to the reference embedding Γ .

Lemma 5.6. If ω is a reciprocal stress for the geodesic embedding M ◦ Γ : G→ TM , then αβ − γ2 = 1;
in particular, if M =

�

a b
c d

�

, then

α=
b2 + d2

ad − bc
, β =

a2 + c2

ad − bc
, γ=

−(ab+ cd)
ad − bc

.

For example, if M = (u, v)where u, v ∈ R2 are column vectors and det M = 1, then∆Ω∆T =
� v·v −u·v
−u·v u·u

�

.

Proof: Suppose ω is a reciprocal stress for M ◦ Γ . Then by definition there is a geodesic embedding
M ◦Γ ∗ : G∗→ TM dual to M ◦Γ such that for every edge e, the geodesic segments M(Γ (e)) and M(Γ ∗(e∗))
are orthogonal, and the ratio of their lengths is ωe. (The reference embeddings Γ and Γ ∗ on T� are also
duals, but they are not reciprocal unless the matrix M is orthogonal.)

Let ∆ denote the 2× E displacement matrix of the reference embedding Γ , whose columns are the
displacement vectors of Γ . The columns of M∆ are the displacement vectors for M ◦ Γ . Thus, the
displacement row vectors of M ◦ Γ ∗ are given by the rows of the E × 2 matrix (M∆Ω)⊥. Finally, let
∆∗ = (M∆Ω)⊥(M T )−1 denote the displacement row vectors for the dual reference embedding Γ ∗. We
can rewrite this definition as

∆∗ = (M∆Ω)⊥(M T )−1

= (M∆Ω)⊥(M−1)T

= (J M∆Ω)T (M−1)T

= Ω∆T M T J T (M−1)T ,

(5.4)

which, since J T = J−1, implies that Ω∆T =∆∗(M T J T (M−1)T )−1 =∆∗M T J(M−1)T .
Because the rows of ∆∗ are the displacement vectors for Γ ∗, equation (5.1) implies that the columns

of ∆∗ describe circulations in Γ , and therefore ∆∆∗ = Λ∆∗ =
�

0 1−1 0

�

= −J by Lemmas 2.2 and 5.1, as
explained in the second paragraph of the proof of Lemma 5.2. We conclude that

∆Ω∆T =∆∆∗M T J(M−1)T = J T M T J(M−1)T

=
1

ad − bc

�

0 1
−1 0

��

a c
b d

��

0 −1
1 0

��

d −c
−b a

�

=
1

ad − bc

�

b d
−a −c

� �

b −a
d −c

�

=
1

ad − bc

�

b2 + d2 −ab− cd
−ab− cd a2 + c2

�

.

Routine calculation now implies that αβ − γ2 = det∆Ω∆T = 1. �

Corollary 5.7. Ifω is a reciprocal stress for a geodesic embedding M ◦Γ : G→ TM , then M = σR
�

β −γ
0 1

�

for some 2× 2 rotation matrix R and some real number σ > 0.

Proof: Reciprocality is preserved by rotating and scaling the fundamental parallelogram ◊M , so it
suffices to consider the special case M =

�

a b
0 1

�

. In this special case, Lemma 5.6 immediately implies
β = a and γ= −b. �

Lemma 5.8. Fix an essentially simple, essentially 3-connected geodesic embedding Γ : G→ T� with a
positive equilibrium stress ω. Let α, β , and γ be defined as in Equation (5.3). If αβ − γ2 = 1, then ω
is a reciprocal stress for the embedding M ◦ Γ : G→ TM induced by the matrix M = σR

�

β −γ
0 1

�

, for any
2× 2 rotation matrix R and any real number σ > 0.
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Proof: Suppose αβ − γ2 = 1. Fix an arbitrary 2 × 2 rotation matrix R and an arbitrary real number
σ > 0, and let M = σR

�

β −γ
0 1

�

. Let∆ denote the 2× E reference displacement matrix for Γ on the square
flat torus T�, and define the E × 2 matrix ∆∗ = (M∆Ω)⊥(M T )−1.

Derivation (5.4) in the proof of Lemma 5.6 implies ∆∗ = Ω∆T (M−1J M)T . We easily observe that
(σR)−1J(σR) = J , and therefore

M−1J M =

�

β −γ
0 1

�−1�
0 −1
1 0

��

β −γ
0 1

�

=
1
β

�

1 γ

0 β

��

0 −1
1 0

��

β −γ
0 1

�

=
1
β

�

βγ −1− γ2

β2 −βγ
�

=

�

γ −α
β −γ

�

.

It follows that

∆∆∗ = ∆Ω∆T (M−1J M)T =

�

α γ

γ β

��

γ β

−α −γ
�

=

�

0 αβ − γ2

γ2 −αβ 0

�

= − J .

Because ω is an equilibrium stress on Γ , for every vertex p of Γ we have
∑

q : pq∈E

∆∗(p�q)∗ =
∑

q : pq∈E

ωpq∆
⊥
p�q(M

−1J MJ T )T = (0,0) (M−1J MJ T )T = (0,0) . (5.5)

Once again, the columns of ∆∗ describe circulations in Γ , so Lemma 2.2 implies Λ∆∗ = ∆∆∗ = −J .
Lemma 5.3 now implies that ∆∗ is the displacement matrix of a embedding Γ ∗ : G∗ → T� that is dual
to Γ . It follows that (M∆Ω)⊥ =∆∗M T is the displacement matrix of M ◦ Γ ∗. By construction, each edge
of M ◦ Γ ∗ is orthogonal to its corresponding edge of M ◦ Γ . We conclude that ω is indeed a reciprocal
stress for M ◦ Γ . �

Our main theorem now follows immediately.

Theorem 5.9. Fix an essentially simple, essentially 3-connected geodesic embedding Γ : G → T� with
positive equilibrium stress ω. Let α, β , and γ be defined as in Equation (5.3). If αβ − γ2 = 1, then ω
is a reciprocal stress for the embedding M ◦ Γ : G → TM if and only if M = σR

�

β −γ
0 1

�

for any rotation
matrix R and any real number σ > 0. On the other hand, if αβ − γ2 6= 1, then ω is not a reciprocal
stress for the affine image of Γ on any flat torus.

When ω is positive, αβ − γ2 = 1
2

∑

e,e′ωeωe′
�

�

∆xe ∆ye
∆xe′ ∆ye′

�

�

2
> 0, so in fact the requirement αβ − γ2 =

1 is just a scaling condition: Given any positive equilibrium stress ω, the scaled equilibrium stress
ω/
p

αβ − γ2 satisfies the requirement. In short, every positive equilibrium embedding on any flat torus
has a coherent affine image on some essentially unique flat torus.

The results of this section can be reinterpreted in terms of force diagrams as follows:

Lemma 5.10. Fix an essentially simple, essentially 3-connected geodesic embedding Γ : G → T�, and
let ω be an equilibrium stress for Γ . For any non-singular matrix M , every force diagram of M ◦ Γ with
respect to ω lies on the flat torus TN , where N = J M∆Ω∆T J T .
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Proof: We argue exactly as in the proof of Lemma 5.5. Let Γ- be any force diagram of M ◦ Γ with respect
toω, and let∆ be the displacement matrix of the reference embedding Γ . Then the displacement matrix
of Γ- is ∆∗ = (M∆Ω)⊥ = Ω∆T M T J T . Equation (5.5) and Lemma 2.2 imply that Λ∆∗ =∆Ω∆T M T J T .

Now let N = J M∆Ω∆T J T . We immediately have J−1N T = Λ∆∗ and therefore Λ∆∗(N T )−1 = J−1 =
−J . Lemma 5.3 implies that∆∗(N T )−1 is the displacement matrix of a geodesic embedding Γ ∗ : G∗→ T�
dual to Γ . It follows that ∆∗ is the displacement matrix of the affine image of Γ ∗ on TN ; in other words,
our force diagram Γ- is a translation of N ◦ Γ ∗. �

5.5 Example

Let us revisit the example embedding Γ from Section 3.1: the symmetric embedding of K7 on the
square flat torus T�. Symmetry implies that Γ is in equilibrium with respect to the uniform stress
ω ≡ 1. Straightforward calculation gives us the covariance parameters α = β = 2 and γ = 1 for this
stress vector. Thus, Lemma 5.2 immediately implies that ω is not a reciprocal stress for Γ ; rather, by
Lemma 5.5, the force diagram of Γ with respect toω lies on the torus TM , where M =

�

β −γ
−γ α

�

=
�

2 −1−1 2

�

.
Moreover, because αβ − γ2 = 3 6= 1, Lemma 5.6 implies that ω is not a reciprocal stress for the affine
image of Γ on any flat torus. In short, there are no reciprocal embeddings of Γ and Γ ∗ on any flat torus
such that corresponding primal and dual edges have equal length.

Now consider the scaled uniform stressω≡ 1/
p

3, which has covariance parameters α= β = 2/
p

3
and γ = 1/

p
3. This new stress ω is still not a reciprocal stress for Γ ; however, it does satisfy the

scaling constraint αβ − γ2 = 1. Lemma 5.6 (or Lemma 5.10) implies that ω is a reciprocal stress for
the affine image of Γ on TM , where M = 1p

3

� 2 −1
0
p

3

�

. The fundamental parallelogram ◊M is the union
of two equilateral triangles with height 1. Not surprisingly, this transformed embedding is a Delaunay
triangulation with equilateral triangle faces, and the faces of the reciprocal Voronoi diagram Γ ∗ (which
is also the force diagram) are regular hexagons. Finally, the vector ω∗ ≡ p3 is a reciprocal stress, and
therefore an equilibrium stress, for Γ ∗. See Figure 6.

! ⌘ �p
�

<latexit sha1_base64="TqoxcDZmPOZx43rbqUHpvUjAt9w="></latexit>

!⇤ ⌘ p�

<latexit sha1_base64="XO1E9unpe1TDJlmMItv2fwnOo8Y="></latexit>

Figure 6. A seven-vertex Delaunay triangulation and its dual Voronoi diagram, induced by the uniform stress 1/
p

3; compare with
Figures 3 and 4.

6 A Toroidal Steinitz Theorem

Finally, Theorem 2.5 and Theorem 5.9 immediately imply a natural generalization of Steinitz’s theorem
to graphs on the flat torus.

Theorem 6.1. Let Γ : G → T� be any essentially simple, essentially 3-connected embedding on the
square flat torus, and let ω be any positive stress on the edges of Γ . Then Γ is homotopic to a geodesic
embedding Γ ′ : G→ T� whose affine image on some flat torus TM is coherent, such thatω is a reciprocal
stress for M ◦ Γ ′.
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As we mentioned in the introduction, Mohar’s generalization [63] of the Koebe-Andreev circle
packing theorem already implies that each essentially simple, essentially 3-connected torus embedding Γ
is homotopic to one coherent embedding on one flat torus. In contrast, our results characterize all
coherent embeddings on all flat tori. Every positive stress vectorω ∈ RE for Γ corresponds to a coherent
embedding homotopic to M ◦ Γ , which is unique up to translation, on a flat torus TM , which is unique
up to similarity of the fundamental parallelogram ◊M . On the other hand, Lemmas 3.1 and 4.1 imply
that every coherent embedding on every flat torus corresponds to a unique positive equilibrium stress.

Acknowledgements. We thank the anonymous reviewers of both the conference [33] and journal
versions of this paper for their helpful comments and suggestions.
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259, 1970.

[3] Franz Aurenhammer. A criterion for the affine equivalence of cell complexes in Rd and convex
polyhedra in Rd+1. Discrete Comput. Geom. 2(1):49–64, 1987.

[4] Franz Aurenhammer. Power diagrams: Properties, algorithms and applications. SIAM J. Comput.
16(1):78–96, 1987.

[5] Franz Aurenhammer. Recognising polytopical cell complexes and constructing projection poly-
hedra. J. Symb. Comput. 3(3):249–255, 1987.

[6] Franz Aurenhammer and Hiroshi Imai. Geometric relations among Voronoi diagrams. Geom.
Dedicata 27(1):65–75, 1988.

[7] Alexander I. Bobenko and Boris A. Springborn. A discrete Laplace-Beltrami operator for simplicial
surfaces. Discrete Comput. Geom. 38(4):740–756, 2007.

[8] Mikhail Bogdanov, Monique Teillaud, and Gert Vegter. Delaunay triangulations on orientable
surfaces of low genus. Proc. 32nd Int. Symp. Comput. Geom., 20:1–20:17, 2016. Leibniz Int. Proc.
Informatics 51.

[9] Ciprian Borcea and Ileana Streinu. Periodic frameworks and flexibility. Proc. Royal Soc. A
466(2121):2633–2649, 2010.

[10] Ciprian Borcea and Ileana Streinu. Minimally rigid periodic graphs. Bull. London Math. Soc.
43(6):1093–1103, 2011.

[11] Ciprian Borcea and Ileana Streinu. Liftings and stresses for planar periodic frameworks. Discrete
Comput. Geom. 53(4):747–782, 2015.

[12] Graham R. Brightwell and Edward R. Scheinerman. Representations of planar graphs. SIAM J.
Discrete Math. 6(2):214–229, 1993.

[13] Kevin Q. Brown. Voronoi diagrams from convex hulls. Inform. Process. Lett. 9(5):223–228, 1979.

https://doi.org/10.1070/SM1970v010n03ABEH001677
https://doi.org/10.1070/SM1970v012n02ABEH000920
https://doi.org/10.1007/BF02187870
https://doi.org/10.1007/BF02187870
https://doi.org/10.1137/0216006
https://doi.org/10.1016/S0747-7171(87)80003-2
https://doi.org/10.1016/S0747-7171(87)80003-2
https://doi.org/10.1007/BF00181613
https://doi.org/10.1007/s00454-007-9006-1
https://doi.org/10.1007/s00454-007-9006-1
https://doi.org/10.4230/LIPIcs.SoCG.2016.20
https://doi.org/10.4230/LIPIcs.SoCG.2016.20
https://doi.org/10.1098/rspa.2009.0676
https://doi.org/10.1112/blms/bdr044
https://doi.org/10.1007/s00454-015-9689-7
https://doi.org/10.1137/0406017
https://doi.org/10.1016/0020-0190(79)90074-7


Jeff Erickson and Patrick Lin 21

[14] Manuel Caroli and Monique Teillaud. Delaunay triangulations of closed Euclidean d-orbifolds.
Discrete Comput. Geom. 55(4):827–853, 2016.

[15] Marek Chrobak, Michael T. Goodrich, and Roberto Tamassia. Convex drawings of graphs in two
and three dimensions (preliminary version). Proc. 12th Ann. Symp. Comput. Geom., 319–328, 1996.

[16] Éric Colin de Verdière and Arnaud de Mesmay. Testing graph isotopy on surfaces. Discrete Comput.
Geom. 51(1):171–206, 2014.

[17] Yves Colin de Verdière. Empilements de cercles: Convergence d’une méthode de point fixe. Forum
Math. 1(1):395–402, 1989.

[18] Yves Colin de Verdière. Sur un nouvel invariant des graphes et un critère de planarité. J. Comb.
Theory Ser. B 50(1):11–21, 1990. In French, English translation in [21].

[19] Yves Colin de Verdière. Comment rendre géodésique une triangulation d’une surface?
L’Enseignment Mathématique 37:201–212, 1991.

[20] Yves Colin de Verdière. Un principe variationnel pour les empilements de cercles. Invent. Math.
104(1):655–669, 1991.

[21] Yves Colin de Verdière. On a new graph invariant and a criterion for planarity. Graph Structure
Theory, 137–147, 1993. ContemporaryMathematics 147, Amer. Math. Soc. English translation of [18]
by Neil Calkin.

[22] Robert Connelly, Erik D. Demaine, and Günter Rote. Infinitesimally locked self-touching linkages
with applications to locked trees. Physical Knots: Knotting, Linking, and Folding of Geometric Objects
in R3, 287–311, 2002. Amer. Math. Soc.

[23] Keenan Crane. Discrete Differential Geometry: An Applied Introduction. 2019. 〈http://www.cs.cmu.
edu/~kmcrane/Projects/DDG/paper.pdf〉.

[24] Henry Crapo and Walter Whiteley. Plane self stresses and projected polyhedra I: The basic pattern.
Topologie structurale / Structural Topology 20:55–77, 1993. 〈http://hdl.handle.net/2099/1091〉.

[25] Luigi Cremona. Le figure reciproche nella statica grafica. Tipografia di Giuseppe Bernardoni,
1872. 〈http://www.luigi-cremona.it/download/Scritti_matematici/1872_statica_grafica.pdf〉. Eng-
lish translation in [26].

[26] Luigi Cremona. Graphical Statics. Oxford Univ. Press, 1890. 〈https://archive.org/details/
graphicalstatic02cremgoog〉. English translation of [25] by Thomas Hudson Beare.

[27] Jesús De Loera, Jörg Rambau, and Francisco Santos. Triangulations: Structures for Algorithms and
Applications. Algorithms and Computation in Mathematics 25. Springer, 2010.

[28] Olaf Delgado-Friedrichs. Equilibrium placement of periodic graphs and convexity of plane tilings.
Discrete Comput. Geom. 33(1):67–81, 2004.

[29] Erik D. Demaine and Joseph O’Rourke. Geometric Folding Algorithms: Linkages, Origami, Polyhedra.
Cambridge Univ. Press, 2007.

[30] Erik D. Demaine and André Schulz. Embedding stacked polytopes on a polynomial-size grid.
Discrete Comput. Geom. 57(4):782–809, 2017.

https://doi.org/10.1007/s00454-016-9782-6
https://doi.org/10.1145/237218.237401
https://doi.org/10.1145/237218.237401
https://doi.org/10.1007/s00454-013-9555-4
https://doi.org/10.1515/form.1989.1.395
https://doi.org/10.1016/0095-8956(90)90093-F
https://doi.org/10.5169/seals-58738
https://doi.org/10.1007/BF01245096
http://www.cs.cmu.edu/~kmcrane/Projects/DDG/paper.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/DDG/paper.pdf
http://hdl.handle.net/2099/1091
http://www.luigi-cremona.it/download/Scritti_matematici/ 1872_statica_grafica.pdf
https://archive.org/details/graphicalstatic02cremgoog
https://archive.org/details/graphicalstatic02cremgoog
https://doi.org/10.1007/978-3-642-12971-1
https://doi.org/10.1007/978-3-642-12971-1
https://doi.org/10.1007/s00454-004-1147-x
https://doi.org/10.1007/s00454-017-9887-6


22 A Toroidal Maxwell–Cremona–Delaunay Correspondence

[31] Peter Eades and Patrick Garvan. Drawing stressed planar graphs in three dimensions. Proc. 2nd
Symp. Graph Drawing, 212–223, 1995. Lecture Notes Comput. Sci. 1027.

[32] Herbert Edelsbrunner and Raimund Seidel. Voronoi diagrams and arrangements. Discrete Comput.
Geom. 1(1):25–44, 1986.

[33] Jeff Erickson and Patrick Lin. A toroidal Maxwell-Cremona-Delaunay correspondence. Proc. 36rd
Int. Symp. Comput. Geom., 40:1–40:17, 2020. Leibniz Int. Proc. Informatics, Schloss Dagstuhl–
Leibniz-Zentrum für Informatik.

[34] Stefan Felsner and Günter Rote. On Primal-Dual Circle Representations. Proc. 2nd Symp. Simplicity
in Algorithms, 8:1–8:18, 2018. OpenAccess Series in Informatics (OASIcs) 69, Schloss Dagstuhl–
Leibniz-Zentrum für Informatik.

[35] Daniel Gonçalves and Benjamin Lévêque. Toroidal maps: Schnyder woods, orthogonal surfaces
and straight-line representations. Discrete Comput. Geom. 51(1):67–131, 2014.

[36] Steven J. Gortler, Craig Gotsman, and Dylan Thurston. Discrete one-forms on meshes and appli-
cations to 3D mesh parameterization. Comput. Aided Geom. Design 23(2):83–112, 2006.

[37] Clara I. Grima and Alberto Márquez. Computational Geometry on Surfaces. Springer, 2001.

[38] Joel Hass and Peter Scott. Simplicial energy and simplicial harmonic maps. Asian J. Math.
19(4):593–636, 2015. arXiv:1206.2574.

[39] Percy John Heawood. Map colour theorems. Quart. J. Pure Appl. Math. 24:332–338, 1890. 〈https:
//babel.hathitrust.org/cgi/pt?id=inu.30000050138159&seq=344〉.

[40] Lothar Heffter. Ueber das Problem der Nachbargebiete. Math. Ann. 38(4):477–508, 1891.

[41] John E. Hopcroft and Peter J. Kahn. A paradigm for robust geometric algorithms. Algorithmica
7(1–6):339–380, 1992.

[42] David Huffman. A duality concept for the analysis of polyhedral scenes. Machine Intelligence, vol. 8,
475–492, 1977. Ellis Horwood Ltd. and John Wiley & Sons.

[43] Alexander Igambardiev and André Schulz. A duality transform for constructing small grid embed-
dings of 3d polytopes. Comput. Geom. Theory Appl. 56:19–36, 2016.

[44] Hiroshi Imai, Masao Iri, and Kazuo Murota. Voronoi diagram in the Laguerre geometry and its
applications. SIAM J. Comput. 14(1):93–105, 1985.

[45] Clause Indermitte, Thomas M. Liebling, Marc Troyanov, and Heinz Clemençon. Voronoi diagrams
on piecewise flat surfaces and an application to biological growth. Theoret. Comput. Sci. 263(1–
2):263–274, 2001.

[46] Ivan Izmestiev. Statics and kinematics of frameworks in Euclidean and non-Euclidean geometry.
Eighteen Essays in Non-Euclidean Geometry, 2019. IRMA Lectures in Mathematics and Theoretical
Physics 29, Europ. Math. Soc.

[47] Paul Koebe. Kontaktprobleme der Konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-
Phys. Kl. 88:141–164, 1936.

https://doi.org/10.1007/BFb0021805
https://doi.org/10.1007/BF02187681
https://doi.org/10.4230/LIPIcs.SoCG.2020.40
https://doi.org/10.4230/OASIcs.SOSA.2019.8
https://doi.org/10.1007/s00454-013-9552-7
https://doi.org/10.1007/s00454-013-9552-7
https://doi.org/10.1016/j.cagd.2005.05.002
https://doi.org/10.1016/j.cagd.2005.05.002
https://doi.org/10.4310/AJM.2015.v19.n4.a2
http://arxiv.org/abs/1206.2574
https://babel.hathitrust.org/cgi/pt?id=inu.30000050138159& seq=344
https://babel.hathitrust.org/cgi/pt?id=inu.30000050138159& seq=344
https://doi.org/10.1007/BF01203357
https://doi.org/10.1007/BF01758769
https://doi.org/10.1016/j.comgeo.2016.03.004
https://doi.org/10.1016/j.comgeo.2016.03.004
https://doi.org/doi.org/10.1137/0214006
https://doi.org/doi.org/10.1137/0214006
https://doi.org/10.1016/S0304-3975(00)00248-6
https://doi.org/10.1016/S0304-3975(00)00248-6
https://doi.org/10.4171/196-1/12


Jeff Erickson and Patrick Lin 23

[48] Andrew Kotlov, László Lovász, and Santosh Vempala. The Colin de Verdière number and sphere
representations of a graph. Combinatorica 17(4):483–521, 1997.

[49] Yves Ladegaillerie. Classification topologique des plongements des 1-complexes compacts dans
les surfaces. C. R. Acad. Sci. Paris A 278:1401–1403, 1974. 〈https://gallica.bnf.fr/ark:/12148/
bpt6k6236784g/f179〉.

[50] Yves Ladegaillerie. Classification topologique des plongements des 1-complexes compacts dans
les surfaces. C. R. Acad. Sci. Paris A 279:129–132, 1974. 〈https://gallica.bnf.fr/ark:/12148/
bpt6k6238171d/f143〉.

[51] Yves Ladegaillerie. Classes d’isotopie de plongements de 1-complexes dans les surfaces. Topology
23(3):303–311, 1984.

[52] Charles L. Lawson. Transforming triangulations. Discrete Math. 3(4):365–372, 1972.

[53] László Lovász. Representations of polyhedra and the Colin de Verdière number. J. Comb. Theory
Ser. B 82(2):223–236, 2001.

[54] László Lovász. Discrete analytic functions: An exposition. Eigenvalues of Laplacians and other
geometric operators, 241–273, 2004. Surveys in Differential Geometry 9, Int. Press.

[55] László Lovász. Graphs and Geometry. Colloquium Publications 69. Amer. Math. Soc., 2019.

[56] James Clerk Maxwell. On reciprocal figures and diagrams of forces. Phil. Mag. (Ser. 4) 27(182):250–
261, 1864.

[57] James ClerkMaxwell. On the application of the theory of reciprocal polar figures to the construction
of diagrams of forces. Engineer 24:402, 1867. Reprinted in [59, pp. 313–316].

[58] James Clerk Maxwell. On reciprocal figures, frames, and diagrams of forces. Trans. Royal Soc.
Edinburgh 26(1):1–40, 1870.

[59] James Clerk Maxwell. The Scientific Letters and Papers of James Clerk Maxwell. Volume 2: 1862–1873.
Cambridge Univ. Press, 2009.

[60] Maria Mazón and Tomás Recio. Voronoi diagrams on orbifolds. Comput. Geom. Theory Appl.
8(5):219–230, 1997.

[61] August F. Möbius. Zur Theorie der Polyëder und der Elementarverwandtschaft [Nachlass]. Gesam-
melte Werke, vol. 2, 515–559, 1886. Hirzel, Leipzig. 〈http://gallica.bnf.fr/ark:/12148/bpt6k994243/
f524〉.

[62] Bojan Mohar. A polynomial time circle packing algorithm. Discrete Math. 117(1–3):257–263, 1993.

[63] Bojan Mohar. Circle packings of maps—The Euclidean case. Rend. Sem. Mat. Fis. Milano 67(1):191–
206, 1997.

[64] Bojan Mohar. Circle packings of maps in polynomial time. Europ. J. Combin. 18(7):785–805, 1997.

[65] Bojan Mohar and Pierre Rosenstiehl. Tessellation and visibility representations of maps on the
torus. Discrete Comput. Geom. 19(2):249–263, 1998.

[66] Bojan Mohar and Alexander Schrijver. Blocking nonorientability of a surface. J. Comb. Theory Ser.
B 87(1):2–16, 2003.

https://doi.org/10.1007/BF01195002
https://doi.org/10.1007/BF01195002
https://gallica.bnf.fr/ark:/12148/bpt6k6236784g/f179
https://gallica.bnf.fr/ark:/12148/bpt6k6236784g/f179
https://gallica.bnf.fr/ark:/12148/bpt6k6238171d/f143
https://gallica.bnf.fr/ark:/12148/bpt6k6238171d/f143
https://doi.org/10.1016/0040-9383(84)90013-2
https://doi.org/10.1016/0012-365X(72)90093-3
https://doi.org/10.1006/jctb.2000.2027
https://doi.org/10.4310/SDG.2004.v9.n1.a7
https://doi.org/10.1080/14786446408643663
https://doi.org/10.1017/S0080456800026351
https://doi.org/10.1016/S0925-7721(96)00017-X
http://gallica.bnf.fr/ark:/12148/bpt6k994243/f524
http://gallica.bnf.fr/ark:/12148/bpt6k994243/f524
https://doi.org/10.1016/0012-365X(93)90340-Y
https://doi.org/10.1007/BF02930499
https://doi.org/10.1006/eujc.1996.0135
https://doi.org/10.1007/PL00009344
https://doi.org/10.1007/PL00009344
https://doi.org/10.1016/S0095-8956(02)00025-4


24 A Toroidal Maxwell–Cremona–Delaunay Correspondence

[67] Shmuel Onn and Bernd Sturmfels. A quantitative Steinitz’ theorem. Beitr. Algebra Geom. 35(1):125–
129, 1994. 〈https://www.emis.de/journals/BAG/vol.35/no.1/〉.

[68] David Orden, Günter Rote, Fransisco Santos, Brigitte Servatius, Herman Servatius, and Wal-
ter Whiteley. Non-crossing frameworks with non-crossing reciprocals. Discrete Comput. Geom.
32(4):567–600, 2004.

[69] W. J. Macquorn Rankine. Principle of the equilibrium of polyhedral frams. London, Edinburgh, and
Dublin Phil. Mag J. Sci. 27(180):92, 1864.

[70] William John Macquorn Rankine. A Manual of Applied Mechanics. Richard Griffin and Co., 1858.
〈https://archive.org/details/manualappmecha00rankrich〉.

[71] Ares Ribó Mor, Günter Rote, and André Schulz. Small grid embeddings of 3-polytopes. Discrete
Comput. Geom. 45(1):65–87, 2011.

[72] Jürgen Richter-Gebert. Realization spaces of polytopes. Lecture Notes Math. 1643. Springer, 1996.

[73] Igor Rivin. Euclidean structures on simplicial surfaces and hyperbolic volume. Ann. Math. 139:553–
580, 1994.

[74] Günter Rote, Fransisco Santos, and Ileana Streinu. Pseudo-triangulations—a survey. Essays on Dis-
crete and Computational Geometry: Twenty Years Later, 343–410, 2008. Contemporary Mathematics
453, Amer. Math. Soc.

[75] André Schulz. Drawing 3-polytopeswith good vertex resolution. J. Graph Algorithms Appl. 15(1):33–
52, 2011.

[76] Dvir Steiner and Anath Fischer. Planar parameterization for closed 2-manifold genus-1 meshes.
Proc. 9th ACM Symp. Solid Modeling Appl., 83–91, 2004.

[77] Ernst Steinitz. Polyeder und Raumeinteilungen. Enzyklopädie der mathematischen Wissenschaften
mit Einschluss ihrer Anwendungen III.AB(12):1–139, 1916.

[78] Ernst Steinitz and Hans Rademacher. Vorlesungen über die Theorie der Polyeder: unter Einschluß
der Elemente der Topologie. Grundlehren der mathematischen Wissenschaften 41. Springer-Verlag,
1934. Reprinted 1976.

[79] Kenneth Stephenson. Introduction to Circle Packing: The Theory of Discrete Analytic Functions.
Cambridge Univ. Press, 2005.

[80] Ileana Streinu. Erratum to “Pseudo-triangulations, rigidity andmotion planning”. Discrete Comput.
Geom. 35(2):358, 2006.

[81] Ileana Streinu. Pseudo-triangulations, rigidity and motion planning. Discrete Comput. Geom.
34(4):587–635, 2006. Publisher’s erratum in [80].

[82] Kokichi Sugihara. Realizability of polyhedrons from line drawings. Computational Morphology: A
Computational Geometric Approach to the Analysis Of Form, 177–206, 1988. Machine Intelligence
and Pattern Recognition 6.

[83] William T. Tutte. How to draw a graph. Proc. London Math. Soc. 13(3):743–768, 1963.

https://www.emis.de/journals/BAG/vol.35/no.1/
https://doi.org/10.1007/s00454-004-1139-x
https://doi.org/10.1080/14786446408643629
https://archive.org/details/manualappmecha00rankrich
https://doi.org/10.1007/s00454-010-9301-0
https://doi.org/10.1007/BFb0093761
https://doi.org/10.2307/2118572
https://doi.org/10.7155/jgaa.00216
https://doi.org/10.1007/s00454-006-3300-1
https://doi.org/doi.org/10.1007/s00454-005-1184-0
https://doi.org/10.1112/plms/s3-13.1.743


Jeff Erickson and Patrick Lin 25

[84] Pierre Varignon. Nouvelle mechanique ou statique, dont le projet fut donné en M.DC.LXXVII. Claude
Jombert, Paris, 1725. 〈https://gallica.bnf.fr/ark:/12148/bpt6k5652714w.texteImage〉.

[85] Georges F. Voronoï. Nouvelles applications des paramètres continus à la théorie des formes qua-
dratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. J. Reine Angew. Math.
134:198–287, 1908. 〈https://eudml.org/doc/149291〉.

[86] Walter Whiteley. Motion and stresses of projected polyhedra. Topologie structurale / Structural
Topology 7:13–38, 1982. 〈http://hdl.handle.net/2099/989〉.

[87] Walter Whiteley, Peter F. Ash, Ethan Poiker, and Henry Crapo. Convex polyhedra, Dirichlet tesse-
lations, and spider webs. Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical
Imagination, chapter 18, 231–251, 2013. Springer.

[88] Günter M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics 152. Springer, 1995.

https://gallica.bnf.fr/ark:/12148/bpt6k5652714w.texteImage
https://eudml.org/doc/149291
http://hdl.handle.net/2099/989
https://doi.org/10.1007/978-0-387-92714-5_18
https://doi.org/10.1007/978-0-387-92714-5_18

	Introduction
	Our Results
	Other Related Results

	Background and Definitions
	Flat Tori
	Graphs, Drawings, and Embeddings
	Homology and Circulations
	Homotopy
	Geodesic Drawings and Embeddings
	Equilibrium Stresses and Spring Embeddings
	Duality and Reciprocality
	Coherent Subdivisions

	Reciprocal Implies Equilibrium
	Example

	Coherent = Reciprocal
	Notation
	Results

	Equilibrium Implies Reciprocal, Sort Of
	Cocirculations and Cohomology
	The Square Flat Torus
	Force Diagrams
	Arbitrary Flat Tori
	Example

	A Toroidal Steinitz Theorem

